

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: https://www.tandfonline.com/loi/lsyc20

Catalyst free cyclocondensation of β -ethylthio- β indolyl- α , β -unsaturated ketones with hydrazines: Efficient synthesis of 3-pyrazolyl indoles

Hai-Feng Yu & Wen-Ju Wang

Chemistry

To cite this article: Hai-Feng Yu & Wen-Ju Wang (2020): Catalyst free cyclocondensation of β ethylthio- β -indolyl- α , β -unsaturated ketones with hydrazines: Efficient synthesis of 3-pyrazolyl indoles, Synthetic Communications, DOI: 10.1080/00397911.2019.1681001

To link to this article: <u>https://doi.org/10.1080/00397911.2019.1681001</u>

View supplementary material

Published online: 19 Mar 2020.

Submit your article to this journal 🕑

View related articles

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Check for updates

Catalyst free cyclocondensation of β -ethylthio- β -indolyl- α , β -unsaturated ketones with hydrazines: Efficient synthesis of 3-pyrazolyl indoles

Hai-Feng Yu and Wen-Ju Wang

College of Chemistry, Baicheng Normal University, Baicheng, China

ABSTRACT

Catalyst free cyclocondensation of β -ethylthio- β -indolyl- α , β -unsat urated ketones with hydrazines has been developed, and 3-pyrazolyl indoles were efficiently synthesized in excellent yields. The catalyst free protocol avoids the use of a large excess of catalysts such as acids and bases, eliminating the discharge of harmful chemicals.

GRAPHICAL ABSTRACT

ARTICLE HISTORY Received 11 June 2019

KEYWORDS

Cyclocondensation; β -ethylthio- β -indolyl- α ; β -unsaturated ketones; hydrazines; indole derivatives; 3-pyrazolyl indoles

Introduction

The synthesis of 3-pyrazolyl indoles had received more and more attention because of their versatile synthetic values^[1] and exhibiting a broad spectrum of biological activities^[2] such as antimicrobial^[3], anti-inflammatory^[4] and antioxidant.^[5] As a result, versatile synthetic routes have been developed for the synthesis of 3-pyrazolyl indoles,^[6–9] including the cyclocondensation of 1,3-diketones and related derivatives with hydrazines,^[6] the direct coupling of indole derivatives and pyrazole derivatives,^[7] acid-catalyzed intramolecular cyclization reaction of *N*-propargylation of *N*-acetyl-*N*-tosylhydrazine,^[8] and other procedures.^[9] However, despite tremendous efforts to develop more efficient strategies in these areas, the remarkable disadvantage of these reactions was frequent use of a large number of catalysts such as acids and bases, which can create serious environmental and safety problems. Thus, the development of catalyst free approaches to 3-pyrazolyl indoles avoiding the use and release of the toxic and hazardous materials which pollute the environment are highly desirable.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsyc.

Supplemental data for this article can be accessed on the publisher's website.

© 2020 Taylor & Francis Group, LLC

CONTACT Wen-Ju Wang 🕲 wangwj3309@163.com 🕞 College of Chemistry, Baicheng Normal University, P.O. Box: 137000, Baicheng, Jilin, China.

Scheme 1. Synthesis and application β -ethyltho- β -aryl- α , β -unsaturated ketones.

 β -Ethyltho- β -aryl- α , β -unsaturated regarded as ketones could be versatile organic synthesis intermediates due to their structural features of multi-reaction center and multi-functional group (Scheme 1).^[10,11] The condensation reactions of β -ethyltho- β -indolyl- α , β -unsaturated ketones with guanidine affording alkaloids meridianin derivatives 3-pyrimidyl indoles^{[10}a[]] and hydrolysis reaction selective yielding 3-acetyl indoles and 3-acetoacetyl indoles^{[10}b] had recently been realized (Scheme 1). In addition, we also realized that potassium tert-butoxide or acetic acid mediated regioselective cyclocondensation of β -ethyltho- β -phenyl- α , β -unsaturated ketones with hydrazines, affording only 1,3,5-trisubstituted pyrazoles in excellent yields.^[11] As part of our continuing research in the context, keeping in mind environmental requirements and the significance of 3-pyrazolyl indoles, herein, we would like to report the catalyst free cyclocondensation of β -ethyltho- β -indolyl- α , β -unsaturated ketones with hydrazine hydrate to efficiently afford 3-pyrazolyl indoles. Unlike our previous work,^[11] this work concentrates on the study of green catalyst free synthesis of 3-pyrazolyl indoles.

