Alcoholysis of 2,2-Dichloropropyl Derivatives of Carbazole, Phenothiazine, and Phenoxazine*

V. A. Anfinogenov ${ }^{\dagger}$, I. N. Okhtemenko ${ }^{1}$, A. I. Khlebnikov ${ }^{1}$, and V. D. Ogorodnikov ${ }^{2}$
${ }^{1}$ Polzunov Altai State Technical University, pr. Lenina 46, Barnaul, 656099 Russia e-mail: kai@agtu.secna.ru
${ }^{2}$ Institute of Petroleum Chemistry, Siberian Division, Russian Academy of Sciences

Received August 11, 1999

Abstract

Reactions of 9-(2,2-dichlorocyclopropyl)carbazole, 10-(2,2-dichlorocyclopropyl)phenothiazine, and 10-(2,2-dichlorocyclopropyl)phenoxazine with alcohols in the system t-BuOK-DMSO yield the corresponding N-(1-alkoxy-2-propynyl) derivatives. Hydrolysis of 9-(1-methoxy-2-propynyl)carbazole and 10-(1-methoxy-2-propynyl)phenothiazine in 60% aqueous dioxane in the presence of sulfuric acid gives the corresponding heterocyclic amine and 2-propynal.

We recently synthesized 2,2-dichlorocyclopropyl derivatives of heterocyclic amines: 9-(2,2-dichlorocyclopropyl)carbazole (I), 10-(2,2-dichlorocyclopropyl)phenothiazine (II), and 10-(2,2-dichlorocyclopropyl)phenoxazine (III) [1]. Chemical properties of geminal dichlorocyclopropanes having a heteroatom substituent as donor of electron pair, especially of those possessing a nitrogen-containing group, have been studied relatively poorly. We have found that, by analogy with 2,2 -dichloropropyl derivatives of N-nitroamines [2, 3], N -substituted heterocyclic compounds I-III are weakly sensitive to alkalies and strong acids. Attempts to reduce them using $\mathrm{Zn} / \mathrm{HCl}, \mathrm{K} / \mathrm{CH}_{3} \mathrm{OH}, \mathrm{Na} / \mathrm{CH}_{3} \mathrm{OH}$, and $\mathrm{SnCl}_{2} / \mathrm{HCl}$ were unsuccessful. The goal of the present work was to study transformations of 2,2-dichlorocyclopropyl derivatives I-III under more severe conditions, in the system t-BuOK-alcohol-DMSO. Alcoholysis of 2,2-dichlorocyclopropylamines in this system was not reported previously.

It is known [4] that electron-donor substituents weaken $\mathrm{C}-\mathrm{C}$ bonds in three-membered ring and that reactions of such compounds are generally accompanied by opening of the three-membered ring. Therefore, we expected formation of two open-chain alcoholysis products, α-alkoxy- β-chloroallylamine and α-alkoxy-2-propynylamine (Scheme 1). Experi-

[^0]ments showed that alcoholysis of compounds I-III occurs with opening of the three-membered ring even at room temperature. The products were hitherto unknown 1-alkoxy-2-propynylamines IV-VII. No intermediate 1-alkoxy-2-chloroallylamines were detected in the reaction mixtures. The reaction conditions and yields of products IV-VII are given in Table 1.

Scheme 1.

I, IV, V, Ht = 9-carbazolyl; II, VI, Ht = 10-phenothiazinyl; III, VII, Ht = 10-phenoxazinyl; IV, VI, VII, R = CH_{3}; $\mathbf{V}, \mathrm{R}=$ iso $-\mathrm{C}_{3} \mathrm{H}_{7}$.

The reaction time was $3-7 \mathrm{~h}$; it strongly depends on the reactant ratio. The solvent (DMSO) was taken in an amount of $10-15 \mathrm{ml}$ per gram of initial cyclopropane. The optimal ratio I-III:alcohol was 1:10. Its variation almost did not affect the product yield, but the reaction time increased as the amount of alcohol was reduced (Table 1). The required amount

Scheme 2.

$\mathrm{Ht}=$ 9-carbazolyl, 10-phenoxazinyl, 10-phenothiazinyl; $\mathrm{R}=\mathrm{CH}_{3}$, iso $-\mathrm{C}_{3} \mathrm{H}_{7}$.
of potassium tert-butoxide depends on the reactivity of the substrate and alcohol nature. In the reactions of carbazole derivative \mathbf{I}, the optimal molar ratio I: t-BuOK was 1:2.2 for methanol and 1:3.0 for isopropyl alcohol. A solution of $t-\mathrm{BuOK}$ in $t-\mathrm{BuOH}$ was dropwise added to the reaction mixture over a period of $2-2.5 \mathrm{~h}$. Fast mixing of the reactants resulted in formation of a complex mixture of products, the corresponding heterocyclic amine being the major product (TLC). The yields of alkoxypropynyl derivatives IV-VII were 56-96\%. The products were fairly sensitive to temperature and acids. Product VII was especially unstable; it was isolated as a mixture with phenoxazine (about 30%, according to the ${ }^{1} \mathrm{H}$ NMR data).

