Nickel- and Palladium-Catalyzed Cross-Coupling Reactions at the Bridgehead of Bicyclo[1.1.1]pentane Derivatives - A Convenient Access to Liquid Crystalline Compounds Containing Bicyclo[1.1.1]pentane Moieties

Matthias Messner, ${ }^{[a]}$ Sergei I. Kozhushkov, ${ }^{[\text {[a] }}$ and Armin de Meijere ${ }^{*[a]}$
Dedicated to Professor Günther Wulff on the occasion of his 65th birthday

Abstract

Keywords: Bicyclo[1.1.1]pentane / Haloarenes, cross-coupling of / [1.1.1]Propellane / Palladium / Catalysis / Small-ring systems

Abstract

Radical addition reactions of organyl iodides $\mathbf{7 a - s}$ onto [1.1.1]propellane (2) followed by halogen-lithium exchange and transmetallation with zinc chloride, as well as additions of Grignard reagents to 2 , have furnished a variety of 3 -substituted bicyclo[1.1.1]pentyl-1-magnesium (14) and -zinc (19) derivatives. The latter have been coupled with various alkenyl, aryl, and biaryl halides and triflates under NiCl_{2} dppe, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, or $\mathrm{PdCl}_{2}(\mathrm{dppf})$ catalysis to give a number of $1,3-$

disubstituted bicyclo[1.1.1]pentyl derivatives 17, 20, and 23, several of which exhibit liquid crystalline properties, in moderate to very good yields. The coupling products 20ca, 23ab, 23ae, 23ff, and 23fg have been further transformed to yield bicyclo[1.1.1]pentyl derivatives 32, 24ab, 24ae, 27ff, and $\mathbf{2 7 f}$, respectively, bearing alkynyl, cyano, and/or alkenyl groups.

Introduction

The design and preparation of rigid rod-like molecules has long been of interest to physical-organic chemists. ${ }^{[1]}$ Among such structures, 1,3-disubstituted derivatives of bicyclo[1.1.1]pentane (1) have, for several reasons, attracted particular attention during the past decade. In spite of the considerable strain energy of the bicyclo[1.1.1]pentane unit, ${ }^{[2,3]}$ such derivatives are remarkably thermally stable, persisting up to $300^{\circ} \mathrm{C}$, and are resistant to oxygen and many mild reagents. ${ }^{[4]}$ They are also transparent to visible and UV light and, being intrinsically linear, are capable of stabilizing mesophases. ${ }^{[4 \mathrm{~b}]}$ Since the preparation of the first bicyclo[1.1.1]pentane derivatives in 1966, ${ }^{[5]}$ a wide range of such systems has now become readily accessible, the key development being the discovery of an efficient two-step preparation ${ }^{[6]}$ of the ideal precursor, [1.1.1]propellane (2), ${ }^{[7]}$ from commercially available starting materials (for recent improvements in the preparation of $\mathbf{2}$, see also ref. ${ }^{[8]}$). The chemistry of [1.1.1]propellanes and bicyclo[1.1.1]pentanes derived therefrom has been studied quite extensively since 1989, ${ }^{[9]}$ and the results have been reviewed several times. ${ }^{[3,4 \mathrm{a}, 8 \mathrm{a}, 10-12]}$ However, to date most attention has been paid to compounds containing two or more bicyclo[1.1.1]pentane units (the so-called [n]staffanes, for a review see ref. ${ }^{[3]}$) and to functionalized derivatives of $\mathbf{1}$ and their chemical transformations. ${ }^{[8,9]}$ In the present contribution, we describe our results concerning the preparation of quasi-linear molecules of types 3-5 using a metal-catalyzed cross-coupling reaction as a key synthetic step.

[^0]

Results and Discussion

1. Preparation of Starting Materials

The key intermediates used in the cross-coupling reactions with haloarenes were 1-bicyclo[1.1.1]pentylzinc or -magnesium reagents of type 6. The simplest access to metal derivatives $\mathbf{6}$, in which R is an aryl, alkyl, or functionalized alkyl substituent, is offered by halogen-metal exchange reactions of the corresponding bridgehead iodinated bicyclo[1.1.1]pentyl derivatives 8 . The latter are easily accessible through the radical addition of alkyl iodides across the central σ-bond in [1.1.1]propellane (2) under photochemical conditions ${ }^{[4 \mathrm{a}, 13]}$ (Scheme 1, conditions B) or under methyllithium catalysis. ${ }^{[12,14]}$ It was found ${ }^{[15]}$ that by using a stoichiometric quantity of MeLi (Scheme 1, conditions A), better and more reproducible yields of compounds 8 (Table 1) were obtained. For example, compounds $\mathbf{8 a}$ and $\mathbf{8 c}$ had previously been prepared by photochemical means in $65 \%{ }^{[13 b]}$ and 34% yield, ${ }^{[4 a]}$ respectively, whereas under MeLi mediation, the additions gave significantly higher yields (83% and 97%). Nevertheless, in the cases of $\mathbf{8 f}$ and $\mathbf{8 j}$, better results were achieved under photochemical conditions be-
cause of competing side reactions (β-elimination) in the presence of MeLi. Products $\mathbf{8 k}$ and $\mathbf{8 I}$ could not be obtained by additions of vinyl and allyl iodides; under the action of MeLi, only the methyl derivative was formed, which was isolated in yields of 55% and 60%, respectively. Under irradiation, the main components of the reaction mixtures were oligobicyclo[1.1.1]pentyl diiodides (diiodostaffanes ${ }^{[3]}$) and rearranged products, although the photochemically induced addition of allyl iodide to $\mathbf{2}$ has been reported. ${ }^{[13]}$ The vinyl derivative $\mathbf{8 k}$ was indeed formed in ca. $\mathbf{2 0} \%$ yield (as estimated by NMR), but could not be isolated from the complex reaction mixture. With 4 -substituted 1-iodocyclohexanes 7o-q, 2:1 mixtures of cis- and trans-1,4-disubstituted cyclohexane derivatives $\mathbf{8 0 - \mathbf { q }}$ were obtained, irrespective of the configuration of the starting iodide. Compounds $\mathbf{8}$ were found to be rather unstable, both thermally and towards silica gel, which prevented their further purification in most cases. Nevertheless, the purity of the crude products, $\geq 95 \%$ under MeLi mediation, is normally adequate for any subsequent transformations and, moreover, compounds $\mathbf{8}$ may be stored at $-78^{\circ} \mathrm{C}$ for several months.

Scheme 1. For details see Table 1

Table 1. Addition of alkyl and aryl iodides 7 to [1.1.1]propellane (2)

Entry	R-I	Conditions ${ }^{\text {a] }}$	Product	Yield (\%)
a	Me-I	A	8a	83
b	$n \mathrm{Pr}-\mathrm{I}$	A	8b	94
c	$n \mathrm{Bu}-\mathrm{I}$	A	8 c	97
d	$n \mathrm{C}_{7} \mathrm{H}_{15}-\mathrm{I}$	A	8d	81
e	$n \mathrm{C}_{8} \mathrm{H}_{17}$-I	A	8 e	98
f	$\mathrm{I}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTHP}$	B	8 f	92
g	$\mathrm{I} \cdot\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTHP}$	A	8 g	98
h	$\mathrm{I}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OTHP}$	A	8h	96
i	$\mathrm{I}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OTHP}$	A	$8 i$	97
j	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}$-I	A	8 j	25
j	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}$-I	B	8 j	67
k	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{I}$	A, B	8k	-[b]
1	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{I}$	A, B	81	-[c]
m	trans $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{I}$	A	8m	100
n	$\square \mathrm{I}$	A	8п	84
0		A	80	95[d]
p		A	8p	$92^{[d]}$
q		A	$8 q$	$88{ }^{[d]}$
r	Ph	B	8 r	21
S	$p-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	B	8 s	10
[a] $\mathrm{A}: \mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h} ; \mathrm{B}: \mathrm{h} v, 0^{\circ} \mathrm{C}, 1-4 \mathrm{~h} .-[\mathrm{b}]$ No product 8 k isolated, only $8 \mathbf{a}$ was isolated in 55% yield. - ${ }^{[\mathrm{c}]}$ No product $\mathbf{8 1}$ formed, only $8 \mathbf{a}$ was isolated in 60% yield. $-{ }^{[d]}$ A 2:1 mixture of cis and trans isomers was obtained.				

The corresponding lithium derivatives were obtained from the iodides $\mathbf{8}$ by treatment with either lithium 4,4'-di-tert-butylbiphenylide ($\mathrm{LiDBB}^{[16 a]}$) or tert-butyllithium at $78{ }^{\circ} \mathrm{C},{ }^{[8 \mathrm{a}, 9 \mathrm{a}, 9 \mathrm{~d}, 16 \mathrm{~b}, 16 \mathrm{c}]}$ and trapped with a variety of electrophiles. Comparison of the two series of experiments (Scheme 2, Table 2) showed that better yields were frequently obtained following lithiation with tert-butyllithium.

Thus, the acids $\mathbf{1 0 c}-\mathbf{e}, \mathbf{h}, \mathbf{i}, \mathbf{o}$ were obtained in yields of 44 60%, while 10b was produced almost quantitatively. Satisfactory results were also achieved with most of the other electrophiles investigated (Table 2). As in the published procedure, ${ }^{[9]}$ the addition of lithium derivatives 9 to nitriles furnished a good yield of ketone 12b only in the case of p fluorobenzonitrile. Generally better results were achieved using acid chlorides as electrophiles (Table 2). Chlorozinc reagents may be prepared almost quantitatively from 9 by transmetallation with anhydrous ZnCl_{2} (see below).

Scheme 2. For details see Table 2

Table 2. Functionalization of 3 -substituted bicyclo[1.1.1]pent-1-yl iodides $\mathbf{8}$ by lithiation/electrophilic substitution

Starting Material	R	Method of Lithiation ${ }^{[a]}$	[${ }_{\text {c] }}$ EIX	Product	Y	Yield (\%)
8b	$n \mathrm{Pr}$	B	CO_{2}	10b	COOH	97
8 c	$n \mathrm{Bu}$	A	CO_{2}	10c	COOH	60
8 d	$n \mathrm{C}_{7} \mathrm{H}_{15}$	A	CO_{2}	10d	COOH	54
8 e	$n \mathrm{C}_{8} \mathrm{H}_{17}$	A	CO_{2}	10e	COOH	45
8h	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OTHP}$	A	CO_{2}	10h	COOH	56
$8 i$	$\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OTHP}$	A	CO_{2}	10i	COOH	53
80	$\underset{\text { cisitrans }=2: 1}{\mathrm{Ph}}$	A	CO_{2}	100	COOH	44
8 b	$n \mathrm{Pr}$	B	$\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}$	11b	$\mathrm{Me}_{2} \mathrm{C}-\mathrm{OH}$	52
8 c	$n \mathrm{Bu}$	B P		11ca		70
8 c	$n \mathrm{Bu}$	B	$\mathrm{Me}_{3} \mathrm{SiCl}$	11cb	$\mathrm{Me}_{3} \mathrm{Si}$	78
$8 i$	$\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OTHP}$	B	MeOH	11i	H	93
8b	$n \mathrm{Pr}$	B p-F	--F-C $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}$	12b	$p-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}$	78
8 c	$n \mathrm{Bu}$	B n	$n \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$	12c	$n \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}$	17
8 e	$n \mathrm{C}_{8} \mathrm{H}_{17}$	B C^{2}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$	12e	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}$	75
8h	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OTHP}$	B $n \mathrm{C}$	$n \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COCl}$	12h	$n \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}$	79
80	$\begin{gathered} \mathrm{Ph} \longrightarrow \\ \text { cis } / \text { trans }=2: 1 \end{gathered}$	B C_{2}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$	120	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}$	74

[a] A: LiDBB, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} .-\mathrm{B}: t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
Bicyclo[1.1.1]pentyl iodides 8, in which R is an aryl or substituted aryl group, cannot be prepared as easily as iodides $\mathbf{8 a}-\mathbf{j}, \mathbf{m}-\mathbf{q}$, because the addition of aryl iodides to the central bond in $\mathbf{2}$ proceeds only under photochemical conditions and gives the adducts in moderate yields only. ${ }^{[4,8 a]}$ In the majority of publications, 3-phenylbicyclo[1.1.1]pentyl iodide (8r) has been used without purification, ${ }^{[4 a]}$ which is unacceptable for transition metal catalyzed coupling reactions. The alternative route to $\mathbf{8 r}$ reported by Della et al. ${ }^{[8 a]}$ is a tedious six-step preparation starting from $\mathbf{2}$. Upon purification by chromatography on silica gel, the phenyl and p tolyl derivatives, $8 \mathbf{r}$ and $\mathbf{8 s}$, respectively, could be isolated in pure form, albeit only in yields of 21% and 10% due to significant decomposition. Moreover, the yield decreased considerably upon increasing the scale of the preparation. As an alternative access to 3 -aryl-substituted bridgehead metal derivatives of type 6, the known addition of Grignard reagents to [1.1.1]propellanes ${ }^{[12 a, 17]}$ was examined, in spite
of the long reaction times and moderate yields reported for this process. The bridgehead bicyclo[1.1.1]pentylmagnesium bromide derivatives thus formed were trapped with various electrophiles (Scheme 3 and Table 3).

