NEW ELLAGIC ACID GLYCOSIDES FROM Punica granatum

D. N. Olennikov,^{1*} N. I. Kashchenko,¹ and C. Vennos²

Two new ellagic acid glycosides were isolated from Punica granatum *L*. (Lythraceae) pericarps and identified using UV and NMR spectroscopy and mass spectrometry as 1,6'-di-O-ellagoylgentiobiose (granatoside A, 1) and 1,6-di-O-ellagoyl- β -D-glucopyranose (granatoside B, 2). Compounds 1 and 2 exhibited α -glucosidase inhibitory activity.

Keywords: *Punica granatum*, ellagic acid, granatoside A, granatoside B, α -glucosidase inhibitors.

Punica granatum L. (Lythraceae) is a valuable food plant that is widely used as medicine. Test results of the last decades indicate that *P. granatum* and its preparations can be used to prevent and treat type II diabetes [1]. The key mechanisms of antidiabetic action of *P. granatum* include the ability of its constituents to reduce *in vivo* oxidative stress and to affect the main digestive enzymes [2]. Phenolic compounds possessing inhibitory activity against α -glucosidase, an enzyme involved in hydrolysis of disaccharides sucrose and maltose to glucose, are especially interesting [3, 4].

Flowers and fruit of *P. granatum* were found earlier to contain various groups of such inhibitors, among which ellagitannins [5], gallotannins, and chalcones [6] were identified. Pericarp of *P. granatum* had the highest content of phenolic compounds among which tannins, ellagic acid, and ellagoyl derivatives were detected [7]. The last compound group exhibited pronounced anti- α -glucosidase activity [8]. We continued research on natural α -glucosidase inhibitors [9–13] by isolating from *P. granatum* pericarp two new ellagic acid glycosides (1 and 2) with anti- α -glucosidase activity.

Chromatographic separation of the EtOAc fraction of *P. granatum* pericarp isolated six known compounds including amritoside (3) [14], 1-*O*-ellagoylglucose (4) [7], punicalagins A/B (5/6) [15], granatin B (7) [16], and ellagic acid (8) [7] in addition to 1 and 2.

¹⁾ Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 6 Sakh'yanovoi St., Ulan-Ude, 670047, e-mail: olennikovdn@mail.ru; 2) Regulatory and Medical Scientific Affairs, Padma AG, Underfeldstrasse 1, CH-8340, Hinwil, Switzerland, e-mail: c.vennos@padma.ch. Translated from *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2019, pp. 756–759. Original article submitted April 12, 2019.

C atom	1		Catam	2	
	$\delta_{\rm H}$	$\delta_{\rm C}$	C atom	$\delta_{\rm H}$	$\delta_{\rm C}$
	β -D-Glucopyranose			β -D-Glucopyranose	
1	5.60 (1H, d, J = 8.0)	100.9	1	5.47 (1H, d, J = 8.1)	101.4
2		73.4	2		73.2
3	2.25. 2.80 (411)	76.7	3	220.2(2(4))	76.4
4	3.23–3.80 (4H, m)	70.2	4	5.20–5.62 (4H, M)	70.1
5		75.9	5		75.7
6	4.18 (1H, dd, $J = 12.0, 2.1, H_B$),	69.2	6	$4.35 (1H, dd, J = 12.0, 2.1, H_B),$	69.3
	$3.95 (1H, dd, J = 12.0, 5.9, H_A)$			$4.20 (1H, dd, J = 12.0, 6.2, H_A)$	
	6- <i>O</i> -β-D-Glucopyranose				
1'	4.52 (1H, d, J = 8.0)	104.2			
2'		73.9			
3'	2.25.2.80 (411 m)	76.9			
4'	5.25–5.80 (4H, III)	70.8			
5'		76.3			
6'	4.40 (1H, dd, $J = 12.4, 2.4, H_B$),	69.4			
	4.25 (1H, dd, J = 12.4, 6.1, H_A) 1- <i>Q</i> -Ellagovl			1-O-Ellagov	
1″	i o Enigoyi	108.5	1'	i o Enagoyi	108.6
2″		136.4	2'		136.2
3″		141.8	2'		141.9
ر ۲″		148.7	J'		148.9
	7.65(1H s)	111.8	5'	7.62(1 H s)	111.9
5	7.05 (111, 5)	111.0	5	7.02 (111, 3)	11/ 8
0 7″		159.7	0 7'		159.6
1///		107.3	1″		107.1
2'''		136.2	1 2″		136.0
2 3'''		140.2	2 3″		140.3
3 1'''		140.2	5 1''		140.5
+ 5'''	7.41(1H s)	111.5	+ 5″	7 37 (1H s)	111 /
5	7.41 (111, 5)	111.5	S C''	7.57 (111, 5)	111.4
0		150.6	0		150 /
/	6'-O-Ellagovl	157.0	7	6-O-Ellagovl	137.7
1''''	e ee	108.5	1‴	5.7	108.6
2''''		136.4	2‴		136.2
3''''		141.8	3‴		141.9
4''''		148.0	4‴		148.9
5''''	7.52 (1H, s)	111.8	5‴	7.53 (1H, s)	111.9
6''''		114.7	6'''		114.8
7''''		159.4	7‴		159.3
1"""		107.3	1''''		107.1
2"""		136.2	2''''		136.0
3"""		140.2	3''''		140.3
4"""		147.0	4''''		148.0
5"""	7.38 (1H, s)	111.5	5''''	7.34 (1H, s)	111.4
6'''''		114.3	6''''		114.4
7"""		159.3	7''''		159.1