The structure of compounds IV-VII was proved by the IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and elemental analyses. The NMR data are presented in Table 2 and in Experimental. The IR spectra of IV-VII contained a broad absorption band at $3250-3300 \mathrm{~cm}^{-1}$ and a weak band at $2120-2160 \mathrm{~cm}^{-1}$, which were assigned to stretching vibrations of acetylenic $\mathrm{C}-\mathrm{H}$ and $\mathrm{C} \equiv \mathrm{C}$ bonds, respectively. The absorption at $950-1250 \mathrm{~cm}^{-1}$ belongs to stretching vibrations of the ether moiety.

Presumably, alcoholysis of 2,2-dichlorocyclopropyl derivatives I-III involves cleavage of the $\mathrm{C}^{1}-\mathrm{C}^{3}$ bond which is located opposite to the CCl_{2} fragment. It is known $[4,5]$ that π-donor substituents (in our case, heterocyclic groups) induce lengthening and hence weakening of all cyclopropane $\mathrm{C}-\mathrm{C}$ bonds, the effect on the contiguous bond is the strongest. By contrast, σ-acceptor substituents (such as chlorine atoms) cause shortening of the contiguous $\mathrm{C}-\mathrm{C}$ bonds which become stronger. Assuming that the effects of different substituents are additive [4], the $\mathrm{C}^{1}-\mathrm{C}^{3}$ bond in the three-membered ring of I-III should be weakened to the greatest extent. Then, the reaction mechanism is similar to that found for alcoholysis of 2,2-dichlorocyclopropyl ethers [6]: in alkaline medium cyclopropyl-allyl rearrangement occurs with formation of allyl cation \mathbf{A} (Scheme 2).

Nucleophilic attack on cation \mathbf{A} and subsequent elimination of HCl molecule lead to formation of 1-alkoxy-2-propynyl derivatives IV-VII (path a). We detected no products of nucleophilic attack by tert-butoxide ion on cation A, presumably because of its lower nucleophilicity compared to methoxide or isopropoxide ion [6, 7]. Moreover, the concentration of tert-butoxide ions should be very small since the dissociation constant of the conjugate acid ($t-\mathrm{BuOH}$) is low. Hydroxide ions present in the reaction mixture are also capable of reacting with cation \mathbf{A}; the resulting adduct is unstable [8], and it decomposes into heterocyclic amine (which was detected by TLC) and 2-chloroacrolein (path b).

Like alkoxyalkylcarbazoles [9, 10], alkoxypropynyl derivatives IV-VII are sensitive to acids. Hydrolysis of compounds IV and VI in 60\% aqueous dioxane in the presence of sulfuric acid gave the corresponding heterocyclic amine and 2-propynal (Scheme 3).

Scheme 3.

The reaction was complete in 19 h for compound IV and in 5 min for VI (room temperature, intial substrate contcntration $6 \times 10^{-2} \mathrm{M}, \mathrm{H}_{2} \mathrm{SO}_{4}$ concentration $1.5 \times 10^{-2} \mathrm{M}$; TLC data). The products, carbazole and phenothiazine were isolated in quantitative yield; 2 -propynal was identified as the corresponding 2,4-dinitrophenylhydrazone [11].

Thus base-catalyzed alcoholysis of N -(2,2-dichloro-cyclopropyl)-substituted heterocyclic amines gave a series of new compounds, N-(1-alkoxy-2-propynyl)derivatives of carbazole, phenothiazine, and phenoxazine. It should be noted that previous attempts to

Table 1. Alcoholysis of 9-(2,2-dichlorocyclopropyl)carbazole (I), 10-(2,2-dichlorocyclopropyl)phenothiazine (II), and 10-(2,2-dichlorocyclopropyl)phenoxazine (III)

Substrate (mmol)	Alcohol (mmol)	t-BuOK, mmol	DMSO, ml	Time, h	Yield, $\%$
I (12.7)	MeOH (125)	27.9	35	3	96
I (11.0)	MeOH (75)	24.5	30	5	92
I (12.7)	i-PrOH (125)	37.5	35	4	56
II (10.7)	MeOH (100)	29.5	35	3.5	90
III (11.3)	MeOH (100)	35.8	30	7	84^{a}

${ }^{\text {a }}$ Product VII was isolated in a mixture with phenoxazine.