Scheme 3. For details see Table 3

Table 3. Formation of 3-arylbicyclo[1.1.1]pent-1-ylmagnesium bromides 14 and their reactions with electrophiles

Starting Material	R	Time [d]	Reaction with Electrophile			
			EIX	Product	Y	Yield (\%)
13a	H	3	$\mathrm{H}_{2} \mathrm{O}$	15a	H	80
13b	$n \mathrm{Pr}$	6	$\mathrm{H}_{2} \mathrm{O}$	15ba	H	99
13 c	$n \mathrm{Bu}$	6	$\mathrm{H}_{2} \mathrm{O}$	15ca	H	65
13d	F	5	$\mathrm{H}_{2} \mathrm{O}$	15da	H	60
13e	$p-\mathrm{Et}-\mathrm{C}_{6} \mathrm{H}_{4}$	7	$\mathrm{H}_{2} \mathrm{O}$	15 e	H	13
13d	F	5	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$	15db	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$	35
13b	$n \mathrm{Pr}$	6	$p-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}$	15bb	$p-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}$	31
13b	$n \mathrm{Pr}$	6	$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}$	15bc	$p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$-CO	49
13c	$n \mathrm{Bu}$	6	Br_{2}	15 cb	Br	36
13b	$n \mathrm{Pr}$	6	NCS	15bd,	Cl	24
				15ba	H	24

The results of these test runs showed that this procedure could only favorably be used for the addition of unsubstituted phenyl- and p-(n-propyl)phenylmagnesium bromide, mainly because of difficulties encountered in purifying any of the other final coupling products (see below). Compounds 15 ca and 15 da were not isolated following these test runs; the relative yields of the overall reactions (Grignard additions and subsequent trapping) were determined by GC and NMR analyses. Attempted additions of vinyl- and allylmagnesium bromides to $\mathbf{2}$ were unsuccessful. This may be attributed to the limited solubilities of the Normant reagent and 13e in diethyl ether (Table 3).

2. Metal-Catalyzed Cross-Coupling of Bicyclo[1.1.1]pentylmetal Derivatives 6 with Aryl Halides

The first catalysts to be tested in the cross-coupling of bridgehead magnesium derivatives of type $\mathbf{1 4}$ were the phosphanenickel(II) complexes reported by Kumada et al. ${ }^{[18]}$ However, neither with $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ nor NiCl_{2} dppe were good yields of the diarylbicyclo[1.1.1]pentanes $\mathbf{1 7}$ obtained in attempted cross-coupling reactions of $\mathbf{1 4}$ with aryl iodides. Thus, coupling of the phenyl derivative 14a with phenyl iodide in the presence of $3 \mathrm{~mol}-\% \mathrm{NiCl}_{2} \mathrm{~d}$ ppe led only to a complex mixture (Scheme 4), which apparently contained products derived from all conceivable cross-coupling reactions of the starting materials, including reactions of some residual phenylmagnesium bromide used in the pre-
paration of 14a, as well as halogen-metal exchange products. Compounds 8r, 15a, and 18a were identified by means of GC and NMR analyses of the reaction mixture. It is noteworthy that the spectroscopic data of $3,3^{\prime}$-diphenyl[2]staffane (16a) isolated from this reaction mixture were in complete agreement with those reported by Michl et al., ${ }^{[4 a, 19]}$ but not with those erroneously attributed to this compound in an earlier study; ${ }^{[20]}$ it was later established that the latter product was in fact 1-phenylbicyclo[1.1.1]pentane (15a). ${ }^{[4 a]}$ Coupling of $\mathbf{1 4 b}$ with p-substituted bromobenzenes under $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ catalysis provided the desired products 17ba and 17bb in even lower yields (Scheme 4).

Scheme 4
Apparently, the rate of cross-coupling under these conditions was prohibitively slow. Improvements could be achieved by (i) employing an excess of the organometallic intermediate $\mathbf{1 4}$, (ii) by a better choice of the metal in the intermediate of type 6, and (iii) by a better choice of catalyst. Utilization of four equivalents of $\mathbf{1 4 a}$ in the presence of $10 \mathrm{~mol}-\%$ of catalyst improved the yields of the crosscoupling products to a certain extent (Table 4), but, taking into consideration the difficulties associated with producing 14, the overall approach remained less than satisfactory. The best yield (41%) was obtained for the cross-coupling product of 3-iodopyridine, $\mathbf{1 7 a d}$. The coupling product of 1-bromocyclooctene, 17af, could not be obtained in sufficiently pure form under these experimental conditions.
Attempted coupling of $\mathbf{1 4 a}$ with iodobenzene in the presence of $5 \mathrm{~mol}-\% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ led to essentially the same results as those presented in Scheme 4; the yield of 17aa was only 8%. No significant improvement was observed when 14a was coupled after transmetallation with $\mathrm{ZnCl}_{2}{ }^{[21]}$ Chlorozinc derivatives of type 19 (Scheme 5), easily prepared from the corresponding bridgehead lithium derivat-

Table 4. NiCl_{2} dppe-catalyzed cross-coupling of aryl and alkenyl halides with 4 equivalents of 3-phenylbicyclo[1.1.1]pent-1-ylmagnesium bromide 14 a at $25^{\circ} \mathrm{C}$
(9-11 mol\%)
ives 9 by transmetallation with $\mathrm{ZnCl}_{2} \cdot \mathrm{THF}^{[21]}$ in diethyl ether/pentane mixtures, also gave discouraging results in their cross-coupling reactions with aryl iodides under $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalysis in that the rate of homocoupling still exceeded that of the cross-coupling reaction.

Scheme 5

Even using a two-fold excess of $\mathbf{9 b}$, the three coupling products 20bb, 16b, and 18b were obtained in yields of just $33 \%, 12 \%$, and 53%, respectively (Scheme 5).
Since dichloro[1,1'-bis(diphenylphosphanyl)ferrocene]palladium(II) $\left[\mathrm{PdCl}_{2}\right.$ (dppf)] was found to be by far the most active and selective catalyst for the coupling of n-, sec-, and tert-alkylzinc and -magnesium halides with aromatic halides, ${ }^{[22]}$ and in view of the fact that this catalyst has also been successfully employed in the preparation of various liquid crystalline materials, ${ }^{[23]}$ it was tested in the cross-
coupling reactions of bicyclo[1.1.1]pentylmagnesium and -zinc halide derivatives, 14 and 19, respectively (Table 5).

Table 5. PdCl_{2} (dppf)-catalyzed cross-coupling of aryl and alkenyl halides with 3-phenylbicyclo[1.1.1]pent-1-ylmagnesium bromide 14a at $25^{\circ} \mathrm{C}$

In the presence of $2 \mathrm{~mol}-\% \mathrm{PdCl}_{2}(\mathrm{dppf})$, couplings of 3-phenylbicyclo[1.1.1]pent-1-ylmagnesium bromide (14a) with essentially the same series of aryl and alkenyl halides as used in the NiCl_{2} dppe-catalyzed reactions (Table 4) gave compounds 17 ae and 17 af in much better yields. However, the cross-coupling product of 3 -iodopyridine ($\mathbf{1 7 a d}$), which was obtained in the highest yield under NiCl_{2} dppe catalysis, was not formed at all in this case. Instead, a trace of 1,3diphenylbicyclo[1.1.1]pentane (17aa) was detected, which must have resulted from a coupling reaction with bromobenzene or phenylmagnesium bromide, probably still present in the reaction mixture after the preparation of $\mathbf{1 4 a}$. Thus, for the coupling of heterocycles, ${ }^{[24]} \mathrm{NiCl}_{2}$ dppe may complement $\mathrm{PdCl}_{2}(\mathrm{dppf})$ as a catalyst (for methods of $\mathrm{C}-$ C bond formation in different heterocycles through Ni - and Pd-catalyzed cross-coupling, see ref. ${ }^{[24]}$).
To test the viability of chlorozinc derivatives 19 in crosscoupling reactions, one and two equivalents of 19b were treated with one equivalent of 4-iodotoluene in the presence of $5 \mathrm{~mol}-\% \mathrm{PdCl}_{2}$ (dppf). After 1 h at room temperature, the coupling product 20bb had been formed in $82-86 \%$ yield (GC) along with $9-13 \%$ of the homocoupling product $4,4^{\prime}$ dimethylbiphenyl (18b). Neither longer reaction times, the use of an excess of the chlorozinc reagent, nor its portionwise addition, had any significant influence on the results (Scheme 6).
Under optimized conditions, various p-substituted bromobenzenes, as well as iodobenzene and 2-bromopyrimidine, were coupled with various 3 -substituted bicyclo[1.1.1]pentylzinc chlorides $\mathbf{1 9}$. With the exception of the product derived from p-dibromobenzene ($\mathbf{2 0} \mathbf{c a}$) the yields were reasonably good throughout (Table 6). However, the p-bromophenyl derivative 20ca may easily be obtained in almost

$\left\lvert\, \begin{aligned} & p-\mathrm{Me}^{-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}} \\ & \mathrm{PdCl}_{2}(\mathrm{dppf})(5 \mathrm{~mol} \%) \\ & 25^{\circ} \mathrm{C}, \mathrm{THF}\end{aligned}\right.$

		$\mathbf{2 0 b b}$	$+\mathbf{1 8 b}$	$+p-\mathrm{Me}^{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$
	$[\mathrm{b}]$	$\%$	$\%$	$\%$
1 equiv. 19b	1	82	9	9
	21	86	13	1
2				

Scheme 6

Table 6. PdCl_{2} (dppf)-catalyzed cross-coupling of various aryl halides with 3 -substituted bicyclo[1.1.1]pent-1-ylzinc chlorides 19 in THF at $25^{\circ} \mathrm{C}$

quantitative yield by bromination of the p-(trimethylsilyl)phenyl derivative 20cb in methanol ${ }^{[25]}$ (see Experimental Section). The trimethylsilyl derivative 20cb was obtained in good yield only when two equivalents of the chlorozinc reagent 19c were employed. All the products 20 were accompanied by the aryl halide homocoupling products, i.e. the correspondingly disubstituted biaryls, in yields of $10-13 \%$.

Only 20ca was formed alongside a 58% isolated yield of 4,4'-dibromobiphenyl. Amazingly, in many cases the start-
ing aryl halide and the coupling product had identical R_{f} values upon TLC analysis, which presented additional difficulties in the purification of the final products. This was not too serious for small scale preparations (1 mmol), but on a $15-20-\mathrm{mmol}$ scale the product had to be distilled or recrystallized following column chromatography (see Experimental Section). The fact that the p-cyanophenyl derivative $\mathbf{2 0} \mathrm{ec}$ was isolated in 75% yield demonstrates the tolerance of chlorozinc reagents towards a cyano group under the coupling conditions. The addition product of $\mathbf{1 9 e}$, i.e. the ketone 21. was isolated in iust 2.5% vield.

21
As in the attempted coupling of the bridgehead Grignard reagent 14a, treatment of 3-phenylbicyclo[1.1.1]pent-1-ylzinc chloride (19r) with 2- or 5-iodopyrimidine led exclusively to the metal-halogen-exchanged product 3-phenyl-1iodobicyclopentane (8r).
PdCl_{2} (dppf)-catalyzed coupling of 3 -substituted bicyclo[1.1.1]pentylzinc chlorides $\mathbf{1 9}$ was also tested in the preparation of biaryl derivatives such as phenylpyrimidines and biphenyls containing bicyclo[1.1.1]pentyl moieties. Besides biaryl bromides, triflates of hydroxybiaryls ${ }^{[26]}$ can also be employed in such reactions (Table 7). ${ }^{[27]}$ With appropriate variation of the solvent and proportions of reagents, diarylbicyclo[1.1.1]pentyl derivatives containing one or two bicyclo[1.1.1]pentane units were obtained in moderate to good yields (examples 23ac,be,de,ee). Actually, the crude yields were even better, as losses were incurred during workup. For unknown reasons, the (tetrahydropyranyloxyethyl)substituted bicyclo[1.1.1]pentylzinc chloride 19 f gave the correspondingly substituted (p-ethylbiphenyl) derivative $\mathbf{2 3 f f}$ in particularly low yield (10%). As in the case of the monoaryl derivatives, the starting materials and coupling products tended to be inseparable by column chromatography on silica gel, although the final products could be purified by recrystallization from methanol, albeit with slightly decreased yields. The mono- and bis-coupling products of $4,4^{\prime}$-dibromobiphenyl (22a), i.e. 23aja and 23ajb, could be separated by column chromatography using benzene as a co-eluent.

3. Chemical Transformations of the Coupling Products

In order to introduce certain functional groups, e.g. a cyano group, ${ }^{[28]}$ with a view to improving particular liquid crystalline features of the molecules, a series of subsequent manipulations had to be performed with the coupling products, as the correspondingly substituted products were not directly accessible by such coupling reactions. Although it should be possible to couple 4-bromo-4'-cyanobiphenyl (see, e.g., the successful coupling of p-bromobenzonitrile, Table 6), the desired p-cyanobiphenyl-substituted end products 24ab, ae can also readily be prepared from 23ab,ae, the products of monocoupling of 4,4'-dibromobiphenyl (Scheme 7).

Table 7. PdCl_{2} (dppf)-catalyzed cross-coupling of biaryl halides and triflates p - $\mathrm{Ar}-\mathrm{X}$ (22) with $0.5-4$ equiv. of 3 -substituted bicyclo[1.1.1]-pent-1-ylzinc chlorides 19 in $\mathrm{Et}_{2} \mathrm{O}$ or THF at $25^{\circ} \mathrm{C}$

[^1]

Scheme 7

Since all attempts to prepare 3-vinyl- and 3-allylbicyclo[1.1.1]pentyl iodides $\mathbf{8 k}, \mathbf{l}$ have hitherto proved unsuccessful (Table 1), the preparation of compounds of type $\mathbf{2 3}$ containing a double bond in the end group was attempted by transformation of the tetrahydropyranyl-protected hydroxyalkyl derivatives $\mathbf{2 3 f f}, \mathbf{f g}, \mathbf{g h}$. The latter can be smoothly deprotected to give hydroxyalkyl derivatives such as $\mathbf{2 5}$, or directly transformed by treatment with triphenylphosphane/ bromine to give bromides $\mathbf{2 6 f f}$,fg. Dehydrobromination of 26ff with $t \mathrm{BuOK} / \mathrm{DMSO}$ proceeded normally, although the solubility of $\mathbf{2 6 f f}$ in DMSO was extremely low (Scheme 8). In the case of $\mathbf{2 6 f g}$, however, a mixture of the tert-butoxide substitution product 28 and the allyl rearrangement product $\mathbf{2 7 f g}$ was obtained (Scheme 8).