Results and discussion

β-Ethyltho-β-indolyl-α,β-unsaturated ketones $\mathbf{1}^{[10,12]}$ were easily prepared in good yields *via* acid mediated selective desulfitative carbon-carbon coupling reaction between indoles and α-oxo ketene dithioacetals which are readily available and stable synthetic intermediate.^[13,14] The reactions of (Z/E)-3-(ethylthio)-3-(1-methyl-1*H*-indol-3-yl)-1-phenylprop-2-en-1-one **1a** with hydrazine hydrate **2a** was selected as a model reaction to screen the experimental conditions. We initially examined the cyclocondensation reaction of **1a** and **2a** in refluxing EtOH (95%) when their molar ratio was 1:1, and found the reactions gave a white solid product in 60% yield, which was characterized as 1-methyl-3-(3-phenyl-1H-pyrazol-5-yl)-1H-indole **3a** on the basis of its spectral and

	$H = \frac{1}{1a} + \frac{1}{2a} + \frac{1}{$					
Entry	1a/2a(mol ratio)	Solvent	Temperature (°C)	Time (h)	Yield (%) ^b	
1	1:1	CH ₃ CH ₂ OH (95%)	reflux	20	60	
2	2:3	CH ₃ CH ₂ OH (95%)	reflux	18	63	
3	1:2	$CH_{3}CH_{2}OH$ (95%)	reflux	15	74	
4	1:3	CH ₃ CH ₂ OH (95%)	reflux	14	77	
5	1:2	CH ₃ CH ₂ OH	reflux	15	79	
6	1:2	CH ₃ CHOHCH ₃	reflux	13	81	
7	1:2	(CH ₃) ₃ COH	reflux	8	82	
8 ^c	1:2	(CH ₃) ₃ COH	100	7	90	
9 ^c	1:2	(CH ₃) ₃ COH	120	4	94	
10 ^c	1:2	(CH ₃) ₃ COH	130	3	93	

Table 1. Screening of reaction conditions^a.

^aReaction conditions: **1a** (0.5 mmol), solvent (1 mL); ^bYield of isolated products; ^cthe reaction performed in sealed tube.

analytical data (Table 1, Entry1). The result showed that the cyclocondensation reaction of **1a** and **2a** could effectively carry out without acids or bases catalysis to yield **3a**. Next, we studied the nonacid or alkali mediated reactions in detail under various conditions to identify the optimal conditions. It was found that on changing the molar ratio of **1a** and **2a** from 1:1 to 1:2, the yield of **3a** was markedly increased, while further reducing the ratio slightly improved the yield of **3a**, which indicates that the prefect ratio can be obtained when the reaction is proceeded with 1:2 molar ratio of **1a** and **2a** (Table 1, Entries1–4). Subsequently, we tested the influence of reaction medium, and found that the reaction proceeded more efficiently in tertbutyl alcohol ((CH₃)₃COH) than in ethanol (CH₃CH₂OH) and isopropyl alcohol (CH₃CHOHCH₃). (Table 1, Entries 5–7). The reaction efficiency was markedly improved by elevating the reaction temperature, and the reaction could be completed in 4h at 120 °C to produce **3a** in 94% yield (Table 1, Entries8–10). Accordingly, the optimal reaction conditions are a **1a**/ **2a** ratio of 1:2, *tert*-butyl alcohol ((CH₃)₃COH) as the solvent, and run the reaction at 120 °C (Table 1, Entry 9).