TABLE 1. PMR (500 MHz) and 13 C NMR Spectra (125 MHz) of 1 and 2 (Py-d₅, δ , ppm, J/Hz)

The UV spectrum of 1 indicated that it was an ellagic acid derivative. The products of acid hydrolysis of 1 were ellagic acid and D-glucose. The ESI-MS showed a pseudo-molecular ion with m/z 909 $[M - H]^-$ and fragments with m/z 463 and 301 that were characteristic of monoglycosylated and free ellagic acid, respectively [17]. The detection of deprotonated fragments with m/z 341 (glucosylglucose) and 161 (glucose) indicated that the structure included a disaccharide. The PMR spectrum contained four 1H singlets (δ 7.65, 7.52, 7.41, 7.38) that were consistent with two ellagic acid moieties and two resonances for anomeric protons at δ 5.60 (1H, d, J = 8.0 Hz) and 4.52 (1H, d, J = 8.0 Hz) that belonged to glucose residues (Table 1).

Complete methylation of **1** followed by hydrolysis gave 2,3,4-tri-*O*-methylglucopyranose as the only permethylate decomposition product. This indicated that the glucose residues were not terminal but bonded to each other as the disaccharide 6-*O*-glucosylglucose (gentiobiose). The results also confirmed that the most probable locations of the ellagoyl moieties were gentiobiose C-1 and C-6'.

The ¹³C NMR spectrum showed 4 resonances for lactone carbonyls at δ 159.7, 159.6, 159.4, and 159.3 ppm for two ellagic acid moieties and 12 resonances for aliphatic C atoms of two glucose residues (Table 1). The locations of the gentiobiose C-1 (δ 100.9) and C-1' resonances (δ 104.2) indicated that their anomeric centers had the β -configuration. Weak-field resonances for C-6 (δ 69.2) and C-6' (δ 69.4) confirmed that these positions were substituted. The HMBC spectrum showed correlations between gentiobiose H-1 and ellagic acid C-4'' (δ_{H}/δ_{C} 5.60/148.7) and gentiobiose H-6' and ellagic acid C-4''' (δ_{H}/δ_{C} 4.25, 4.40/148.0), also indicating that the ellagic acids were bonded through C-4'' and C-4'''' to gentiobiose C-1 and C-6'. Thus, 1 was 1,6'-di-*O*-ellagoylgentiobiose according to the results and was named granatoside A.

The spectral properties of **2** were similar to those of **1**. The ESI-MS spectrum showed a peak for a pseudo-molecular ion with m/z 747 [M – H][–], i.e., 162 amu less than **1**. This result argued in favor of **2** being an analog of **1** without one of the glucoses. NMR spectra of **2** were characterized by fewer resonances (Table 1). The PMR spectrum had a single anomeric proton resonance at δ 5.47 (1H, d, J = 8.1 Hz, H-1); the ¹³C NMR spectrum, six resonances for aliphatic C atoms of one glucopyranose. The HMBC spectrum exhibited correlations between resonances for glucose H-1 (δ 5.47) and H-6 (δ 4.20, 4.35) and ellagic acid C-4' (δ 148.9) and C-4''' (δ 148.9), respectively. These features established the structure of **2** as 1,6-di-*O*-ellagoyl- β -D-glucopyranose, which we called granatoside B.