Scheme 8
Particular difficulties were encountered when attempts were made to construct molecules with ethynyl groups directly bound to bicyclo[1.1.1]pentyl moieties. A previously pursued strategy involved the low-yielding photochemical
addition of 1,1,1-trichloroethane to propellane $\mathbf{2}^{[29]}$ and subsequent twofold dehydrochlorination. Attempts to perform a direct coupling of the bicyclo[1.1.1]pentylzinc chloride derivative 19c with 1-iodo-2-(trimethylsilyl)ethyne ${ }^{[30]}$ under PdCl_{2} (dppf) catalysis failed completely: the metalhalogen exchange product $8 \mathbf{c}$ was formed exclusively and could be isolated in almost quantitative yield. Therefore, a new approach based on the well-known rearrangement of vinyl carbenoids (the so-called Fritsch-Buttenberg-Wichell rearrangement ${ }^{[31]}$) was elaborated. In view of the facile preparation of bicyclo[1.1.1]pentyl ketones from bridgehead bicyclo[1.1.1]pentyllithium derivatives and acid chlorides (see Table 2), the n-propylbicyclo[1.1.1]pentylcarboxylic acid 10b was converted into the acid chloride 29, ${ }^{[8]}$ and this in turn was reacted with the (p-lithiophenyl)bicyclo[1.1.1]pentyl derivative obtained from 20ca and $t \mathrm{BuLi}$ to give the ketone 30 in 78% yield (Scheme 9).

Scheme 9
Wittig olefination with chloromethylenetriphenylphosphorane, followed by treatment of the chloroalkene 31 with BuLi , provided the desired internal acetylene 32 in 53% yield, along with the 1,1 -disubstituted ethylene 33 resulting from metal-halogen exchange on $\mathbf{3 1}$ and subsequent hydrolysis.

To summarize the results presented herein, $\mathrm{PdCl}_{2}(\mathrm{dppf})$ catalyzed coupling of 3 -substituted bridgehead bicyclo[1.1.1]pentylzinc chlorides constitutes the most powerful tool for the construction of rod-like molecules containing bicyclo[1.1.1]pentyl fragments. Several of these new bicyclo[1.1.1]pentyl derivatives do indeed exhibit quite interesting liquid crystalline properties, which have been reported separately. ${ }^{[32]}$

Experimental Section

General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Spectra were recorded at 200 or $250 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, and at $62.9 \mathrm{MHz}\left[{ }^{13} \mathrm{C}\right.$ and additional DEPT (Dis-
tortionless Enhancement by Polarization Transfer)] with Varian XL 200 and Bruker AM 250 instruments in CDCl_{3} solution; $\mathrm{CHCl}_{3} /$ CDCl_{3} as internal reference; δ in ppm, J in Hz. - IR: Perkin-Elmer 298. - FT-IR: Bruker IFS 66; samples in KBr pellets or as films between NaCl plates. - MS (EI): Finnigan MAT 95 spectrometer $(70 \mathrm{eV})$. - M.p.: Büchi 510 capillary melting point apparatus; uncorrected values. - GC analyses: Siemens Sichromat 1-4, 25-m capillary column CP-SIL-5-CB. - GC separations: Intersmat 130 instrument, 20% SE- 30 on Chromaton W-AW-DMCS, $1500 \times$ 8.2 mm column. - TLC: Macherey-Nagel precoated sheets, 0.25 mm Sil G/UV 254 . - Column chromatography: Merck silica gel, grade 60, 230-400 mesh. - Starting materials: Anhydrous diethyl ether and THF were obtained by distillation from sodium benzophenone ketyl, pyridine from CaH_{2}, and dichloromethane from $\mathrm{P}_{4} \mathrm{O}_{10}$. Compounds 2, ${ }^{[6,8 \mathrm{a}, 10]} \mathbf{7 f},{ }^{[33]} \mathbf{7 g},{ }^{[34]} \mathbf{7 i},{ }^{[35]}$ 4-bromobutyl- and propylbenzenes, ${ }^{[36]}$ 4-bromo-4'-ethylbiphenyl (22f), ${ }^{[37]}$ (4-bromophenyl)trimethylsilane, ${ }^{[38]} \quad \mathbf{2 2 g},{ }^{[39]}$ lithium $4,4^{\prime}$-di-tert-butylbiphenylide, ${ }^{[16 \mathrm{a}]}$ and $\mathrm{PdCl}_{2}(\mathrm{dppf}){ }^{[22]}$ were prepared according to published procedures. Vinyl iodide was obtained in 50% yield by treating vinylmagnesium bromide with I_{2} in THF solution. Iodides $\mathbf{7 j},{ }^{[40]} \mathbf{7 h}$, and $\mathbf{7 m}{ }^{[41]}$ were prepared from the corresponding alcohols ${ }^{[42]}$ in $88 \%, 80 \%$, and 67% yield, respectively, using the $\mathrm{I}_{2} / \mathrm{Ph}_{3} \mathrm{P} /$ ImH reagent; ${ }^{[43]}$ compounds $7 \mathbf{o}, \mathbf{p}$ were obtained using the reagent $\left[(\mathrm{PhO})_{3} \mathrm{PMe}\right] \mathrm{I} .{ }^{[44]}-7 \mathrm{j}:{ }^{1} \mathrm{H} \mathrm{NMR}: \delta=1.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 2.18 (qt, $J=7.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.76(\mathrm{qt}, J=7.1$, $\left.2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.0\left(\mathrm{CH}_{3}\right), 2.6,12.4,24.1\left(\mathrm{CH}_{2}\right), 78.1,83.8(\mathrm{C}) .-22 \mathrm{f}:{ }^{1} \mathrm{H}$ NMR: $\delta=1.26\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 7.25\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35-7.55(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=15.6\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 126.8,128.4$, $128.5,131.8(2 \mathrm{CH}), 121.2,137.3,140.0,142.8(\mathrm{C})$. All other chemicals were used as received from commercial suppliers (Merck, Acros, BASF, Bayer, Hoechst, Degussa AG, or Hüls AG). All reactions were performed under argon. Organic extracts were dried with MgSO_{4}.

General Procedure (GP 1) for the Preparation of $\mathbf{8 a - e}, \mathbf{g - i , m - q} \mathbf{q}$: To a solution of the appropriate iodoalkane $7(28 \mathrm{mmol})$ and [1.1.1]propellane (2) (30 mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, a 1.56 m solution of MeLi in $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL}, 28 \mathrm{mmol})$ was added dropwise at $-40{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temp., stirred for 24 h , and then cooled to $-40^{\circ} \mathrm{C}$ once more, whereupon $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. The resulting solution was poured into an ice-cold mixture of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and pentane $(50 \mathrm{~mL})$. After separation of the layers, the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, dried, and concentrated under reduced pressure at $0{ }^{\circ} \mathrm{C}$. The residue was used for the next step without purification.

1-Iodo-3-methylbicyclo[1.1.1]pentane (8a): From MeI (2.56g, $1.12 \mathrm{~mL}, 18 \mathrm{mmol})$, compound $\mathbf{8 a}{ }^{[13 \mathrm{~b}]}(3.11 \mathrm{~g}, 83 \%)$ was obtained according to GP 1. - ${ }^{1} \mathrm{H}$ NMR: $\delta=1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21(\mathrm{~s}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=18.3\left(\mathrm{CH}_{3}\right)$, $62.1\left(3 \mathrm{CH}_{2}\right), 7.0$, 44.6 (C).

1-Iodo-3-propylbicyclo[1.1.1]pentane (8b): From PrI (6.80 g, $3.92 \mathrm{~mL}, 40 \mathrm{mmol})$, compound $\mathbf{8 b}(8.88 \mathrm{~g}, 94 \%)$ was obtained according to GP 1. - IR: $\tilde{v}=2980 \mathrm{~cm}^{-1}, 2960,2910,2870,1446$, 1171, 985, 836. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.88\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.18-1.34 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19(\mathrm{~s}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.0\left(\mathrm{CH}_{3}\right), 60.7\left(3 \mathrm{CH}_{2}\right), 20.0,34.2$ $\left(\mathrm{CH}_{2}\right), 7.9,48.5(\mathrm{C})$.

1-Butyl-3-iodobicyclo[1.1.1]pentane (8c): From BuI (14.72g, $9.10 \mathrm{~mL}, 80 \mathrm{mmol})$, compound $\mathbf{8 c}{ }^{[4 \mathrm{a}]}(19.41 \mathrm{~g}, 97 \%)$ was obtained according to GP 1 .

1-Heptyl-3-iodobicyclo[1.1.1]pentane (8d): From 1-iodoheptane ($4.30 \mathrm{~g}, 3.12 \mathrm{~mL}, 19 \mathrm{mmol}$), compound $\mathbf{8 d}(4.48 \mathrm{~g}, 81 \%)$ was obtained according to GP $1 .-\mathrm{IR}: \tilde{v}=2926 \mathrm{~cm}^{-1}, 1466,1378,1261$, 1174, 1130, 1022, 984, 839, 722, 669. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.88(\mathrm{t}, J=$ $\left.6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 60.6$ $\left(3 \mathrm{CH}_{2}\right), 22.6,26.8,29.2,29.4,31.8,32.1\left(\mathrm{CH}_{2}\right), 8.2,48.6(\mathrm{C})$.

1-Iodo-3-octylbicyclo[1.1.1]pentane (8e): From 1-iodooctane (4.08 g , $3.07 \mathrm{~mL}, 17 \mathrm{mmol})$, compound $8 \mathrm{e}(5.10 \mathrm{~g}, 98 \%)$ was obtained according to GP 1. - IR: $\tilde{v}=2990 \mathrm{~cm}^{-1}, 2960,2925,2875,2855$, 1450, 1175, 840. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.27\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.42-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18(\mathrm{~s}, 6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 60.5\left(3 \mathrm{CH}_{2}\right), 22.6,26.8,29.4$, 29.5, 29.6, 31.8, $32.1\left(\mathrm{CH}_{2}\right), 8.1,48.5(\mathrm{C})$.

1-Iodo-3-[3-(tetrahydropyran-2-yloxy)propyl]bicyclo[1.1.1]pentane (8 g): From $7 \mathrm{~g}(20.0 \mathrm{~g}, 74 \mathrm{mmol})$, compound $\mathbf{8 g}(24.4 \mathrm{~g}, 98 \%)$ was obtained according to GP $1 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.45-1.90(\mathrm{~m}, 10 \mathrm{H}$, $\left.5 \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.25-3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.35-3.50$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.60-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.70-3.85(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.54(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=60.3(3$ $\left.\mathrm{CH}_{2}\right), 19.5,25.3,26.9,28.7,30.5,62.2,66.9\left(\mathrm{CH}_{2}\right), 98.6(\mathrm{CH}), 7.6$, 48.1 (C).

1-Iodo-3-[4-(tetrahydropyran-2-yloxy)butyl]bicyclo[1.1.1]pentane (8h): From $7 \mathrm{~h}(5.1 \mathrm{~g}, 18 \mathrm{mmol})$, compound $\mathbf{8 h}(6.1 \mathrm{~g}, 96 \%)$ was obtained according to GP $1 .-\mathrm{IR}: \tilde{v}=2938 \mathrm{~cm}^{-1}, 1453,1353,1329$, 1261, 1200, 1175, 1128, 1078, 1035, 988, 906, 869, 837. - ${ }^{1} \mathrm{H}$ NMR: $\delta=1.22-1.90\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.36(\mathrm{dt}$, $\left.J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.42-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.71(\mathrm{dt}$, $\left.J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.85(\mathrm{ddd}, J=11.4,7.5,3.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{OCH}_{2}$), $4.57(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=60.4$ $\left(3 \mathrm{CH}_{2}\right), 19.6,23.5,25.4,29.5,30.6,31.8,62.3,67.2\left(\mathrm{CH}_{2}\right), 98.8$ (CH), 7.8, 48.3 (C).

1-Iodo-3-[8-(tetrahydropyran-2-yloxy)octyl]bicyclo[1.1.1]pentane (8i): From $7 \mathbf{i}(4.70 \mathrm{~g}, 13.8 \mathrm{mmol})$, compound $\mathbf{8 i}(5.44 \mathrm{~g}, 97 \%)$ was obtained according to GP $1 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.22-1.38(\mathrm{~m}, 10 \mathrm{H}$, $\left.5 \mathrm{CH}_{2}\right), 1.39-1.92\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.36(\mathrm{dt}$, $\left.J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.43-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.71(\mathrm{dt}$, $\left.J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.85(\mathrm{ddd}, J=11.4,7.5,3.5 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{OCH}_{2}\right), 4.55(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=60.5$ $\left(3 \mathrm{CH}_{2}\right), 19.6,25.4,26.1,27.0,29.3,29.4,29.6,30.7,32.0,62.3$, $67.5\left(\mathrm{CH}_{2}\right), 98.7(\mathrm{CH}), 8.1,48.5(\mathrm{C})$.

1-Iodo-3-[(E)-pent-3-enyl]bicyclo[1.1.1]pentane (8 m): From (E)-5-iodopent-2-ene $(9.729 \mathrm{~g}, 49.63 \mathrm{mmol})$, compound 8 m (13.0 g , 100%) was obtained according to GP $1 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.58(\mathrm{t}$, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85-2.05$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 5.25-5.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=$ $\mathrm{CH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=17.9\left(\mathrm{CH}_{3}\right), 60.5\left(3 \mathrm{CH}_{2}\right), 29.8,31.8\left(\mathrm{CH}_{2}\right)$, $125.3,130.4(\mathrm{CH}), 8.0,48.3(\mathrm{C})$.

1-Cyclohexyl-3-iodobicyclo[1.1.1]pentane (8n): From iodocyclohexane $(1.09 \mathrm{~g}, 0.67 \mathrm{~mL}, 5.2 \mathrm{mmol})$, compound $8 \mathrm{n}(1.21 \mathrm{~g}, 84 \%)$ was obtained according to GP 1. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.68-0.97(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.00-1.82(m, 9 H$), 2.17\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $58.6\left(3 \mathrm{CH}_{2}\right), 25.9,29.6\left(2 \mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 39.3(\mathrm{CH}), 8.9,52.4$ (C).