With the optimized conditions in hand, we examined the reaction of various β -ethyltho- β -indolyl- α , β -unsaturated ketones **1 b-o** with hydrazines **2** to define the scope of the reaction, and the results are summarized in Table 2 and Scheme 2. The compounds 1, such as (Z/E)-3-(ethylthio)-3-(1-methyl-1H-indol-3-yl)-1-arylprop-2-en-1-ones 1a-1i (Table 2, Entry1-9), (Z/E)-3-(5-methyl/bromo/methoxy-1-methyl-1H-indol-3-yl)-3-(ethylthio)-1-phenylprop-2-en-1-one 1j, 1k and 11 (Table 2, Entry 10-12), (Z/E)-3-(1-benzyl-1*H*-indol-3-yl)-3-(ethylthio)-1-phenylprop-2-en-1-one **1m** (Table 2, Entry 13), (Z/E)-3-(ethylthio)-3-(2-methyl-1*H*-indol-3-yl)-1-phenylprop-2-en-1-one **1n** (*Z*/*E*)-4-(ethylthio)-4-(1-methyl-1*H*-indol-3-yl)but-3-en-2-one 10 (Table and 2, Entries14 and 15), reacted smoothly with hydrazine hydrate 2a to efficiently give corresponding 3-pyrazolyl indoles 3a-30 in excellent yields, respectively. Obviously, the electronic effects of both electron-withdrawing and-donating substitutents on phenyl or indolyl in 1 are insignicant to the cyclocondensation reaction. However, the substituents

4 😔 H.-F. YU AND W.-J. WANG

Table 2. synthesis of 3-pyrazolyl indoles 3a-3o^a.

	$\underset{\substack{R \\ EIS}}{\overset{O}{\underset{R}}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R}}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}}} \underset{\substack{R \\ I}}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\overset{P}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\underset{R \atop I}} \underset{\substack{R \\ I}}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\underset{R \atop I}} \underset{\substack{R \\ I}}{\underset{R \atop I}} \underset{\substack{R \\ I}}{\underset{R \\ I}} \underset{\substack{R \\ I}}{\underset{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}}{\underset{R \atop I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{R \atop I} \underset{\substack{R \\ I}} \underset{\substack{R \\ I} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I}} \underset{\substack{R \\ I} $	$\begin{array}{c} {}_{3COH, 120 {}^{\circ}C} \\ {}_{sealed tube} & {}^{R_1} \\ {}^{R_2} \\ {}_{R_2} \\ {}_{3a-3n} \end{array} \\ \begin{array}{c} {}^{R_3} \\ {}^{R_2} \end{array}$	
Entry	1	3	Yield(%) ^b
1			94
2		Show 3b	92
3		N N Sc	94
4			92
5		→ N N 3e	92
6		° N _N N _N 3f	91
7			95
8		S A A	91
9			90
10		N _N J _j	93
11			94
12			95
13		₩ _N N N N N N N N N N N N N N N N N N N N	94
14 [°]		NNN SNH 3n	90
15			93

^aCondition: 1 (0.5 mmol), **2a** (1 mmol), (CH₃)₃COH (1 mL), 120 $^{\circ}$ C, 4 h; ^bIsolated yields; ^cThe reaction takes 8 h to complete.

Scheme 2. The cyclocondensation reaction of 1a, 1e and 1g and phenylhydrazine 2b.

at the 2-positions on the indole rings in **1** showed a significant impact on the reaction due to the steric hindrance effect. For example, it took a longer time for the cyclocondensation reaction of **1n** and **2a** to afford **3n** to complete (Table 2, Entry 14). It was worth noting that the (E)/(Z)-configurations of **1** did not affect the cyclocondensation of β - ethyltho- β -indolyl- α , β -unsaturated ketones **1** with hydrazines **2** to efficiently afford 3-pyrazolyl indoles **3**.

Furthermore, we explored the cyclocondensation reaction outcome of the substituted hydrazine phenylhydrazine **2b** and **1a** under the optimized conditions, and found that the reactions proceeded smoothly to offer 3-(1,5-diphenyl-1H-pyrazol-3yl)-1-methyl-1H-indole **3p** in 65% yield and its tautomer 3-(1,3-diphenyl-1H-pyrazol-5-yl)-1-methyl-1H-indole **3p'** in 30% yield. The result suggested that the reaction gave **3p** in preference to **3p'**. The isomeric **3p** and **3p'** can be separated effectively because they have different R_f values (petroleum ether/ethyl acetate10:1, v/v), in which the R_f value of **3p'** is slightly smaller than that of **3p**. The structure of **3p'** was confirmed with the help of spectral and analytical data as well as alternative synthesis by reported method¹¹, while structural determination of **3q** on the basis of spectral and analytical data and by comparison of **3p'**. Both **1e** and **1g** efficiently underwent the same reaction with **2b** to preferentially produce corresponding **3q** and **3r** in moderate yield (Scheme 1).