Table 2. ${ }^{1} \mathrm{H}$ NMR spectra of N-(1-alkoxy-2-propynyl) derivatives IV-VII in CDCl_{3}

Comp. no.	Chemical shifts δ, ppm
IV	$\begin{aligned} & 2.54 \mathrm{~d}(1 \mathrm{H}, \equiv \mathrm{CH}, J=1 \mathrm{~Hz}), 3.15 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \\ & 6.28 \mathrm{~d}(1 \mathrm{H}, \mathrm{NCH}, J=1 \mathrm{~Hz}), 7.1-8.1 \mathrm{~m} \\ & \left(\mathrm{H}_{\text {arom }}\right) \end{aligned}$
V	$\begin{aligned} & 0.88 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 1.15 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3},\right. \\ & J=7 \mathrm{~Hz}), 2.46 \mathrm{~d}(1 \mathrm{H}, \equiv \mathrm{CH}, J=1 \mathrm{~Hz}), \\ & 3.5 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 6.46 \mathrm{~d}(1 \mathrm{H}, \mathrm{NCH}, J= \\ & 1 \mathrm{~Hz}), 7.0-8.0 \mathrm{~m}\left(\mathrm{H}_{\text {arom }}\right) \end{aligned}$
$\mathbf{V I}{ }^{\text {a }}$	$\begin{aligned} & 1.87 \mathrm{~d}(1 \mathrm{H}, \equiv \mathrm{CH}, J=1 \mathrm{~Hz}), 2.98 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 5.18 \mathrm{~d}(1 \mathrm{H}, \mathrm{NCH}, J=1 \mathrm{~Hz}), 6.5-7.4 \mathrm{~m} \\ & \left(\mathrm{H}_{\text {arom }}\right) \end{aligned}$
VII	$\begin{aligned} & 2.5 \mathrm{~d}(1 \mathrm{H}, \equiv \mathrm{CH}, J=1 \mathrm{~Hz}), 3.46 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \\ & 5.5 \mathrm{~d}(1 \mathrm{H}, \mathrm{NCH}, J=1 \mathrm{~Hz}), 6.6-7.1 \mathrm{~m} \\ & \left(\mathrm{H}_{\text {arom }}\right) \end{aligned}$

${ }^{a}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$.
synthesize α-alkoxyalkyl derivatives by reactions of phenoxazine and phenothiazine with aldehydes and alcohols (which readily occur with carbazole [9, 10, $12-14]$) resulted in preparation of only alkoxymethylphenothiazines [15]; α-alkoxyalkyl-substituted phenoxazines were not reported. The results of our study of alcoholysis of 2,2-dichlorocyclopropyl derivatives I-III show that these compounds are very promising for synthesis of various N-substituted carbazoles, phenothiazines, and phenoxazines.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Tesla BS497 C spectrometer $(100 \mathrm{MHz})$ from 10% solutions in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$. The ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Tesla BS-567A instrument (25.14 MHz) with complete decoupling from protons; $\mathrm{C}_{6} \mathrm{D}_{6}$ was used as solvent (10% solutions), and HMDS, as internal reference. The progress of reactions was monitored by TLC on Silufol plates using hexane-diethyl ether $(6: 1)$ as eluent. When studying alcoholysis of compounds II and III and hydrolysis of methoxypropynyl derivative VI, chromatographic plates were preliminarily impregnated twice with a saturated solution of sodium hydroxide in methanol and were dried in air. The chromatograms were developed with nitrogen oxide vapor.

9-(1-Methoxy-2-propynyl)carbazole (IV). A 0.82 N solution of potassium tert-butoxide in tert-butyl alcohol, $34 \mathrm{ml}(27.9 \mathrm{mmol})$, was added dropwise over a period of 2 h to a mixture of 3.5 g (12.7 mol) of compound $\mathbf{I}, 35 \mathrm{ml}$ of DMSO, and 5 ml (125 mmol) of methanol, continuously stirred at room temperature. The mixture was stirred for an additional 1 h , diluted with 200 ml of water, and extracted with pentane $(4 \times 50 \mathrm{ml})$. The combined extracts were washed with water ($3 \times 500 \mathrm{ml}$) and dried over solid NaOH . Removal of the solvent under reduced pressure and subsequent evacuation for $1 \mathrm{~h}\left(21 \mathrm{hPa}, 30^{\circ} \mathrm{C}\right)$ gave $2.86 \mathrm{~g}(96 \%)$ of product $\mathbf{I V}, \mathrm{mp} 88^{\circ} \mathrm{C}$ (from ethanol). ${ }^{13} \mathrm{C}$ NMR spectra, δ_{C}, ppm: $108.98\left(\mathrm{C}^{1}\right)$, $124.18\left(\mathrm{C}^{2}\right), 118.68\left(\mathrm{C}^{3}, \mathrm{C}^{4}\right), 122.39\left(\mathrm{C}^{4 \mathrm{a}}\right), 137.81$ $\left(\mathrm{C}^{9 \mathrm{a}}\right), 76.50(\mathrm{HtCH}), 73.44(\mathrm{C} \equiv), 72.94(\mathrm{HC} \equiv), 52.88$ $\left(\mathrm{CH}_{3} \mathrm{O}\right)$. Found, \%: C 81.05; H 5.88; N 6.25. $\mathrm{C}_{16} \mathrm{H}_{13}$ NO. Calculated, \%: C 81.67; H 5.58; N 5.95.