1-Iodo-3-(4-phenylcyclohexyl)bicyclo[1.1.1]pentane (80): From cis-4phenylcyclohexyl iodide $7 \mathrm{o}(4.49 \mathrm{~g}, 15.7 \mathrm{mmol})$, compound 80 $(5.26 \mathrm{~g}, 95 \%)$ was obtained according to GP 1 as a $2: 1$ mixture of cis and trans isomers. An analytical sample of trans-8o was obtained after repeated (4 times) recrystallization from pentane; m.p.
$105^{\circ} \mathrm{C}$ (dec.). - IR: $\tilde{\mathrm{v}}=3080 \mathrm{~cm}^{-1}, 3055,3020,2985,2960,2910$, 2870, 2850, 1600, 1592, 1546, 1173, 968, 852, 835, 800, 756, 700. ${ }^{1} \mathrm{H}$ NMR: $\delta=1.07$ (dq, $J=12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.43 (dq, $\left.J=12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52(\mathrm{tt}, J=12.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $1.75\left(\mathrm{dm}, J=13.2, \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91(\mathrm{dm}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.41(\mathrm{tt}, J=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.12-7.33 (m, 5 H, Ph). - ${ }^{13} \mathrm{C}$ NMR: $\delta=58.6\left(3 \mathrm{CH}_{2}\right), 29.8,33.5$ ($2 \mathrm{CH}_{2}$), 125.9, $126.7(2 \mathrm{CH}), 38.8,43.8,128.3(\mathrm{CH}), 8.6,52.1$, 147.1 (C). $-\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{I}$ (352.3): calcd. C 57.96 , H 6.01, I 36.03 ; found C 57.81, H 6.06, I 36.03. - After evaporation of the solvent from the mother liquor, another recrystallization from pentane gave an analytical sample of cis-80; m.p. $49{ }^{\circ} \mathrm{C}$ (dec.). $-\mathrm{IR}: \tilde{v}=3075$ $\mathrm{cm}^{-1}, 3060,3020,2985,2960,2870,2845,1595,1490,1442,1358$, 1162, 858, 839, 825, 818, 746, 700. - ${ }^{1} \mathrm{H}$ NMR: $\delta=1.07$ (dq, $J=$ $\left.12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{dq}, J=12.8,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.52 (tt, $J=12.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.75(\mathrm{dm}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.91\left(\mathrm{dm}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.41$ (tt, $J=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.12-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=58.6\left(3 \mathrm{CH}_{2}\right), 29.8,33.5\left(2 \mathrm{CH}_{2}\right), 125.9,126.7(2 \mathrm{CH})$, $38.8,43.8,128.3(\mathrm{CH}), 8.6,52.1,147.1(\mathrm{C})$.

1-[4-(4-Fluorophenyl)cyclohexyl]-3-iodobicyclo[1.1.1]pentane (8p): From cis-7p ($155 \mathrm{mg}, 0.51 \mathrm{mmol}$), compound $\mathbf{8 p}(174 \mathrm{mg}, 92 \%)$ was obtained according to GP 1 as a $2: 1$ mixture of cis and trans isomers. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.95-1.96$ (m, 9 H), 2.18 ($\mathrm{s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$, trans), $2.28\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$, cis $), 2.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, trans), $2.60(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$, cis $), 6.90-7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.05-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

1-Iodo-3-[4-(4-propylphenyl)cyclohexyl]bicyclo[1.1.1]pentane (8q): From trans-7q ($17 \mathrm{mg}, 0.05 \mathrm{mmol}$), compound $\mathbf{8 q}(18 \mathrm{mg}, 88 \%)$ was obtained according to GP 1 as a $2: 1$ mixture of cis and trans isomers. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01-2.00$ (m, 11 H$), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$, trans $), 2.31\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$, cis), $2.35-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.54\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.05-7.12$ (m, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$).

General Procedure (GP 2) for the Preparation of $\mathbf{8 f}, \mathbf{j}, \mathbf{r}, \mathbf{s}$: A solution of the appropriate iodoalkane $\mathbf{7 f}, \mathbf{j}, \mathbf{r}, \mathbf{s}(29 \mathrm{mmol})$ and [1.1.1]propellane (2) (30 mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was irradiated in a Pyrex vessel at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}(7 \mathbf{f}, \mathbf{j})$ or $4 \mathrm{~h}(7 \mathbf{r}, \mathbf{s})$ with light from a $500-\mathrm{W}$ medium-pressure Hanovia mercury lamp. The volatiles were then evaporated, and the residue was either used without further purification $(\mathbf{8 f})$, recrystallized from pentane at $-30^{\circ} \mathrm{C}(\mathbf{8 j})$, or chromatographed ($\mathbf{8 r}, \mathbf{s}$) (25 g of silica gel, column $16 \times 2 \mathrm{~cm}$, pentane).

1-Iodo-3-[2-(tetrahydropyran-2-yloxy)ethyl]bicyclo[1.1.1]pentane (8f): From $7 \mathbf{f}(25.61 \mathrm{~g}, 0.1 \mathrm{~mol})$, compound $\mathbf{8 f}(29.67 \mathrm{~g}, 92 \%)$ was obtained according to GP 2. $-{ }^{1} \mathrm{H}$ NMR: $\delta=1.40-1.85(\mathrm{~m}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 1.75\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.20$ $3.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.40-3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.60-3.70(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{OCH}_{2}\right), 3.71-3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.49(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=60.8\left(3 \mathrm{CH}_{2}\right), 19.3,25.3,30.5,31.7,62.1$, $65.0\left(\mathrm{CH}_{2}\right), 98.7(\mathrm{CH}), 7.4,46.3(\mathrm{C})$.

1-(Hex-3-ynyl)-3-iodobicyclo[1.1.1]pentane (8j): From 7j (17.7 g, 85 mmol), compound $\mathbf{8 j}$ was obtained according to GP 2 [crude: $15.6 \mathrm{~g}, 67 \%$; pure $\mathbf{8 j}$ can be isolated, albeit in moderate yield, from the residual starting iodide (which is more active in a coupling reaction) by low-temperature recrystallization from pentane; recrystallized pure material: $9.53 \mathrm{~g}, 41 \%$]; m.p. $32-34{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.08\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.05-2.18 (m, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $14.1\left(\mathrm{CH}_{3}\right), 60.5\left(3 \mathrm{CH}_{2}\right), 12.3,16.3,31.2\left(\mathrm{CH}_{2}\right), 7.4,47.8,78.4$, 82.2 (C).

1-Iodo-3-phenylbicyclo[1.1.1]pentane (8r): From iodobenzene (7r) ($645 \mathrm{mg}, 354 \mu \mathrm{~L}, 3.16 \mathrm{mmol}$), compound $\mathbf{8 r}{ }^{[4 a]}(179 \mathrm{mg}, 21 \%$) was obtained according to GP 2.

1-Iodo-3-(p-tolyl)bicyclo[1.1.1]pentane (8s): From 4-iodotoluene (7s) ($678 \mathrm{mg}, 3.11 \mathrm{mmol}$), compound $\mathbf{8 s}{ }^{[45]}(89 \mathrm{mg}, 10 \%)$ was obtained according to GP 2.

General Procedure (GP 3) for the Lithiation of 3-Substituted 1-Iodobicyclo[1.1.1]pentanes 8: To a 0.3 m solution of LiDBB in THF $(50 \mathrm{~mL}, 15 \mathrm{mmol})$, a solution of $\mathbf{8}(6 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After stirring the deep-blue reaction mixture for 1 h at this temp., a 10 -fold excess of powdered dry ice was added in a single portion. The mixture was allowed to warm to room temp. and then extracted with $5 \% \mathrm{NaHCO}_{3}$ solution $(2 \times$ 50 mL). The combined aqueous phases were acidified to $\mathrm{pH}=2-$ 3 with conc. HCl at $0^{\circ} \mathrm{C}$, saturated with NaCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$. The combined organic phases were dried and, after evaporation of the solvent under reduced pressure, purified as specified below.

General Procedure (GP 4) for the Lithiation of 3-Substituted 1-Iodobicyclo[1.1.1]pentanes 8: To a solution of $\mathbf{8}(30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$, a 1.5 m solution of $t \mathrm{BuLi}$ in n-pentane $(40 \mathrm{~mL}, 60 \mathrm{mmol})$ was added over a period of 40 min at $-78^{\circ} \mathrm{C}$. After stirring the reaction mixture for 1 h at this temp., the appropriate electrophile was added and the mixture was worked-up under the conditions specified below.

3-Propylbicyclo[1.1.1]pentane-1-carboxylic Acid (10b): From 8b ($17.71 \mathrm{~g}, 75 \mathrm{mmol}$), compound $\mathbf{1 0 b}(11.22 \mathrm{~g}, 97 \%)$ was obtained according to GP 4, in almost pure form following work-up as in GP 3. An analytical sample was recrystallized from hexane; m.p. 71$72{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.35$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $9.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.2\left(\mathrm{CH}_{3}\right), 51.5\left(3 \mathrm{CH}_{2}\right), 19.5$, $33.4\left(\mathrm{CH}_{2}\right), 37.5,40.2,176.5(\mathrm{C}) .-\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ (154.2): calcd. C 70.10, H 9.15; found C 70.04 , H 9.07

3-Butylbicyclo[1.1.1]pentane-1-carboxylic Acid (10c): From 8c ($1.06 \mathrm{~g}, 4.24 \mathrm{mmol}$), compound $\mathbf{1 0 c}{ }^{[4 \mathrm{a}]}(430 \mathrm{mg}, 60 \%)$ was obtained according to GP 3 and subsequent column chromatography (5 g of silica gel, column $12 \times 1 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 4: 1$).

3-Heptylbicyclo[1.1.1]pentane-1-carboxylic Acid (10d): From 8d $(4.27 \mathrm{~g}, 14.6 \mathrm{mmol})$, compound $10 \mathrm{~d}(1.66 \mathrm{~g}, 54 \%)$ was obtained according to GP 3 and subsequent column chromatography (100 g of silica gel, column $20 \times 4 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 9: 1$, gradient $\mathrm{Et}_{2} \mathrm{O}$), $R_{\mathrm{f}}=0.60\left(\mathrm{Et}_{2} \mathrm{O}\right) ;$ m.p. $42{ }^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{\mathrm{v}}=2957 \mathrm{~cm}^{-1}, 2913,2853$, 2589, 1704, 1517, 1469, 1425, 1339, 1317, 1287, 1214, 960, 751, 723. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22(\mathrm{~m}, 10$ $\left.\mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.43\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 51.5\left(3 \mathrm{CH}_{2}\right)$, $22.7,26.3,29.6,29.7,31.2,31.8\left(\mathrm{CH}_{2}\right), 37.6,40.3,176.7$ (C). $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$ (210.3): calcd. C 74.24, H 10.55; found C 74.16, H 10.70 .

3-Octylbicyclo[1.1.1]pentane-1-carboxylic Acid (10e): From 8e ($1.24 \mathrm{~g}, 4.05 \mathrm{mmol}$), compound 10e ($410 \mathrm{mg}, 45 \%$) was obtained according to GP 3 and subsequent column chromatography (5 g of silica gel, column $12 \times 1 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 4: 1$); m.p. $33-36^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.88\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{~m}, 12 \mathrm{H}, 6$ $\left.\mathrm{CH}_{2}\right), 1.40-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 10.20(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 51.6\left(3 \mathrm{CH}_{2}\right), 22.7,26.3$, 29.3, 29.6, 29.7, 31.2, $31.9\left(\mathrm{CH}_{2}\right), 37.6,40.4,176.6$ (C). $-\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ (224.3): calcd. C 74.95, H 10.78; found C 74.64, H 10.81.

3-[4-(Tetrahydropyran-2-yloxy)buty]|bicyclo[1.1.1]pentane-1-carboxylic Acid (10h): From 8h ($9.50 \mathrm{~g}, 27.1 \mathrm{mmol}$), compound $\mathbf{1 0 h}$ $(4.10 \mathrm{~g}, 56 \%)$ was obtained according to GP 3 in almost pure form as an oil. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.95-1.80\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.92(\mathrm{~s}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$), $3.40-4.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.55(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH})$.
3-[8-(Tetrahydropyran-2-yloxy)octyl]bicyclo[1.1.1]pentane-1-carboxylic Acid (10i): From $8 \mathbf{8 i}(5.0 \mathrm{~g}, 12.3 \mathrm{mmol}$), compound $\mathbf{1 0 i}$ $(2.12 \mathrm{~g}, 53 \%)$ was obtained as an oil according to GP 3 and subsequent filtration with $\mathrm{Et}_{2} \mathrm{O}$ through a 1 cm pad of silica gel. - IR: $\tilde{v}=3100 \mathrm{~cm}^{-1}, 2980,2930,2890,2860,1719,1220,1208,1192$, 1140, 1125, 1040, 1027. $-{ }^{1} \mathrm{H}$ NMR: $\delta=1.10-1.32(\mathrm{~m}, 10 \mathrm{H}, 5$ CH_{2}), 1.35-1.82 (m, $10 \mathrm{H}, 5 \mathrm{CH}_{2}$), $1.84\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.38(\mathrm{dt}$, $\left.J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.45-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.73(\mathrm{dt}$, $J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}$), $3.87(\mathrm{ddd}, J=11.4,7.5,3.7 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{OCH}_{2}\right), 4.55(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 10.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR: $\delta=51.4\left(3 \mathrm{CH}_{2}\right), 19.4,25.4,26.1,26.2,29.3,29.4,29.5$, 29.6, 29.6, 31.1, 62.1, $67.6\left(\mathrm{CH}_{2}\right), 98.6(\mathrm{CH}), 37.5,40.2,175.8(\mathrm{C})$. MS (EI): $m / z(\%)=324$ (1) $\left[\mathrm{M}^{+}\right], 323$ (4) [$\left.\mathrm{M}^{+}-\mathrm{H}\right], 85$ (100). $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4}$ (324.5): calcd. C $70.33, \mathrm{H} 9.94$; found C 70.45 , H 9.83.