Until now, the only known di-*O*-ellagoyl derivative was 1,6'-di-*O*-ellagoyl-(4-*O*-glucosyl)rhamnopyranose, which was isolated from *P. granatum* wood [18]. Compounds **3–8** were previously isolated from *P. granatum* [5–7].

Biological studies of 1 and 2 showed that they were capable of inhibiting α -glucosidase with IC₅₀ values of 52.0 ± 1.7 and 92.4 ± 3.6 µM, respectively (IC₅₀ of acarbose, 84.2 ± 3.0 µM). The inhibition efficiency of unsubstituted ellagic acid was much lower (154.3 ± 5.2 µM). This indicated that the carbohydrate residues (gentiobiose, glucose) had a positive influence on the anti- α -glucosidase activity of the ellagic-acid derivatives. Earlier, several ellagic-acid glycosides were shown to have greater inhibitory effects on α -glucosidase than the deglucosylated analogs. Thus, 3,3'-dimethoxyellagic acid and its more active 4-*O*- β -D-xylopyranoside were isolated from *Terminalia superba* Engl. & Diels (Combretaceae) [8]. The α -glucosidase inhibition for 3,4'-dimethoxyellagic acid 3'-*O*- β -D-xylopyranoside was greater than that of acarbose [19]. Thus, new compounds 1 and 2 were isolated from *P. granatum* pericarp and could display hypoglycemic activity by suppressing absorption of carbohydrates from the intestines and lowering postprandial elevation of blood glucose levels [20]. Ellagic-acid glycosides could be recommended as promising antidiabetic agents.

EXPERIMENTAL

P. granatum was cultivated under cover at experimental plantings of the IGEB, SB, RAS (2014). Pericarps from ripe *P. granatum* fruit were dried under vacuum to 8–10% moisture (of the air-dried raw material mass) and used in the work.

Column chromatography (CC) used reversed-phase silica gel (RP-SiO₂) and Sephadex LH-20 (Sigma-Aldrich, St. Louis, MO, USA). Spectrophotometric studies used an SF-2000 spectrophotometer (OKB Spectr, St. Petersburg, Russia). Mass spectrometric studies were performed in an LCMS-8050 TQ mass spectrometer (Shimadzu, Columbia, MD, USA). Conditions: electrospray ionization (ESI), negative-ion mode, ESI interface temperature 300°C, desolvation line temperature 250°C, heating block temperature 400°C, spray-gas (N₂) flow rate 3 L/min, heating-gas (air) flow rate 10 L/min, collision-inducing dissociation gas (CID, Ar) pressure 270 kPa, Ar flow rate 0.3 mL/min, capillary potential +25 kV, field potential 3.5 kV, mass scan range (m/z) 100–1000. NMR spectra were recorded on a VXR 500S NMR spectrometer (Varian, Palo Alto, CA, USA). Preparative HPLC used a Summit liquid chromatograph (Dionex, Sunnyvale, CA, USA) equipped with an RP-18 LiChrospher column (250 × 10 mm, \emptyset 10 µm, Supelco, Bellefonte, PA, USA), mobile phase H₂O (A) and MeCN (B), flow rate (v) 1 mL/min, column temperature 30°C, and UV detector at 270 nm. Analytical HPLC used a Milichrom A-02 microcolumn liquid chromatograph (EcoNova, Novosibirsk, Russia) equipped with a ProntoSIL-120-5-C18 AQ column (2 × 75 mm, \emptyset 5 µm, Metrohm AG, Herisau, Switzerland).