In summary, the catalyst free cyclocondensation reaction of β -ethyltho- β -indolyl- α , β -unsaturated carbonyl ketones and hydrazines could efficiently carried out in (CH₃)₃COH at 120 °C to afford 3-pyrazolyl indoles in excellent yields. The procedure is characterized by reducing the discharge of chemical waste, which is of great significance to the protection of the environment. Further investigation of the application of β -ethyltho- β -indolyl- α , β -unsaturated ketones is ongoing in our group.

Experimental

General considerations

A ¹H and 13 C NMR spectra were recorded on a Bruker DRX-600 spectrometer and the chemical shift values refer to δ TMS = 0.00 ppm; The HRMS analysis was achieved on Bruck micro Tof using ESI method. All the melting points were uncorrected. Analytical TLC plates, Sigma-Aldrich silica gel 60F200 were viewed by UV light (254 nm). Chromatographic purifications were performed on SDZF silica gel 160.

Typical procedure for the preparation of 3-pyrazolyl indoles 3

A mixture of β -ethyltho- β -indolyl- α , β -unsaturated ketones 1 (0.5 mmol), hydrazines 2 (1 mmol), and (CH₃)₃COH (1 mL) were stirred for 4 h in 120 °C in sealed tube in which the conversion of 1 was completed as evidenced by TLC. After cooling to room temperature, the reaction mixture was purified by silica gel column chromatography (petroleum ether (60–90 °C)/ethyl acetate10:1, v/v) to give pure 3 as white crystal in excellent yields.

Funding

Supported by the Foundation of Science and Technology Research Projects of the 13th Five-Year Plan of Jilin Provincial Department of Education [2016037].

References

- [1] (a) Gmeiner, P.; Huebner, H.; Abu Safieh, K. A. Heterocycles. 2003, 60, 1339–1350. DOI: 10.3987/COM-03-9734.(b) Zhang, Y. M.; Wang, R.; Shi, Z. J.; Zhang, W. Synthesis. 2011, 11, 1711–1716. DOI: 10.1055/s-0030-1260044.(c) Anand, D.; Yadav, P. K.; Patel, O. P. S.; Parmar, N.; Maurya, R. K.; Vishwakarma, P.; Raju, K. S. R.; Taneja, I.; Wahajuddin, M.; Kar, S.; et al. J. Med. Chem. 2017, 60, 1041–1059. DOI: 10.1021/acs.jmedchem.6b01447.(d) Singh, S.; Chauhan, P.; Ravi, M.; Yadav, P. P. Eosin Y–Yb(OTf) 3 Catalyzed Visible Light Mediated Electrocyclization/Indole Ring Opening towards the Synthesis of Heterobiaryl-Pyrazolo[3,4- b]Pyridines. New J. Chem. 2018, 42, 6617–6620. DOI: 10.1039/C8NJ00862K.
- [2] (a) Sechi, M.; Innocenti, A.; Pala, N.; Rogolino, D.; Carcelli, M.; Scozzafava, A.; Supuran, C. T. Inhibition of α-Class Cytosolic Human Carbonic Anhydrases I, II, IX and XII, and β-Class Fungal Enzymes by Carboxylic Acids and Their Derivatives: New isoform-I Selective Nanomolar Inhibitors. *Bioorgan. Med. Chem. Lett.* 2012, *22*, 5801–5806. DOI: 10. 1016/j.bmcl.2012.07.094.(b) Esvan, Y. J.; Giraud, F.; Pereira, E.; Suchaud, V.; Nauton, L.; Théry, V.; Dezhenkova, L. G.; Kaluzhny, D. N.; Mazov, V. N.; Shtil, A. A.; et al. Synthesis and Biological Activity of Pyrazole Analogues of the Staurosporine Aglycon K252c. *Bioorgan. Med. Chem.* 2016, *24*, 3116–3124. DOI: 10.1016/j.bmc.2016.05.032.(c) Cadoni, R.; Pala, N.; Lomelino, C.; Mahon, B. P.; McKenna, R.; Dallocchio, R.; Dessì, A.; Carcelli, M.; Rogolino, D.; Sanna, V.; et al. Exploring Heteroaryl-Pyrazole Carboxylic Acids as Human Carbonic Anhydrase XII Inhibitors. *ACS Med Chem Lett.* 2017, *8*, 941–946. DOI: 10.1021/acsmedchemlett.7b00229.
- [3] Rao, R. M.; Reddy, G. N.; Sreeramulu, J. Der PharmaChemica. 2011, 3, 301–309. DOI: 10. 1016/S1094-6950(06)60127-3.
- [4] Somappa, S. B.; Biradar, J. S.; Rajesab, P.; Rahber, S.; Sundar, M. A One-Pot Synthesis of Indole-Appended Heterocycles as Potent anti-Inflammatory, Analgesic, and CNS Depressant Agents. *Monatsh. Chem.* 2015, 146, 2067–2078. DOI: 10.1007/s00706-015-1476-x.
- [5] (a) El-Mekabaty, A.; Etman, H. A.; Mosbah, A. Synthesis of Some New Fused Pyrazole Derivatives Bearing Indole Moiety as Antioxidant Agents. J. Heterocyclic Chem. 2016, 53, 894–900. DOI: 10.1002/jhet.2218.(b) Ummadi, N.; Gundala, S.; Venkatapuram, P.; Adivireddy, P. Synthesis and Antioxidant Activity of a New Class of Pyrazolyl Indoles, Thiazolyl Pyrazolyl Indoles. Med. Chem. Res. 2017, 26, 1574–1584. DOI: 10.1007/s00044-017-1827-8.
- [6] (a) Conchon, E.; Aboab, B.; Golsteyn, R. M.; Cruzalegui, F.; Edmonds, T.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis, in Vitro Antiproliferative Activities, and Chk1 Inhibitory Properties of Indolylpyrazolones and Indolylpyridazinedione. *Eur. J. Med.*