3-(4-Phenylcyclohexyl)bicyclo[1.1.1]pentane-1-carboxylic Acid

 (100): From $8 \mathbf{0}$ ($5.20 \mathrm{~g}, 14.76 \mathrm{mmol}, 2: 1$ mixture of cis and trans isomers), compound $\mathbf{1 0 0}(1.77 \mathrm{~g}, 44 \%)$ was obtained according to GP 3 as an oil. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.80-1.95(\mathrm{~m}, 9 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$, trans), 2.03 (s, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$, cis), $2.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, trans), $2.56-2.75$ (m, 1 H, CH, cis), 7.15-7.35 (m, 5 H, Ph), 10.09 (s, 1 $\mathrm{H}, \mathrm{OH})$.2-(3-Propylbicyclo[1.1.1|pent-1-yl)propan-2-ol (11b): To the lithium derivative $\mathbf{9 b}$, prepared from $\mathbf{8 b}(5.10 \mathrm{~g}, 21.6 \mathrm{mmol})$ according to GP 4, anhydrous acetone ($2.50 \mathrm{~g}, 3.20 \mathrm{~mL}, 43 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temp. and then washed with brine ($2 \times 30 \mathrm{~mL}$). The organic phase was dried, the solvent was evaporated, and the residue was separated by preparative GC at $130^{\circ} \mathrm{C}$ to give 11b $(1.91 \mathrm{~g}, 52 \%) ;$ m.p. $34^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{v}=3420 \mathrm{~cm}^{-1}, 2970,2920,2870$, 1450, 1372, 1266, 1185, 951. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.14\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.19-1.41(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $1.50\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=25.7\left(2 \mathrm{CH}_{3}\right)$, $14.3\left(\mathrm{CH}_{3}\right), 47.1\left(3 \mathrm{CH}_{2}\right), 19.8,34.1\left(\mathrm{CH}_{2}\right), 37.2,46.4,69.1(\mathrm{C}) .-$ MS (EI): $m / z(\%)=167(0.1)\left[\mathrm{M}^{+}-\mathrm{H}\right], 153(6)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 150$ (5) $\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 135(51), 121$ (100), 107 (70), 59 (84), 49 (99). $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ (168.27): calcd. C 78.51, H 11.98; found C 78.53, H 11.92.
trans-1-(3-Butylbicyclo[1.1.1]pent-1-yl)-4-phenylcyclohexanol (11ca): To the lithium derivative $9 \mathbf{c}$, prepared from $\mathbf{8 c}(2.50 \mathrm{~g}, 10 \mathrm{mmol})$ according to GP 4, 4-phenylcyclohexanone ($1.74 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added over a period of 15 min at $-78^{\circ} \mathrm{C}$. After work-up as described above for 11b, column chromatography of the residue (150 g of silica gel, column $15 \times 5 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}$, 1:1) furnished 11ca ($2.10 \mathrm{~g}, 70 \%$), $R_{\mathrm{f}}=0.40$; m.p. $95^{\circ} \mathrm{C}$ (pentane). - IR: $\tilde{v}=3450 \mathrm{~cm}^{-1}, 3080,3060,3025,2960,2920,2870$, 1602, 1445, 1276, 1254, 1150, 1138, 988, 960, 760, 700. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.16-1.38$ (m, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $1.51\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.40-1.94\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right)$, $2.43(\mathrm{tt}, J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.14-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 46.6\left(3 \mathrm{CH}_{2}\right), 31.6,33.4\left(2 \mathrm{CH}_{2}\right), 22.9,28.8$, $29.0\left(\mathrm{CH}_{2}\right), 125.9,126.9(2 \mathrm{CH}), 44.0,128.3(\mathrm{CH}), 37.4,46.4,68.4$, 147.4 (C). - MS (EI): m/z (\%): 298 (0.7) [M ${ }^{+}$], 280 (13) [$\mathrm{M}^{+}-$ $\mathrm{H}_{2} \mathrm{O}$, 149 (59), 91 (100), 55 (51). - $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}$ (298.5): calcd. C 84.51, H 10.13; found C 84.34, H 10.14 .

1-Butyl-3-(trimethylsilyl)bicyclo[1.1.1]pentane (11cb): The lithium derivative 9 c, prepared from $8 \mathbf{c c}(250 \mathrm{mg}, 1 \mathrm{mmol})$ according to GP 4, was quenched with $\mathrm{TMSCl}(326 \mathrm{mg}, 381 \mu \mathrm{~L}, 3 \mathrm{mmol}$) and the
reaction mixture was worked-up as described above for 11b. After evaporation of the solvent, the residue was purified by bulb-to-bulb distillation under reduced pressure to give 11cd ($153 \mathrm{mg}, 78 \%$). IR: $\tilde{v}=2965 \mathrm{~cm}^{-1}, 2940,2910,2875,1475,1256,910,845 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.08\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.10-1.36(m, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $-3.4\left(3 \mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 50.2\left(3 \mathrm{CH}_{2}\right), 22.9,28.4,33.6\left(\mathrm{CH}_{2}\right)$, 29.4, 46.3 (C).

1-[8-(Tetrahydropyran-2-yloxy)octyl|bicyclo[1.1.1]pentane (11i): The lithium derivative 9 i, prepared from $\mathbf{8 i}(1.220 \mathrm{~g}, 3 \mathrm{mmol})$ according to GP 4, was quenched with MeOH (2 mL). After work-up as described above for 11b followed by column chromatography of the residue (30 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 9: 1$), $11 \mathrm{i}(784 \mathrm{mg}, 93 \%)$ was obtained as an oil, $R_{\mathrm{f}}=0.25 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.10-1.39\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.43-1.90\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.58$ ($\mathrm{s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $2.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.36(\mathrm{dt}, J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.42-3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.70(\mathrm{dt}, J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, OCH_{2}), $3.84\left(\mathrm{ddd}, J=11.4,7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right.$), $4.55(\mathrm{t}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=50.3\left(\mathrm{CH}_{2}\right), 19.6,25.5$, 26.2, 26.5, 29.4, 29.5, 29.7, 30.7, 32.5, 52.3, 62.2, $67.6\left(\mathrm{CH}_{2}\right), 27.3$, 98.7 (CH), 45.8 (C). $-\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ (280.4): calcd. C 77.09, H 11.50; found C 76.93, H 11.45 .

1-(4-Fluorobenzoyl)-3-propylbicyclo[1.1.1]pentane (12b): To the lithium derivative $\mathbf{9 b}$, prepared from $\mathbf{8 b}(427 \mathrm{mg}, 1.8 \mathrm{mmol})$ according to GP 4, a solution of 4-fluorobenzonitrile ($247 \mathrm{mg}, 2.0 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring the reaction mixture for 1 h at room temp., 5% aq. HCl $(2 \mathrm{~mL})$ was added and stirring was continued for a further 1 h at this temp. The organic phase was subsequently washed with 5% NaHCO_{3} solution and brine (10 mL each), dried, and concentrated. Column chromatography of the residue (50 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane/ $\mathrm{Et}_{2} \mathrm{O}, 9: 1$) furnished $\mathbf{1 2 b}$ ($327 \mathrm{mg}, 78 \%$) as an oil, $R_{\mathrm{f}}=0.35$. - IR: $\tilde{v}=3075 \mathrm{~cm}^{-1}, 2970,2920,2880,1669$, 1602, 1508, 1359, 1241, 1230, 1207, 1158, 935, 855, 620. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.91\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.40(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.40-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.06(\mathrm{tt}, J=$ $\left.8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\delta=$ $14.2\left(\mathrm{CH}_{3}\right), 53.4\left(3 \mathrm{CH}_{2}\right), 19.5,33.5\left(\mathrm{CH}_{2}\right), 115.4(\mathrm{~d}, J=21.7 \mathrm{~Hz})$, $131.5(\mathrm{~d}, J=9.3 \mathrm{~Hz})(2 \mathrm{CH}), 40.8,44.0,133.0,165.4(\mathrm{~d}, J=$ $254.3 \mathrm{~Hz}), 196.19$ (C).

1-(3-Octylbicyclo[1.1.1]pent-1-yl)propan-1-one (12e): To the lithium derivative $9 \mathbf{e}$, prepared from $8 \mathrm{e}(1.07 \mathrm{~g}, 3.49 \mathrm{mmol})$ according to GP 4, a solution of propionyl chloride ($1.02 \mathrm{~g}, 956 \mu \mathrm{~L}, 11 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temp. and then the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$. The resulting mixture was washed with $5 \% \mathrm{NaHCO}_{3}$ solution and brine (15 mL each), dried, and concentrated. Column chromatography of the residue (40 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}$, 9:1) furnished 12e $(620 \mathrm{mg}$, $75 \%)$ as an oil, $R_{\mathrm{f}}=0.38 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), $1.02\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right)$, $1.44\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.43(\mathrm{q}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$).

1-\{3-[4-(Tetrahydropyran-2-yloxy)butyl]bicyclo[1.1.1]pent-1-yl\} butan-1-one (12h): Compound $\mathbf{1 2 h}$ was prepared from $\mathbf{8 h}(350 \mathrm{mg}$, 1 mmol) and butyryl chloride ($217 \mathrm{mg}, 208 \mu \mathrm{~L}, 2 \mathrm{mmol}$) as described in the preceding preparation. Column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 4: 1$) furnished 12h ($233 \mathrm{mg}, 79 \%$) as an oil, $R_{\mathrm{f}}=0.30 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.90(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.95\left(\mathrm{~m}, 14 \mathrm{H}, 7 \mathrm{CH}_{2}\right), 1.85(\mathrm{~s}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 2.39\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37(\mathrm{dt}, J=9.5,6.9 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.44-3.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.73(\mathrm{dt}, J=9.5,6.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.87\left(\mathrm{ddd}, J=11.4,7.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.58$ (t, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}$).

1-[3-(4-Phenylcyclohex-1-yl)bicyclo[1.1.1]pent-1-yl]propan-1-one (120): Compound $\mathbf{1 2 0}$ was prepared from $\mathbf{8 o}(700 \mathrm{mg}, 2 \mathrm{mmol}, ~ 2: 1$ mixture of cis and trans isomers) and propionyl chloride (370 mg , $348 \mu \mathrm{~L}, 4 \mathrm{mmol}$) as described for 12e. Column chromatography (20 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 9: 1$) furnished 12o ($416 \mathrm{mg}, 74 \%$) as an oil, $R_{\mathrm{f}}=0.32$. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.91(\mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02-1.84(\mathrm{~m}, 9 \mathrm{H}), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$, trans), 1.97 (s, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$, cis), 2.38-2.48 (m, 1 H, CH, trans), 2.44 $\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.53-2.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, cis $), 7.15-7.35$ (m, $5 \mathrm{H}, \mathrm{Ph}$).

General Procedure (GP 5) for the Preparation of 3-Arylbicy-clo[1.1.1]pent-1-ylmagnesium Bromides 14a-e: A solution of the appropriate arylmagnesium bromide $\mathbf{1 3}$ [prepared from the corresponding aryl bromide (16 mmol) and magnesium turnings (401 mg , $16.5 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ ($\mathbf{1 3 a - d}$) or THF (13e) (20 mL)] was added to a 0.3 m solution of $2 \mathrm{in} \mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL}, 18 \mathrm{mmol})$. The resulting mixture was stirred under reflux for several days (see Table 3) with GC monitoring. The solution was then carefully concentrated under reduced pressure and, unless otherwise specified, the residue was taken up in anhydrous $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$.

1-Phenylbicyclo[1.1.1]pentane (15a): A solution of 14a [prepared from bromobenzene $(1.88 \mathrm{~g}, 1.26 \mathrm{~mL}, 12 \mathrm{mmol}), \mathrm{Mg}$ turnings ($300 \mathrm{mg}, 12.3 \mathrm{mmol}$), and $2(13.5 \mathrm{mmol}, 40 \mathrm{~mL}$ of a 0.3 m solution) according to GP 5] was carefully treated with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The organic phase was then washed with further $\mathrm{H}_{2} \mathrm{O}(2 \times$ $10 \mathrm{~mL})$, dried, and concentrated. $\mathbf{1 5} \mathrm{a}^{[46]}(1.37 \mathrm{~g}, 80 \%)$ was obtained after preparative GC separation of the residue.

1-(4-Propylphenyl)bicyclo[1.1.1]pentane (15ba): This compound was obtained in analogy to the previous preparation, starting from 14b [prepared from 4-bromopropylbenzene $(1.20 \mathrm{~g}, 6 \mathrm{mmol})$ and 2 ($6.75 \mathrm{mmol}, 22.5 \mathrm{~mL}$ of a 0.3 m solution) according to GP 5]. Column chromatography (50 g of silica gel, column $15 \times 3 \mathrm{~cm}, \mathrm{PE}$) gave 15ba ($1.11 \mathrm{~g}, 99 \%$) as an oil, $R_{\mathrm{f}}=0.50 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.93$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.62 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.06 ($\mathrm{s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $2.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.55\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.9\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right)$, 24.7, $37.8\left(\mathrm{CH}_{2}\right), 125.8,128.2(2 \mathrm{CH}), 26.6(\mathrm{CH}), 47.0,139.0$, 140.7 (C).