Extraction and Fractionation. A weighed portion (1.2 kg) of milled raw material was extracted (2×) with EtOH (60%) (1:20) in an ultrasonic bath (100 W, 35 kHz) at 45°C for 90 min. The resulting extract was filtered and concentrated

under vacuum (40°C) to an aqueous residue that was extracted with hexane and EtOAc to produce an EtOAc fraction (216 g) that was separated in 20-g portions over Sephadex LH-20 (5 × 100 cm) with elution by Me₂CO–H₂O (100:0 \rightarrow 0:100). Subfractions of similar composition were combined and rechromatographed over Sephadex LH-20 under the same conditions followed by separation over RP-SiO₂ (2 × 30 cm, MeCN–H₂O eluent, 100:00:100) and by preparative HPLC [gradient mode (%B): 5–90 min, 5–30%] to isolate eight compounds, i.e., **1** (12 mg), **2** (18), amritoside (1-*O*-ellagoylgentiobiose, 22 mg, **3**) [14], 1-*O*-ellagoylglucose (18 mg, **4**) [7], punicalagins A/B (hexahydroxydiphenoylgallagyl- α/β -D-glucopyranose as the total with α/β ratio 1:18, 9.7 g, **5**/6) [15], granatin B (galloyl hexahydroxydiphenoyldehydrohexahydroxydiphenoyl- β -D-glucopyranose, 107 mg, **7**) [16], and ellagic acid (15.2 g, **8**) [7].

Granatoside A (1). $C_{40}H_{30}O_{25}$. UV spectrum (MeOH, λ_{max} , nm): 256, 357. HR-ESI-MS, *m/z* 909.640 ([M – H]⁻; calcd 909.662). ESI-MS, *m/z*: 909 [M – H]⁻, 463 [(M – H) – $C_{14}H_5O_8 - C_6H_{10}O_5$]⁻, 341 [(M – H) – $2 \times C_{14}H_5O_8$]⁻, 301 [(M – H) – $C_{14}H_5O_8 - 2 \times C_6H_{10}O_5$]⁻, 161 [(M – H) – $2 \times C_{14}H_5O_8 - C_6H_{10}O_5$]⁻. Table 1 lists the PMR (500 MHz, 300 K, Py-d₅, δ , ppm) and ¹³C NMR spectra (125 MHz, 300 K, Py-d₅, δ , ppm).

Granatoside B (2). $C_{34}H_{20}O_{20}$. UV spectrum (MeOH, λ_{max} , nm): 254, 355. HR-ESI-MS, *m/z*: 747.503 ([M – H]⁻; calcd 747.519). ESI-MS, *m/z*: 747 [M – H]⁻, 463 [(M – H) – $C_{14}H_5O_8$]⁻, 301 [(M – H) – $C_{14}H_5O_8$ – $C_6H_{10}O_5$]⁻, 161 [(M – H) – $2 \times C_{14}H_5O_8$]⁻. Table 1 lists the PMR (500 MHz, 300 K, Py-d₅, δ , ppm) and ¹³C NMR spectra (125 MHz, 300 K, Py-d₅, δ , ppm).

Acid Hydrolysis of 1 and 2. The compound (2 mg) was dissolved in trifluoroacetic acid (TFA, 5%, 5 mL) in Me₂CO and heated at 100°C for 2 h. The hydrolysate was concentrated to dryness with MeOH *in vacuo*. The dry residue was dissolved in EtOH (50%, 2 mL) and passed over RP-SiO₂ (5 g) with elution successively by H₂O (40 mL, eluate I) and MeCN (40%, 60 mL, eluate II). A portion of eluate I was derivatized with 3-methyl-1-phenyl-2-pyrazolin-5-one [21] and analyzed by analytical HPLC (conditions 1). A second portion of eluate I underwent reductive amination with L-tryptophan [22] followed by analytical HPLC (conditions 2) to determine if the monosaccharides were the D- or L-form. Eluate II was analyzed by ¹³C NMR spectroscopy and mass spectrometry. Hydrolysates of 1 and 2 contained ellagic acid (8) [7] and D-glucose.

Compounds 1 and 2 were methylated in K₂CO₃–DMF–MeI according to Moalin et al. [23] followed by GC-MS analysis of the hydrolysate [24].

Anti- α -glucosidase activity was determined by a microplate spectrophotometric method as described earlier [25]. The positive control was ellagic acid (\geq 95%, No. E2250), and acarbose (\geq 95%, A8980, Sigma-Aldrich).

Analytical HPLC. Conditions 1: mobile phase CH_3COONH_4 (100 mM, pH 4.5) (A) and MeCN (B); gradient mode (%B): 0–20 min, 20–26%, v 150 µL/min; column temperature 35°C; UV detector at 250 nm. Retention times of monosaccharide derivatives with 3-methyl-1-phenyl-2-pyrazolin-5-one (t_R , min) were glucose 12.50. Conditions 2: mobile phase NaH₂PO₄ (10 mM) and Na₂B₄O₇ (50 mM) (1:1, pH 9.6); isocratic mode; v 200 µL/min; column temperature 35°C; UV detector at 220 nm. Retention times of monosaccharide derivatives with L-tryptophan (t_{R-} , min) were D-glucose 8.32 and L-glucose 8.67.