9-(1-Isopropoxy-2-propynyl)carbazole (V). A 1.5 N solution of potassium tert-butoxide in tert-butyl alcohol, $25 \mathrm{ml}(37.5 \mathrm{mmol})$, was added dropwise over a period of 2.5 h to a mixture of 3.5 g (12.7 mol) of compound $\mathbf{I}, 35 \mathrm{ml}$ of DMSO, and 9.5 ml (125 mmol) of isopropyl alcohol, continuously stirred at room temperature. The mixture was stirred for an additional 1.5 h , diluted with 200 ml of water, and extracted with pentane $(4 \times 50 \mathrm{ml})$. The combined extracts were washed with a 5% solution of KCl $(3 \times 500 \mathrm{ml})$ and dried over solid NaOH . Removal of the solvent and subsequent evacuation for $1 \mathrm{~h}(21 \mathrm{hPa}$, $30^{\circ} \mathrm{C}$) gave $1.85 \mathrm{~g}(56 \%)$ of compound $\mathbf{V}, \mathrm{mp} 76^{\circ} \mathrm{C}$ (from ethanol). Found, \%: C 81.83; H 7.29; N 5.09. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$. Calculated, \%: C 82.09; H 6.52; N 5.32.

10-(1-Methoxy-2-propynyl)phenothiazine (VI). A 0.82 N solution of potassium tert-butoxide in tert-butyl alcohol, $36 \mathrm{ml}(29.5 \mathrm{mmol})$, was added
dropwise over a period of 2 h to a mixture of 3.3 g (10.7 mol) of compound $\mathbf{~ I I}, 35 \mathrm{ml}$ of DMSO, and $4 \mathrm{ml}(100 \mathrm{mmol})$ of methanol, continuously stirred at room temperature. The mixture was stirred for an additional 1.5 h , and the product was isolated as described above for compound IV. Yield 2.57 g (90%), mp $73-74^{\circ} \mathrm{C}$ (from methanol). ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $116.83\left(\mathrm{C}^{1}\right), 125.32\left(\mathrm{C}^{2}\right), 126.04\left(\mathrm{C}^{3}\right)$, $125.10\left(\mathrm{C}^{4}\right), 141.52\left(\mathrm{C}^{10 \mathrm{a}}\right), 80.29(\mathrm{HtCH}), 76.50$ $(\mathrm{C} \equiv), 73.86 \quad(\mathrm{HC} \equiv), 51.95 \quad\left(\mathrm{CH}_{3} \mathrm{O}\right)$. Found, \%: C 71.79; H 4.32; N 5.23. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NOS}$. Calculated, \%: C 71.87; H 4.91; N 5.24.

9-(1-Methoxy-2-propynyl)phenoxazine (VII). A 1.12 N solution of potassium tert-butoxide in tert-butyl alcohol, $32 \mathrm{ml}(35.8 \mathrm{mmol}$), was added dropwise over a period of 2.5 h to a mixture of 3.3 g (11.3 mol) of compound III, 30 ml of DMSO, and 4 ml (100 mmol) of methanol, continuously stirred at room temperature. The mixture was stirred for an additional 4.5 h , and the product was isolated as described above for compound \mathbf{V}. Yield 2.38 g . Analysis of the product by TLC showed the presence of phenoxazine ($30 \mathrm{~mol} \%$, according to the ${ }^{1} \mathrm{H}$ NMR data).