1-(4-Fluorobenzoyl)-3-(4-propylphenyl)bicyclo[1.1.1]pentane (15bb): To a solution of $\mathbf{1 4 b}$ [prepared from 4-bromopropylbenzene $(757 \mathrm{mg}, 3.8 \mathrm{mmol})$ and $2(4.28 \mathrm{mmol}, 14.25 \mathrm{~mL}$ of a 0.3 m solution) according to GP 5], a solution of 4-fluorobenzonitrile ($484 \mathrm{mg}, 4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 48 h under reflux, 5% aq. $\mathrm{HCl}(2 \mathrm{~mL})$ was added and stirring was continued for a further 10 h at room temp. The organic phase was washed with 5% aq. NaHCO_{3} solution and brine (10 mL each $)$, dried, and concentrated. After column chromatography (30 g of silica gel, column 25 $\times 2 \mathrm{~cm}$, hexane $/ E t_{2} \mathrm{O}, 9: 1$), 15bb ($362 \mathrm{mg}, 31 \%$) was obtained, $R_{\mathrm{f}}=$ 0.35 ; m.p. $99{ }^{\circ} \mathrm{C}$. $-\mathrm{IR}: \tilde{v}=3070 \mathrm{~cm}^{-1}, 3050,3030,2970,2960$, 2935, 2915, 2875, 1658, 1593, 1503, 1410, 1358, 1306, 1298, 1239, 1226, 1211, 1154, 880, 858, 818, 790, 618. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.94(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.64 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.53 (s, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.58\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08-7.25(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.03-8.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.7\left(\mathrm{CH}_{3}\right)$, $55.1\left(3 \mathrm{CH}_{2}\right), 24.5,37.7\left(\mathrm{CH}_{2}\right), 115.5(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 125.9,128.4$, $131.5(\mathrm{~d}, J=9.0 \mathrm{~Hz})(2 \mathrm{CH}), 42.2,43.1,133.0,136.9,141.4,165.5$ (d, $J=255.0 \mathrm{~Hz}), 196.0(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=308(23)\left[\mathrm{M}^{+}\right]$,

265 (24) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 185$ (25), 143 (37), 123 (100), 95 (22). $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FO}$ (308.4): calcd. C 81.79, H 6.86; found C 81.69, H 6.73.

1-(4-Chlorobenzoyl)-3-(4-propylphenyl)bicyclo[1.1.1]pentane (15bc): From 4-chlorobenzonitrile ($550 \mathrm{mg}, 4 \mathrm{mmol}$) and 14b [prepared from the same quantities of its precursors as in the preceding preparation], 15bc ($602 \mathrm{mg}, 49 \%$) was obtained following the same procedure as above, $R_{\mathrm{f}}=0.38$; m.p. $98^{\circ} \mathrm{C}$. -IR : $\tilde{v}=3095 \mathrm{~cm}^{-1}$, 3080, 3035, 2980, 2960, 2920, 2880, 1666, 1588, 1404, 1362, 1303, 1295, 1212, 1092, 880, 861, 791. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.93$ ($\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.63 (sext., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.52 (s, 6 $\left.\mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.56\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ $\left.\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.17\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.39(\mathrm{dd}, J=8.6$, $\left.2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.97$ (dd, $\left.J=8.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=16.7\left(\mathrm{CH}_{3}\right), 55.0\left(3 \mathrm{CH}_{2}\right), 24.4,37.6\left(\mathrm{CH}_{2}\right), 125.8$, $128.3,128.7,130.2(2 \mathrm{CH}), 42.2,43.0,134.9,136.8,139.1,141.3$, 196.2 (C). - MS (EI): $m / z(\%)=326 / 324$ (9:24) [M ${ }^{+}$], 295 (15), 281 (22), 185 (37), 113 (58), 109 (100). $-\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClO}$ (324.8): calcd. C 77.64, H 6.52; found C 77.52, H 6.63.

1-Chloro-3-(4-propylphenyl)bicyclo[1.1.1]pentane (15bd): To a suspension of N-chlorosuccinimide $(950 \mathrm{mg}, 7.1 \mathrm{mmol})$ in anhydrous THF (5 mL), a solution of $\mathbf{1 4 b}$ [prepared from 4-bromopropylbenzene ($1.195 \mathrm{~g}, 6 \mathrm{mmol}$) according to GP 5] in anhydrous THF $(5 \mathrm{~mL})$ was added dropwise. After stirring for 15 h at room temp. and then for 7 h under reflux, the reaction mixture was diluted with pentane (30 mL) and washed with 5% aq. $\mathrm{HCl}, 5 \% \mathrm{NaOH}$ solution, and water (20 mL each), dried, and concentrated. Column chromatography of the residue (50 g of silica gel, column $15 \times 3 \mathrm{~cm}$, PE) gave 15ba ($277 \mathrm{mg}, 24 \%$), $R_{\mathrm{f}}=0.50$, and $\mathbf{1 5 b d}(320 \mathrm{mg}, 24 \%), R_{\mathrm{f}}=$ 0.34 ; m.p. $42{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.93\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.62 (sext., $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.55(\mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.07-7.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.8\left(\mathrm{CH}_{3}\right), 58.9\left(3 \mathrm{CH}_{2}\right), 24.6,37.7\left(\mathrm{CH}_{2}\right), 126.2,128.5(2$ $\mathrm{CH}), 39.8,48.9,134.7,141.5(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=222 / 220$ $(1: 3)\left[\mathrm{M}^{+}\right], 185(100)\left[\mathrm{M}^{+}-\mathrm{Cl}\right], 179 / 177(17: 54)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right]$, 144 (56).

1-Bromo-3-(4-butylphenyl)bicyclo[1.1.1]pentane (15cb): To a solution of $\mathbf{1 4 c}$ [prepared from 4-bromobutylbenzene $(3.197 \mathrm{~g}, 2.65 \mathrm{~mL}$, $15 \mathrm{mmol})$ and $2(16.9 \mathrm{mmol}, 56.3 \mathrm{~mL}$ of a 0.3 m solution) according to GP 5], a solution of $\mathrm{Br}_{2}(2.397 \mathrm{~g}, 0.77 \mathrm{~mL}, 15 \mathrm{mmol})$ in anhydrous THF (10 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 1 h at room temp., it was treated with satd. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The layers were separated and the organic phase was washed with $0.1 \mathrm{~m} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and water $(20 \mathrm{~mL}$ each), dried, and concentrated. Column chromatography (150 g of silica gel, column $15 \times 5 \mathrm{~cm}$, PE) furnished $\mathbf{1 5} \mathbf{c b}(1.54 \mathrm{~g}, 36 \%)$ as an oil, $R_{\mathrm{f}}=0.26 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.91\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.33 (sext., $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.57 (quint, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.50\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.58\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08$ $\left(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.12\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.9\left(\mathrm{CH}_{3}\right), 60.1\left(3 \mathrm{CH}_{2}\right), 22.3,33.6,35.2\left(\mathrm{CH}_{2}\right), 126.0$, 128.4 (2 CH), 36.8, 43.4, 134.9, 141.7 (C).

1-Allyl-3-(4-fluorophenyl)bicyclo[1.1.1]pentane (15db): At $0^{\circ} \mathrm{C}$, a solution of $\mathbf{1 4 d}$ [prepared from 4-bromofluorobenzene $(1.23 \mathrm{~g}$, $0.77 \mathrm{~mL}, 7 \mathrm{mmol})$ according to GP 5] in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise to a solution of allyl bromide ($1.21 \mathrm{~g}, 865 \mu \mathrm{~L}, 10 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. After stirring under reflux for 6 h , the mixture was treated with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The layers were separated and the organic phase was washed with 5% aq. $\mathrm{HCl}, 5 \% \mathrm{NaHCO}_{3}$ solution, and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}$ each $)$, dried, and concentrated. Separation by preparative GC gave $\mathbf{1 5 d b}(495 \mathrm{mg}, 35 \%)$ as an oil. - IR: $\tilde{v}=3075 \mathrm{~cm}^{-1}, 3045,2965,2905,2870,2830,1643,1606,1520$,

1504, 1410, 1296, 1267, 1220, 1153, 992, 916, 840, 812. - ${ }^{1} \mathrm{H}$ NMR: $\delta=1.87\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.02(\mathrm{~d}$, $\left.J=10.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.03\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.77$ (ddt, $J=16.8,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.95(\mathrm{tt}, J=8.8,2.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.14 (ddt, $\left.J=8.8,5.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=52.2\left(3 \mathrm{CH}_{2}\right), 36.6,115.9\left(\mathrm{CH}_{2}\right), 114.8(\mathrm{~d}, J=21.0 \mathrm{~Hz})$, $127.5(\mathrm{~d}, J=8.0 \mathrm{~Hz})(2 \mathrm{CH}), 135.4(\mathrm{CH}), 37.8,41.8,137.3(\mathrm{~d}, J=$ 3.0 Hz), 161.7 (d, $J=244.0 \mathrm{~Hz}$) (C). $-\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}$ (202.26): calcd. C 83.13, H 7.48; found C 83.22, H 7.45 .

1-(4'-Ethylbiphenyl-4-yl)bicyclo[1.1.1]pentane (15e): Work-up of the reaction mixture from the attempted preparation of 14 e starting from 4-bromo-4'-ethylbiphenyl (22f) $(262 \mathrm{mg}, 1 \mathrm{mmol})$ and 2 ($1.13 \mathrm{mmol}, 3.8 \mathrm{~mL}$ of a 0.3 m solution) as described above for $\mathbf{1 5 a}$ and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}$, hexane) gave $15 \mathrm{e}(32 \mathrm{mg}, 13 \%)$ as an oil, $R_{\mathrm{f}}=0.45$. ${ }^{1} \mathrm{H}$ NMR: $\delta=1.31\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $2.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.71\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20-7.35(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35-7.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

General Procedure (GP 6) for the Preparation of 3-Alkylbicyclo-[1.1.1]pent-1-ylzinc Chlorides 19: To a solution of the appropriate lithium derivative 9 , prepared from $\mathbf{8}$ according to GP 4 , a 2.0 m solution of ZnCl_{2} in anhydrous THF $(1.2 \mathrm{~mL}, 2.4 \mathrm{mmol}$, prepared from $\mathrm{ZnCl}_{2} \cdot \mathrm{THF}^{[21]}$) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temp. and stirred for 1 h . After careful evaporation of the solvent, the residue was taken up in anhydrous THF (5 mL) unless specified otherwise.

General Procedure (GP 7) for Cross-Coupling under Transition Metal Catalysis: A solution of the appropriate bicyclo[1.1.1]pentylmagnesium or -zinc halide ($\mathbf{1 4}$ or $\mathbf{1 9}$, respectively; $0.5-4 \mathrm{mmol}$, prepared according to GP 5 or GP 6) in $\mathrm{Et}_{2} \mathrm{O}$ (THF) was cannulated in one portion into a mixture of the aryl (alkenyl) halide or triflate (1 mmol) and the catalyst ($2-10 \mathrm{~mol}-\%$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ or THF (5 mL) at ambient temp. A deep-green (sometimes deepred) colour appeared immediately. After stirring for 10-60 min, the colour changed to yellow or brown. The mixture was stirred for a further $2-72 \mathrm{~h}$ at this temp. (see Table 4-7), then treated with $\mathrm{H}_{2} \mathrm{O}$ (1 mL), and filtered through Celite (unless specified otherwise). After evaporation of the solvent, the residue was separated by column chromatography. In the preparations of 23ac,ff,fg,aja,ajb, the solvent (THF) was carefully evaporated under reduced pressure and replaced by hexane $(10 \mathrm{~mL})$ prior to treatment with water.

1,3-Diphenylbicyclo[1.1.1]pentane (17aa): To a solution of 14a [prepared from $\mathrm{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ according to GP 5], a 2.0 m solution of ZnCl_{2} in THF ($3 \mathrm{~mL}, 6 \mathrm{mmol}$) was added at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 1 h at room temp., the suspension was added to a mixture of $\mathrm{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($92 \mathrm{mg}, 0.08 \mathrm{mmol}$) in THF (5 mL) and the resulting mixture was stirred for a further 24 h . Standard work-up followed by column chromatography (40 g of silica gel, column $14 \times 3 \mathrm{~cm}$, hexane, $R_{\mathrm{f}}=$ 0.25) gave 211 mg of a mixture containing $\mathbf{1 7 a a}$ (70%; 15% yield) and $3,3^{\prime}$-diphenyl(bis-1,1'-bicyclo[1.1.1]pentyl) (16a) (30\%; 13\% yield). A sample of pure $\mathbf{1 6 a}^{[4 a]}$ was obtained by twofold recrystallization from MeOH . Evaporation of the solvent from the mother liquor followed by twofold recrystallization of the residue from pentane gave a sample of pure $\mathbf{1 7 a a} ;$ m.p. $100{ }^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{\mathrm{v}}=3080$ $\mathrm{cm}^{-1}, 3060,3030,2970,2910,2870,1605,1496,1448,1308,1189$, 1030, 758, 702. - ${ }^{1} \mathrm{H}$ NMR: $\delta=2.32\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.19-7.39$ $(\mathrm{m}, 10 \mathrm{H}, 2 \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=54.0\left(3 \mathrm{CH}_{2}\right), 126.1,126.5(4$ $\mathrm{CH}), 128.2(2 \mathrm{CH}), 40.8,140.9(2 \mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=220$ (43) $\left[\mathrm{M}^{+}\right], 219$ (100) $\left[\mathrm{M}^{+}-\mathrm{H}\right], 205$ (16) $\left[\mathrm{M}^{+}-\mathrm{H}-\mathrm{CH}_{2}\right], 143$ (21) $\left[\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}\right], 129$ (18), 103 (30), 77 (26) $\left[\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right] .-\mathrm{C}_{17} \mathrm{H}_{16}$ (220.3): calcd. C 92.68, H 7.32; found C 92.76, H 7.34.