ACKNOWLEDGMENT

The work was financially supported by the RFBR in the framework of Science Project No. 18-33-00414 and by the Ministry of Science and Higher Education of the Russian Federation (Project No. AAAA-A17-117011810037-0).

REFERENCES

- 1. S. Banihani, S. Swedan, and Z. Alguraan, *Nutr. Res.*, **33**, 341 (2013),
- 2. A. Kam, K. M. Li, and V. Razmovski-Naumovski, Phytother. Res., 27, 1614 (2013).
- 3. Y. Li, S. Wen, and B. P. Kota, J. Ethnopharmacol., 99, 239 (2005).
- 4. K. Barathikannan, B. Venkatadri, and A. Khusro, *BMC Complementary Altern. Med.*, 16, 264 (2016).
- 5. T. Yuan, Y. Ding, C. Wan, and L. Li, Org. Lett., 19, 5358 (2012).
- 6. T. Yuan, C. Wan, H. Ma, and N. P. Seeram, *Planta Med.*, **79**, 1674 (2013).
- 7. U. A. Fischer, R. Carle, and D. R. Kammerer, Food Chem., 127, 807 (2011).
- 8. J. D. Wansi, M. C. Lallemand, and D. D. Chiozem, *Phytochemistry*, 68, 2096 (2007).
- 9. D. N. Olennikov and N. I. Kashchenko, Sci. World J., 2014, 654193 (2014).

- 10. D. N. Olennikov, N. I. Kashchenko, N. K. Chirikova, and L. M. Tankhaeva, *Molecules*, 20, 19172 (2015).
- 11. D. N. Olennikov, N. I. Kashchenko, and N. K. Chirikova, *Molecules*, 22, 16 (2017).
- 12. N. I. Kashchenko, N. K. Chirikova, and D. N. Olennikov, *Molecules*, 22, 73 (2017).
- 13. D. N. Olennikov, N. I. Kashchenko, and C. Vennos, *Farmacia*, **65**, 698 (2017).
- 14. T. R. Seshadri and K. Vasishta, *Phytochemistry*, **4**, 989 (1965).
- 15. A. J. Doig, D. H. Williams, P. B. Oelrichs, and L. Baczynskyj, J. Chem. Soc., Perkin Trans. 1, 2317 (1990).
- 16. W. E. Steinmetz, Magn. Reson. Chem., 48, 565 (2010).
- 17. E. Sentandreu, M. Cerdan-Calero, and J. M. Sendra, J. Food Compos. Anal., 30, 32 (2013).
- 18. S. A. A. El-Toumy and H. W. Rauwald, *Phytochemistry*, **61**, 971 (2002).
- 19. T. K. Tabopda, J. Ngoupayo, and J. Liu, Chem. Pharm. Bull., 56, 847 (2008).
- 20. J. C. Espin, M. Larrosa, M. T. Garcia-Conesa, and F. Tomas-Barberan, *Evidence-Based Complementary Altern. Med.*, **2013**, 270418 (2013).
- 21. D. N. Olennikov, N. K. Chirikova, N. I. Kashchenko, T. G. Gornostai, I. Y. Selyutina, and I. N. Zilfikarov, *Int. J. Mol. Sci.*, **18**, 2579 (2017).
- 22. M. Akabane, A. Yamamoto, S. Aizawa, A. Taga, and S. Kodama, Anal. Sci., 30, 739 (2014).
- 23. M. Moalin, G. P. F. van Strijdonck, M. Beckers, G. J. Hagemen, P. J. Borm, A. Bast, and G. R. M. M. Haenen, *Molecules*, **16**, 9636 (2011).
- 24. D. N. Olennikov and A. V. Rokhin, Appl. Biochem. Microbiol., 49, 182 (2013).
- D. N. Olennikov, N. K. Chirikova, N. I. Kashchenko, V. M. Nikolaev, S.-W. Kim, and C. Vennos, *Front. Pharmacol.*, 9, 756 (2018).