Chem. 2006, 41, 1470-1477. DOI: 10.1016/j.ejmech.2006.06.012.(b) Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O.; Dalla Via, L.; Cirrincione, G. 3,5bis(3'-Indolyl)Pyrazoles, Analogues of Marine Alkaloid Nortopsentin: Synthesis and Antitumor Properties. Bioorg. Med. Chem. Lett. 2007, 17, 6134-6137. DOI: 10.1016/j.bmcl. 2007.09.042.(c) Cocconcelli, G.; Diodato, E.; Caricasole, A.; Gaviraghi, G.; Genesio, E.; Ghiron, C.; Magnoni, L.; Pecchioli, E.; Plazzi, P. V.; Terstappen, G. C. Aryl Azoles with Neuroprotective Activity-Parallel Synthesis and Attempts at Target Identification. Bioorg. Med. Chem. 2008, 16, 2043-2052. DOI: 10.1016/j.bmc.2007.10.090.(d) Krasavin, M.; Konstantinov, I. Minimizing Side Reactions in Classical Pyrazole Synthesis from β -Oxonitriles: The Use of Acetylhydrazine. LOC. 2008, 5, 594-598. DOI: 10.2174/ 157017808785982266.(e) Gupton, J. T.; Telang, N.; Gazzo, D. F.; Barelli, P. J.; Lescalleet, K. E.; Fagan, J. W.; Mills, B. J.; Finzel, K. L.; Kanters, R. P. F.; Crocker, K. R.; et al. Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles. Tetrahedron. 2013, 69, 5829-5840. DOI: 10. 1016/j.tet.2013.05.045.(f) Wen, J. C.; Bao, Y.; Niu, Q.; Yang, J. Y.; Fan, Y. B.; Li, J. H.; Jing, Y. K.; Zhao, L. X.; Liu, D. Identification of N-(6-Mercaptohexyl)-3-(4-Pyridyl)-1H-Pyrazole-5-Carboxamide and Its Disulfide Prodrug as Potent Histone Deacetylase Inhibitors with in Vitro and in Vivo anti-Tumor Efficacy. Eur. J. Med. Chem. 2016, 109, 350-359. DOI: 10.1016/j.ejmech.2016.01.013.(g) Abo-Salem, H. M.; Ahmed, K. M.; El-Hallouty, S.; El-Sawy, E. R.; Mandour, A. H. Synthesis, Molecular Docking and anti-Proliferative Activity of New Series of 1-Methylsulphonyl-3-Indolyl Heterocycles. Int. J. Pharm. Pharm. Sci. 2016, 8, 113-123. DOI: 10.22159/ijpps.2016v8i12.14841.(h) El-Mekabaty, A.; Mesbah, A.; Fadda, A. A. An Efficient and Facile Synthesis of Functionalized Indole-3-yl Pyrazole Derivatives Starting from 3-Cyanoacetylindole. I. Heterocyclic Chem. 2017, 54, 916-922. DOI: 10.1002/jhet.2654.