Hydrolysis of 9-(1-methoxy-2-propynyl)carbazole (IV) and 10-(1-methoxy-2-propynyl)phenothiazine (VI). A $0.249-\mathrm{g}$ ($1.06-\mathrm{mmol}$) portion of compound IV was dissolved in 10 ml of dioxane, and 5 ml of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 1.7 ml of water were added. In a similar way, a solution of 0.267 g $(1 \mathrm{mmol})$ of compound VI was prepared. The reaction was carried out in dioxane-water ($3: 2$, by volume), the initial concentration of compounds IV and VI was $6 \times 10^{-2} \mathrm{M}$, and the sulfuric acid concentration was $1.5 \times 10^{-2} \mathrm{M}$. The mixture was stirred at $18^{\circ} \mathrm{C}$, and the progress of the reaction was monitored by TLC until the initial compound disappeared completely. The mixture was then diluted with 150 ml of water, and the precipitate of carbazole, $0.148 \mathrm{~g}(84 \%)$, or phenothiazine, 0.189 g (95%), was filtered off. 2-Propynal was determined by the procedure reported in [11]. In the hydrolysis of IV and VI we isolated, respectively, $0.208 \mathrm{~g}(84 \%)$ and $0.215 \mathrm{~g}(92 \%)$ of 2-propynal 2,4-dinitrophenylhydrazone whose structure was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, $\delta, \mathrm{ppm}: 4.07 \mathrm{~s}(1 \mathrm{H}, \equiv \mathrm{CH}), 7.00 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 7.30 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{NH}), 7.9-9.0\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$.

REFERENCES

1. Anfinogenov, V.A., Okhtemenko, I.N., and Ogorodnikov, V.D., Russ. J. Org. Chem., 1997, vol. 33, no. 7, pp. 1024-1026.
2. Ivshin, V.P., Kamelin, M.S., and Belik, A.P., Zh. Org. Khim., 1980, vol. 16, no. 5, pp. 980-981.
3. Ivshin, V.P. and Kamelin, M.S., Zh. Org. Khim., 1983, vol. 19, no. 8, pp. 1652-1654.
4. Kostikov, R.R. and Khlebnikov, A.F., Sovremennye problemy organicheskoi khimii (Current Problems of Organic Chemistry), Leningrad: Leningr. Gos. Univ., 1981, no. 7, pp. 36-66.
5. Krivdin, L.B., Trofimov, B.A., Zinchenko, S.V., Glukhikh, N.G., Pestunovich, S.V., Domnin, I.N., Akhachinskaya, T.V., and Donskaya, N.A., Zh. Org. Khim., 1991, vol. 27, no. 7, pp. 1369-1382.
6. Barlet, R. and Vo-Quang, Bull. Soc. Chim. Fr., 1969, no. 10, pp. 3729-3760.
7. Shields, T.C. and Gardner, P.D., J. Am. Chem. Soc., 1967, vol. 89, no. 21, pp. 5425-5428.
8. Khlebnikov, A.I., Anfinogenov, V.A., Filimonov, V.D., and Sokolova, I.V., Zh. Org. Khim., 1989, vol. 25, no. 7, pp. 1547-1553.
9. Filimonov, V.D. and Sirotkina, E.E., Khimiya monomerov na osnove karbazola (Chemistry of CarbazoleBased Monomers), Novosibirsk: Nauka, 1995, pp. 37-55.
10. Anfinogenov, V.A., Filimonov, V.D., Zamyatina, Z.N., and Kroneval'd, G.V., Zh. Org. Khim., 1983, vol. 19, no. 7, pp. 1505-1511.
11. Methoden der organischen Chemie (Houben-Weyl), Müller, E., Bayer, O., Meerwein, H., and Ziegler, K., Eds., Stuttgart: Georg Thieme, 1953, 4th ed., vol. 2. Translated under the title Metody organicheskoi khimii, Moscow: Gos. Nauch.-Tekh. Izd. Khim. Lit., 1963, vol. 2, pp. 442-443.
12. Anfinogenov, V.A., Filimonov, V.D., and Sirotkina, E.E., Zh. Org. Khim., 1978, vol. 14, no. 8, pp. 1723-1729.
13. Anfinogenov, V.A., Filimonov, V.D., Sirotkina, E.E., Tavobilov, M.F., and Svetlov, A.K., Ionnyi obmen i khromatografiya (Ion Exchange and Chromatography), Samsonov, G.V., Ed., Leningrad: Nauka, 1984, pp. 175-178.
14. Filimonov, V.D., Anfinogenov, V.A., Sirotkina, E.E., and Rodionov, V.A., Zh. Org. Khim., 1980, vol. 16, no. 11, pp. 2395-2399.
15. US Patent 2415252, 1947; Chem. Abstr., 1947, vol. 41, p. 2756 d .

[^0]: \dagger Deceased.

 * This study was financially supported by the Russian Foundation for Basic Research (project no. 96-03-33054a).