1-(4-Fluorophenyl)-3-phenylbicyclo[1.1.1]pentane (17ab): From 14a [prepared from $\operatorname{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ according to GP 5], 4-bromofluorobenzene ($175 \mathrm{mg}, 110 \mu \mathrm{~L}, 1 \mathrm{mmol}$), and NiCl_{2} dppe ($59 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}, \mathbf{1 7 a b}(90 \mathrm{mg}, 38 \%)$ was obtained according to GP 7 and subsequent column chromatography (25 g of silica gel, column $16 \times 2 \mathrm{~cm}, \mathrm{PE}), R_{\mathrm{f}}=0.25$; m.p. $120^{\circ} \mathrm{C}$. -IR : $\tilde{v}=3040 \mathrm{~cm}^{-1}, 2970,2915,2875,1602,1505,1450,1310,1220$, 1192, 1161, 845, 800, 751, 706. $-{ }^{1} \mathrm{H}$ NMR: $\delta=2.31$ (s, $6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right), 7.00\left(\mathrm{tt}, J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.13-7.36(\mathrm{~m}, 7 \mathrm{H}$, Ar). $-{ }^{13} \mathrm{C}$ NMR: $\delta=54.1\left(3 \mathrm{CH}_{2}\right), 114.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 126.1$, $126.5,127.0(\mathrm{~d}, J=7.9 \mathrm{~Hz})(2 \mathrm{CH}), 128.2(\mathrm{CH}), 40.3,40.7,136.8$, $140.7,161.7(\mathrm{~d}, J=244.6 \mathrm{~Hz})(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=238$ (90) [$\left.\mathrm{M}^{+}\right], 237$ (50) [$\left.\mathrm{M}^{+}-\mathrm{H}\right], 223$ (67) [M $\left.\mathrm{M}^{+}-\mathrm{H}-\mathrm{CH}_{2}\right], 209$ (36), 203 (31), 196 (100), 172 (33), 170 (49). $-\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~F}$ (238.3): calcd. C 85.68, H 6.35; found C 85.83 , H 6.39 .

1-Phenyl-3-(p-tolyl)bicyclo[1.1.1]pentane (17ac): From 14a [prepared from $\operatorname{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ according to GP 5], 4iodotoluene ($218 \mathrm{mg}, 1 \mathrm{mmol}$), and NiCl_{2} dppe ($47 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}, 17 \mathrm{ac}(50 \mathrm{mg}, 21 \%)$ was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column 15 $\times 3 \mathrm{~cm}, \mathrm{PE})$ as an oil, $R_{\mathrm{f}}=0.27 .-{ }^{1} \mathrm{H}$ NMR: $\delta=2.31(\mathrm{~s}, 6 \mathrm{H}, 3$ CH_{2}), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.10-7.37(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $21.1\left(\mathrm{CH}_{3}\right), 54.0\left(3 \mathrm{CH}_{2}\right), 126.0,126.1,126.4,128.2(2 \mathrm{CH}), 128.9$ (CH), 40.6, 40.8, 136.1, 138.0, 141.0 (C).
1-Phenyl-3-(3-pyridyl)bicyclo[1.1.1]pentane (17ad): From 14a [prepared from $\operatorname{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ according to GP 5], 3iodopyridine $(210 \mathrm{mg}, \quad 1.02 \mathrm{mmol})$, and $\mathrm{NiCl}_{2} \mathrm{dppe}(60 \mathrm{mg}$, 0.11 mmol) in $\mathrm{Et}_{2} \mathrm{O}, \mathbf{1 7 a d}(93 \mathrm{mg}, 41 \%)$ was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{PE}), R_{\mathrm{f}}=0.22 .-{ }^{1} \mathrm{H}$ NMR: $\delta=2.39(\mathrm{~s}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 7.19-7.39(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{dt}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $8.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=54.0$ (3 CH_{2}), 123.0, 126.1, 126.7, 128.2, 133.7, 147.9, $148.1(\mathrm{CH}), 39.0$, $41.5,136.0,140.4(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=221(7)\left[\mathrm{M}^{+}\right], 220(18)$ $\left[\mathrm{M}^{+}-\mathrm{H}\right], 206$ (13) [$\left.\mathrm{M}^{+}-\mathrm{H}-\mathrm{CH}_{2}\right], 103$ (28), 91 (25) [C $\left.\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right], 77$ (100) $\left[\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right]$.

2-(3-Phenylbicyclo[1.1.1]pent-1-yl)pyrimidine (17ae): From 14a [prepared from $\mathrm{PhBr}(628 \mathrm{mg}, 421 \mu \mathrm{~L}, 4 \mathrm{mmol})$ according to GP 5 and taken up in THF (4 mL)], 2-bromopyrimidine ($318 \mathrm{mg}, 2 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(29 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$, 17ae $(271 \mathrm{mg}$, 61%) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$, 4:1), $R_{\mathrm{f}}=0.18$; m.p. $111^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=2.50\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $7.18(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.21-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 8.73(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=53.9\left(3 \mathrm{CH}_{2}\right), 120.0,126.2$, 126.7, 128.5, 157.1 (CH), 41.3, 42.0, 140.5, 168.1 (C). - MS (EI): $m / z(\%)=222(28)\left[\mathrm{M}^{+}\right], 221(100)\left[\mathrm{M}^{+}-\mathrm{H}\right], 207(42)\left[\mathrm{M}^{+}-\mathrm{H}-\right.$ $\left.\mathrm{CH}_{2}\right], 145$ (19), 131 (18), 77 (19) [$\left.\mathrm{C}_{6} \mathrm{H}_{5}^{+}\right] .-\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2}$ (222.28): calcd. C 81.05, H 6.35, N 12.60; found C 80.96, H 6.45, N 12.58.

1-(Cycloocten-1-yl)-3-phenylbicyclo[1.1.1]pentane (17af): From 14a [prepared from $\mathrm{PhBr}(330 \mathrm{mg}, 221 \mu \mathrm{~L}, 2.1 \mathrm{mmol})$ according to GP 5 and taken up in THF (4 mL)], 1-bromocyclooctene (378 mg , 2 mmol), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(20 \mathrm{mg}, 0.027 \mathrm{mmol})$ in THF, $\mathbf{1 7 a f}$ ($256 \mathrm{mg}, 50 \%$) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{PE}$) as an oil, $R_{\mathrm{f}}=0.42 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.39-1.59\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$, $2.03\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.06-2.25\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.45(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 7.10-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=52.7\left(3 \mathrm{CH}_{2}\right)$, $26.0,26.1,26.2,26.6,29.3,29.8\left(\mathrm{CH}_{2}\right), 124.2,126.2,126.2,128.1$ (CH), 40.6, 42.7, 139.6, 141.5 (C).
(E)- β-(3-Phenylbicyclo[1.1.1]pent-1-yl)styrene (17ag): From 14a [prepared from $\operatorname{PhBr}(330 \mathrm{mg}, 221 \mu \mathrm{~L}, 2.1 \mathrm{mmol})$ according to GP

5 and taken up in THF (4 mL)], (E)-2-bromostyrene (366 mg , $2 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(29 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF, $\mathbf{1 7 a g}$ ($376 \mathrm{mg}, 76 \%$) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{PE}$), $R_{\mathrm{f}}=0.32$; m.p. $65^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=2.13\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 6.38$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.10-7.39(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $53.7\left(3 \mathrm{CH}_{2}\right), 126.0,126.1,126.4,127.2,128.1,128.5,129.0,130.5$ $(\mathrm{CH}), 39.8,41.8,137.1,141.0(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=246$ (6) $\left[\mathrm{M}^{+}\right], 245(29)\left[\mathrm{M}^{+}-\mathrm{H}\right], 215(20), 153$ (39), 141 (71), 128 (100). $\mathrm{C}_{19} \mathrm{H}_{18}$ (246.3): calcd. C 92.64, H 7.36; found C 92.52, H 7.50.

1-(4-Fluorophenyl)-3-(4-propylphenyl)bicyclo[1.1.1]pentane (17ba): From 14b [prepared from 4-bromopropylbenzene ($1.20 \mathrm{~g}, 6 \mathrm{mmol}$) according to GP 5], 4-bromofluorobenzene ($1.05 \mathrm{~g}, 659 \mu \mathrm{~L}$, $6 \mathrm{mmol})$, and $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(196 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}, \mathbf{1 7 b a}$ ($157 \mathrm{mg}, 9 \%$) was obtained according to GP 7 and subsequent column chromatography (60 g of silica gel, column $20 \times 3 \mathrm{~cm}, \mathrm{PE}$) followed by recrystallization from $\mathrm{MeOH}, R_{\mathrm{f}}=0.21$; m.p. $66^{\circ} \mathrm{C}$. IR: $\tilde{v}=3055 \mathrm{~cm}^{-1}, 3030,2970,2910,2875,1603,1516,1307,1221$, 1161, 848, 811. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.95\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.64 (sext., $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.59(\mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.00\left(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.10-7.26$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.8\left(\mathrm{CH}_{3}\right), 54.2\left(3 \mathrm{CH}_{2}\right), 24.6$, $37.8\left(\mathrm{CH}_{2}\right), 115.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 126.0,127.7(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, $128.3(2 \mathrm{CH}), 40.3,40.6,137.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 138.1,141.0,161.8$ $(\mathrm{d}, J=244.1 \mathrm{~Hz})(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=280(17)\left[\mathrm{M}^{+}\right], 279$ (35) $\left[\mathrm{M}^{+}-\mathrm{H}\right], 238$ (30), 237 (100) $\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 109$ (54), 91 (36) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$. $-\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}$ (280.4): calcd. C 85.67, H 7.55; found C 85.79, H 7.47.

1-(4-Propylphenyl)-3-[4-(trifluoromethyl)phenyl]bicyclo[1.1.1]pentane (17bb): From 14b [prepared from 4-bromopropylbenzene $(1.20 \mathrm{~g}, 6 \mathrm{mmol})$ according to GP 5], 4-bromobenzotrifluoride $(1.35 \mathrm{~g}, 840 \mu \mathrm{~L}, 6 \mathrm{mmol})$, and $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(227 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}, \mathbf{1 7 b b}(122 \mathrm{mg}, 6 \%)$ was obtained according to GP 7 and subsequent column chromatography (100 g of silica gel, column 20 $\times 4 \mathrm{~cm}, \mathrm{PE})$ followed by recrystallization from $\mathrm{MeOH}, R_{\mathrm{f}}=0.31$; m.p. $95{ }^{\circ} \mathrm{C}$. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.96\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65$ (sext., $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.60(\mathrm{t}, J=$ $\left.7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.13\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.21(\mathrm{~d}, J=$ $\left.8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.28\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.57(\mathrm{~d}, J=$ $\left.8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.9\left(\mathrm{CH}_{3}\right)$, $54.2\left(3 \mathrm{CH}_{2}\right)$, $24.7,37.8\left(\mathrm{CH}_{2}\right), 125.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.0,126.5,128.4(2 \mathrm{CH})$, $40.5,40.8,124.3(\mathrm{q}, J=271.7 \mathrm{~Hz}), 128.7(\mathrm{q}, J=32.5 \mathrm{~Hz}), 137.7$, $141.2,145.0(\mathrm{q}, ~ J=1.1 \mathrm{~Hz})(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=330(12)$ $\left[\mathrm{M}^{+}\right], 329$ (13) [$\left.\mathrm{M}^{+}-\mathrm{H}\right], 288$ (19), 287 (100) [$\left.\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 159$ (16), 115 (18), 91 (16) [$\left.\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right] .-\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3}$ (330.4): calcd. C 76.34, H 6.41; found C 76.43, H 6.47 .

1-Phenyl-3-propylbicyclo[1.1.1]pentane (20ba): From 19b (1 mmol), prepared according to GP $6, \mathrm{PhI}(204 \mathrm{mg}, 112 \mu \mathrm{~L}, 1 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(37 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF, 20ba ($147 \mathrm{mg}, 79 \%$) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}$, pentane) as an oil, $R_{\mathrm{f}}=0.52$. - IR: $\tilde{\mathrm{v}}=3075 \mathrm{~cm}^{-1}$, 3040, 2970, 2920, 2885, 2880, 1620, 1453, 1386, 1304, 1272, 1168, 754, 705. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.94$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.25-1.42 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.44-1.54 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.12-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.4\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 19.9,34.0\left(\mathrm{CH}_{2}\right), 126.0,126.1$ $(2 \mathrm{CH}), 128.0(\mathrm{CH}), 38.9,41.5,141.7(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=$ $186(2)\left[\mathrm{M}^{+}\right], 143(29)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 98$ (45), 91 (36), 41 (100).

1-Propyl-3-(p-tolyl)bicyclo[1.1.1]pentane (20bb): From 19b (1 mmol), prepared according to GP 6, 4-iodotoluene $(109 \mathrm{mg}$, $0.5 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(8 \mathrm{mg}, 0.011 \mathrm{mmol})$ in THF, 20bb
($84 \mathrm{mg}, 84 \%$) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $14 \times 2 \mathrm{~cm}$, pentane) as an oil, $R_{\mathrm{f}}=0.53$. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84$ (s, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.07\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.4,21.1\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 19.9,34.0\left(\mathrm{CH}_{2}\right), 125.9$, 128.7 (2 CH), 38.9, 41.3, 135.6, 138.7 (C). - MS (EI): $m / z(\%)=$ 200 (1) $\left[\mathrm{M}^{+}\right], 185$ (10) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 171$ (10) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 157$ (100). In an analogous coupling, from 19b (3 mmol), 4-iodotoluene ($438 \mathrm{mg}, 2 \mathrm{mmol}$), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(47 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF, 20bb (111 mg, 28\%) and 3,3'-dipropyl(bis-1,1'-bicyclo[1.1.1]pentyl) (16b) ($39 \mathrm{mg}, 12 \%$) were obtained according to GP 7 and subsequent column chromatography (25 g of silica gel, column $18 \times 2 \mathrm{~cm}$, pentane), $R_{\mathrm{f}}=0.78 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2$ $\left.\mathrm{CH}_{3}\right), 1.18-1.43\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.37\left(\mathrm{~s}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.4\left(2 \mathrm{CH}_{3}\right), 49.0\left(6 \mathrm{CH}_{2}\right), 19.9,34.4\left(2 \mathrm{CH}_{2}\right), 39.1$, $41.0(2 \mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=217(0.2)\left[\mathrm{M}^{+}-\mathrm{H}\right], 203(0.6)$ $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 189(2)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 175(18)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 133$ (28), 119 (53), 105 (61), 91 (100).