- [7] (a) Abu Safieh, K. A.; El-Abadelah, M. M.; Sabri, S. S.; Abu Zarga, M. H.; Voelter, W.; Mössmer, C. M. Synthesis of Pyrazole-Fused Azepino[5,4,3-Cd]Indoles. *J. Heterocyclic Chem.* 2001, 38, 623-628. DOI: 10.1002/jhet.5570380312.(b) Gmeiner, P.; Hübner, H.; Abu Safieh, K. A.; Fasfous, I. I.; El-Abadelah, M. M.; Sabri, S. S.; Voelter, W. *Heterocycles.* 2003, 60, 1339–1350. DOI: 10.3987/COM-03-9734.
- [8] Reddy, C. R.; Vijaykumar, J. R. Synthesis. 2013, 45, 830-836. DOI: 10.1055/s-0032-1316856.
- [9] (a) Usachev, B. I.; Obydennov, D. I.; Kodess, M. I.; Sosnovskikh, V. Y. Regioselective Solvent-Sensitive Reactions of 6-(Trifluoromethyl)Comanic Acid and Its Derivatives with Phenylhydrazine. *Tetrahedron Lett.* 2009, 50, 4446–4448. DOI: 10.1016/j.tetlet.2009.05.056.
 (b) Usachev, B. I.; Obydennov, D. L.; Sosnovskikh, V. Y. Regioselective Synthesis of Trifluoromethylated 3-(Pyrazolyl)Indoles on the Basis of 6-(Trifluoromethyl)Comanic Acid. J. Fluorine Chem. 2012, 135, 278–284. DOI: 10.1016/j.jfluchem.2011.12.008.
 (c) Kumari, S.; Shekhar, A.; Pathak, D. D. Graphene Oxide–TiO₂ Composite: An Efficient Heterogeneous Catalyst for the Green Synthesis of Pyrazoles and Pyridines. *New J. Chem.* 2016, 40, 5053–5060. DOI: 10.1039/C5NJ03380B.
- [10] (a) Yu, H.; Yu, Z. Direct Alkenylation of Indoles with Alpha-Oxo Ketene Dithioacetals: efficient Synthesis of Indole Alkaloids Meridianin Derivatives. *Angew. Chem. Int. Ed. Engl.* **2009**, 48, 2929–2933. DOI: 10.1002/anie.200900278.(b) Yu, H. F.; Wang, W. J. Feasible selective synthesis of 3-Acetylindoles and 3-Acetoacetylindoles from β -ethylthio- β -indoly α , β -unsaturated ketones. *Synth. Commun.* **2019**, 49, 377–385. DOI: 10.1080/00397911. 2018.1555851.
- [11] Jin, W. W.; Yu, H. F.; Yu, Z. K. Regioselective Synthesis of Multisubstituted Pyrazoles via Cyclocondensation of β -Thioalkyl- α , β -Unsaturated Ketones with Hydrazines. *Tetrahedron Lett.* **2011**, *52*, 5884–5887. DOI: 10.1016/j.tetlet.2011.08.168.
- [12] (a) Yu, H. F.; Li, T. C.; Liao, P. Q. Iron(III) Chloride Promoted Desulfitative C-C Coupling Reaction of α-Oxo Ketene Dithioacetals and Indoles: Highly Selective Synthesis of β,β-Bisindolyl and β-Indolyl α,β-Unsaturated Carbonyl Compounds. *Synthesis.* 2012, 44, 3743–3756. DOI: 10.1055/s-0032-1317691.(b) Yu, H. F.; Liao, P. Q.; Diao, Q. P.; Li, T.

C.; Xin, G.; Han, L. N.; Hou, D. Y. Selective Synthesis of 3-(3-Indolyl)-3-(Methylthio)Acrylate and 3-(3-Indolyl)-3-Oxopropanoate. *Chin. J. Org. Chem.* 2014, 34, 1851–1856. DOI: 10.6023/cjoc201403055.(c) Yu, H. F.; Li, T. C.; Liao, P. Q.; Diao, Q. P.; Xin, G.; Hou, D. Acidity-Controlled Indolylation of 3, 3-Bis(Ethylthio)Acrylate. *Chin. J. Org. Chem.* 2014, 34, 956–961. DOI: 10.6023/cjoc201312020.

- [13] (a) Dieter, R. K. α-Oxo Ketene Dithioacetals and Related Compounds: versatile Three-Carbon Synthons. *Tetrahedron.* **1986**, 42, 3029–3096. DOI: 10.1016/S0040-4020(01)87376-2.(b) Junjappa, H.; Ila, H.; Asokan, C. V. α-Oxoketene-S,S-, N,S- and N,N-Acetals: Versatile Intermediates in Organic Synthesis. *Tetrahedron.* **1990**, 46, 5423–5506. DOI: 10.1016/S0040-4020(01)87748-6.(c) Pan, L.; Liu, Q. *Synlett.* **2011**, 22, 1073–1080. DOI: 10.1055/s-0030-1260540.(d) Pan, L.; Bi, X. H.; Liu, Q. Recent Developments of Ketene Dithioacetal Chemistry. *Chem. Soc. Rev.* **2013**, 42, 1251–1286. DOI: 10.1039/ C2CS35329F.
- (a) Fang, Z. X.; Liu, Y.; Barry, B. D.; Liao, P. Q.; Bi, X. H. Formation of Benzo[f]-1-[14] Indanone Frameworks by Regulable Intramolecular Annulations of Gem-Dialkylthio Trienynes. Org. Lett. 2015, 17, 782-785. DOI: 10.1021/ol5034332.(b) Zhao, H.; Zhang, F. W.; Yu, H. F.; Liao, P. Q.; Diao, Q. P.; Li, T. C.; Xin, G.; Hou, D. Y. FeCl₃-Catalyzed Friedel-Crafts Alkylation of α -Hydroxy Ketene Dithioacetals with Indoles. Chin. J. Org. Chem. 2015, 35, 1493-1499. DOI: 10.6023/cjoc201502008.(c) Yu, H. F.; Liao, P. Q. DBSA-Catalyzed Friedel-Crafts Alkylation of Cyclic Ketene Dithioacetals with Alcohols in Water. Tetrahedron Lett. 2016, 57, 2868-2872. DOI: 10.1016/j.tetlet.2016.05.062.(d) Yu, H. F.; Liao, P. Q. Iron Chloride Hexahydrate-Catalyzed Friedel-Crafts Akylation of Cyclic Ketene Dithioacetals with Alcohols. Chem. Res. Chin. Univ. 2016, 32, 390-395. DOI: 10. 1007/s40242-016-5482-2.(e) Yu, H. F.; Zhao, L. J.; Diao, Q. P.; Li, T. C.; Hou, D. Y.; Xin, G. Synlett. 2017, 28, 1828-1834. DOI: 10.1055/s-0036-1588982.(f) Zhao, H.; Diao, Q. P.; Yu, H. F.; Li, T. C.; Liao, P. Q.; Hou, D. Y. FeCl₃·6H₂O-Catalyzed Synthesis of β-Ketothioesters from Chain α-Oxo Ketene Dithioactals. Chem. Res. Chin. Univ. 2017, 33, 746-752. DOI: 10.1007/s40242-017-7082-1.(g) Bai, D. G.; Yu, H. F.; Diao, Q. P.; Li, T. C. Efficient One-Pot Synthesis of α -Alkylated β -Ketothioesters from H₂SO₄-Catalyzed Tandem Alkylation/Hydrolysis Reaction of Acyclic α-Oxo Ketene Dithioacetals with Alcohols. LOC. 2018, 15, 905–908. DOI: 10.2174/1570178615666180326161157.