2-(3-Propylbicyclo[1.1.1]pent-1-yl)pyrimidine (20bc): From 19b (2 mmol), prepared according to GP 6, 2-bromopyrimidine ($159 \mathrm{mg}, 1 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(26 \mathrm{mg}, 0.035 \mathrm{mmol})$ in THF, 20bc ($142 \mathrm{mg}, 75 \%$) was obtained according to GP 7 and subsequent column chromatography (30 g of silica gel, column $25 \times$ $2 \mathrm{~cm}, \mathrm{Et}_{2} \mathrm{O}$) as an oil, $R_{\mathrm{f}}=0.29 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.90(\mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.58(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.05\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.15(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.69(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 51.9\left(3 \mathrm{CH}_{2}\right)$, 19.6, $33.5\left(\mathrm{CH}_{2}\right), 156.8(2 \mathrm{CH}), 118.5(\mathrm{CH}), 39.4,42.6,168.1(\mathrm{C})$.

1-Butyl-3-[4-(trimethylsilyl)phenyl]bicyclo[1.1.1]pentane (20cb): A reaction mixture obtained from 19c (44 mmol), prepared according to GP 6, (4-bromophenyl)trimethylsilane ($5.04 \mathrm{~g}, 22 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(805 \mathrm{mg}, 1.1 \mathrm{mmol})$ according to GP 7 was poured into ice-cold satd. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and diluted with hexane $(200 \mathrm{~mL})$. The layers were separated and the organic phase was washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution, $\mathrm{H}_{2} \mathrm{O}$, and brine (50 mL each), dried, and concentrated. Column chromatography of the residue (180 g of silica gel, column $20 \times 7 \mathrm{~cm}$, hexane) gave a fraction with $R_{\mathrm{f}}=0.59$, which was distilled under reduced pressure to yield $\mathbf{2 0} \mathbf{c b}$ (4.31 g, 72%), b.p. $102-103{ }^{\circ} \mathrm{C}\left(0.1\right.$ Torr). $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.30(\mathrm{~s}$, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.95\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.50(\mathrm{~m}, 4 \mathrm{H}, 2$ $\left.\mathrm{CH}_{2}\right), 1.57\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.28$ $\left(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.54\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=-1.1\left(3 \mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 52.1\left(3 \mathrm{CH}_{2}\right), 22.9,28.9,31.2$ $\left(\mathrm{CH}_{2}\right), 125.5,133.2(2 \mathrm{CH}), 39.1,40.9,137.8,142.3(\mathrm{C}) .-\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}$ (271.49): calcd. C 79.34, H 10.36; found C 79.50, H 10.90. - 4, 4^{\prime} Bis(trimethylsilyl)biphenyl ${ }^{[47]}\left(395 \mathrm{mg}, 12 \%, R_{\mathrm{f}}=0.42\right)$ was also isolated from the reaction mixture by column chromatography.

1-(4-Bromophenyl)-3-butylbicyclo[1.1.1]pentane (20ca): (a) Work-up of a reaction mixture obtained from $19 \mathrm{c}(23 \mathrm{mmol})$, prepared according to GP 6, 1,4-dibromobenzene $(5.19 \mathrm{~g}, 22 \mathrm{mmol})$, and PdCl_{2} (dppf) ($805 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF according to GP 7 as in the preceding coupling and subsequent column chromatography (200 g of silica gel, column $20 \times 7 \mathrm{~cm}$, hexane) gave 20ca (829 mg , $13.5 \%, R_{\mathrm{f}}=0.53$) and 4,4'-dibromobiphenyl $\left(1.99 \mathrm{~g}, 58 \%, R_{\mathrm{f}}=\right.$ 0.40). (b) To an emulsion of $20 \mathrm{cb}(17.08 \mathrm{~g}, 62.7 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(660 \mathrm{~mL})$, a solution of $\mathrm{Br}_{2}(15.20 \mathrm{~g}, 4.90 \mathrm{~mL}, 95.1 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added over a period of 24 h at room temp. After stirring for a further 12 h , the mixture was poured into icecold $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$ and extracted with pentane $(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{NaHCO}_{3}$ solution, and further $\mathrm{H}_{2} \mathrm{O}$ (200 mL each). After evaporation of the
solvent, column chromatography of the residue (200 g of silica gel, column $20 \times 7 \mathrm{~cm}$, hexane) furnished 20ca $(16.87 \mathrm{~g}, 96 \%)$ as an oil, $R_{\mathrm{f}}=0.53$. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.95\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-$ $1.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.52\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91(\mathrm{~s}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 7.10\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.1\left(3 \mathrm{CH}_{2}\right), 22.9,28.8,31.3$ $\left(\mathrm{CH}_{2}\right), 127.8,131.0(2 \mathrm{CH}), 39.0,41.0,120.0,140.6(\mathrm{C}) .-\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Br}$ (279.2): calcd. C 64.52, H 6.86; found C 64.40, H 6.90.

1-(4-Fluorophenyl)-3-octylbicyclo[1.1.1]pentane (20ea): From 19e (2.1 mmol), prepared according to GP 6, 4-bromofluorobenzene ($350 \mathrm{mg}, 220 \mu \mathrm{~L}, 2 \mathrm{mmol}$), and PdCl_{2} (dppf) $(29 \mathrm{mg}, 0.040 \mathrm{mmol})$ in THF, 20ea ($237 \mathrm{mg}, 43 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column 15 $\times 3 \mathrm{~cm}, \mathrm{PE})$ as an oil, $R_{\mathrm{f}}=0.50 .-$ IR: $\tilde{v}=3050 \mathrm{~cm}^{-1}, 2960,2930$, 2860, 1608, 1523, 1510, 1460, 1276, 1232, 1225, 1158, 842, 816. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.42(\mathrm{~m}, 12 \mathrm{H}$, $\left.6 \mathrm{CH}_{2}\right), 1.48-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 6.96(\mathrm{tt}$, $J=8.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.14 (ddt, $J=8.8,5.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 22.7,26.7,29.4$, 29.7, 29.9, 31.6, $32.0\left(\mathrm{CH}_{2}\right), 114.7(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz})(2 \mathrm{CH}), 38.9,41.0,137.5,161.6(\mathrm{~d}, J=244.1 \mathrm{~Hz})(\mathrm{C})$. MS (EI): $m / z(\%)=274$ (3) [$\left.\mathrm{M}^{+}\right], 174$ (25), 162 (47), 161 (100), 123 (82), 109 (40), 55 (14). - $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~F}$ (274.4): calcd. C 83.16, H 9.92; found C 83.10 , H 10.18

1-Octyl-3-[4-(trifluoromethyl)phenyl]bicyclo[1.1.1]pentane (20eb): From 19e (2.1 mmol), prepared according to GP 6, 4-bromobenzotrifluoride $(450 \mathrm{mg}, 280 \mu \mathrm{~L}, 2 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(29 \mathrm{mg}$, 0.040 mmol) in THF, 20eb ($444 \mathrm{mg}, 68 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column $15 \times 3 \mathrm{~cm}, \mathrm{PE})$ as an oil, $R_{\mathrm{f}}=0.59$. $-\mathrm{IR}: \tilde{\mathrm{v}}=3050$ $\mathrm{cm}^{-1}, 2960,2930,2860,1622,1460,1412,1328,1174,1130,1070$, 1022, 850, 690. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.86\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.18-1.40 (m, $\left.12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.48-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90(\mathrm{~s}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 7.30\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.9\left(3 \mathrm{CH}_{2}\right), 22.7,26.7,29.4$, 29.7, 29.9, 31.6, $32.0\left(\mathrm{CH}_{2}\right), 125.0(\mathrm{q}, J=4.0 \mathrm{~Hz}), 126.4(2 \mathrm{CH})$, $39.3,41.3,124.4(\mathrm{q}, J=271.9 \mathrm{~Hz}), 128.5(\mathrm{q}, J=32.1 \mathrm{~Hz}), 145.6$ $(\mathrm{q}, J=1.3 \mathrm{~Hz})(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=324(4)\left[\mathrm{M}^{+}\right], 305$ (28) [$\left.\mathrm{M}^{+}-\mathrm{F}\right], 211$ (100). $-\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3}$ (324.4): calcd. C 74.04, H 8.39; found C 73.76, H 8.66.

4-(3-Octylbicyclo[1.1.1]pent-1-yl)benzonitrile (20ec): From 19e (3 mmol), prepared according to GP 6, 4-bromobenzonitrile ($364 \mathrm{mg}, 2 \mathrm{mmol}$), and PdCl_{2} (dppf) ($26 \mathrm{mg}, 0.036 \mathrm{mmol}$) in THF, 20ec ($420 \mathrm{mg}, 75 \%$) and 4-bromophenyl 3-octylbicyclo[1.1.1]pent-1-yl ketone (21) ($17 \mathrm{mg}, 2.5 \%$) were obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column $\left.15 \times 3 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 9: 1\right)$.

20ec: Oil, $R_{\mathrm{f}}=0.23$. - IR: $\tilde{\mathrm{v}}=2965 \mathrm{~cm}^{-1}, 2930,2875,2860,2235$, 1670, 1613, 1461, 1276, 1163, 852, 730. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89(\mathrm{t}$, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.40\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.46-1.56(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.28\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $7.56\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.2$ $\left(3 \mathrm{CH}_{2}\right), 22.6,26.5,29.3,29.6,29.8 .31 .4,31.9\left(\mathrm{CH}_{2}\right), 126.8,131.9$ $(2 \mathrm{CH}), 39.3,41.4,109.8,119.1,146.9(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=$ 281 (1) $\left[\mathrm{M}^{+}\right], 182$ (16), 168 (100), 154 (13), 116 (13). $-\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}$ (281.4): calcd. C 85.35, H 9.67, N 4.98; found C 85.02, H 9.75, N 4.90.

21: $R_{\mathrm{f}}=0.28 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.24\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.43-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12(\mathrm{~s}, 6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right), 7.55\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 53.4\left(3 \mathrm{CH}_{2}\right), 22.7,26.3,29.3$,
29.6, 29.8, 31.4, $31.8\left(\mathrm{CH}_{2}\right), 130.4,131.7(2 \mathrm{CH}), 41.0,44.1,127.8$, $135.4,197.0$ (C).

1-(4'-Bromobiphenyl-4-yl)-3-propylbicyclo[1.1.1]pentane (23ab): From 19b (5 mmol), prepared according to GP 6, 4,4'-dibromobiphenyl (22a) $(3.12 \mathrm{~g}, \quad 10 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(73 \mathrm{mg}$, 0.1 mmol), 23ab ($730 \mathrm{mg}, 43 \%$) was obtained according to GP 7 with work-up as described above for compound 20cb and subsequent column chromatography (50 g of silica gel, column $15 \times$ $\left.3 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 9: 1\right), R_{\mathrm{f}}=0.35$; m.p. $156{ }^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{\mathrm{v}}=3040 \mathrm{~cm}^{-1}$, 2960, 2930, 2910, 2875, 2840, 1482, 1390, 1268, 1081, 1006, 811. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.94\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.44(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.50\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.27$ (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.45-7.60\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.4\left(\mathrm{CH}_{3}\right), 52.3\left(3 \mathrm{CH}_{2}\right), 19.9,33.9\left(\mathrm{CH}_{2}\right), 126.6,126.7,128.6$, $131.8(2 \mathrm{CH}), 39.1,41.3,121.3,137.8,140.0,141.2(\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}):$ $m / z(\%)=342 / 340(8: 6)\left[\mathrm{M}^{+}\right], 299(9)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 91$ (29), 73 (100). - $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Br}$ (341.3): calcd. C 70.39, H 6.20, Br 23.41 ; found C 70.47, H 6.20, Br 23.40.

4,4'-Bis(3-butylbicyclo[1.1.1]pent-1-yl)biphenyl (23ac): From 19c (30 mmol), prepared according to GP 6, 4,4'-dibromobiphenyl (22a) $\left(3.12 \mathrm{~g}, 10 \mathrm{mmol}\right.$), and PdCl_{2} (dppf) $(73 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF, 23ac ($3.47 \mathrm{~g}, 87 \%$) was obtained according to GP 7 under conditions as those in the preceding preparation and subsequent column chromatography (100 g of silica gel, column $20 \times 5 \mathrm{~cm}$, hexane), followed by recrystallization from $\mathrm{MeOH}(500 \mathrm{~mL}) ; R_{\mathrm{f}}=$ 0.35 ; m.p. $134-135{ }^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H} \mathrm{NMR}: \delta=0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right), 1.24-1.43\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.48-1.57\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $1.90\left(\mathrm{~s}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 7.24\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.48(\mathrm{~d}$, $\left.J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(2 \mathrm{CH}_{3}\right), 52.2(6$ $\left.\mathrm{CH}_{2}\right)$, 22.9, 28.9, $31.4\left(2 \mathrm{CH}_{2}\right), 126.5,126.8(4 \mathrm{CH}), 39.1,41.3$, 139.1, 140.6 (2 C). - MS (EI): $m / z(\%)=398$ (8) [$\left.\mathrm{M}^{+}\right], 383$ (2) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 355(9)\left[\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right], 341(100)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right] .-\mathrm{C}_{30} \mathrm{H}_{38}$ (398.6): calcd. C 90.39, H 9.61; found C 90.32, H 9.52.

1-(4'-Bromobiphenyl-4-yl)-3-octylbicyclo[1.1.1]pentane (23ae): From $19 \mathrm{e}(4.7 \mathrm{mmol})$, prepared according to GP 6, 4,4'-dibromobiphenyl (22a) $(3.12 \mathrm{~g}, 10 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(63 \mathrm{mg}, 0.086 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$, 23ae ($1.19 \mathrm{~g}, 62 \%$) was obtained according to GP 7 and subsequent column chromatography (100 g of silica gel, column $20 \times$ 5 cm , hexane), followed by recrystallization from $\mathrm{MeOH}(500 \mathrm{~mL})$, $R_{\mathrm{f}}=0.35$; m.p. $98-103{ }^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{\mathrm{v}}=3040 \mathrm{~cm}^{-1}, 2960,2870,2855$, 1482, 1386, 1262, 1080, 1004, 821. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.90(\mathrm{t}, J=$ $\left.6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.44-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.27\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35-7.55$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 22.7$, 26.7, 29.3, 29.7, 29.9, 31.7, $31.9\left(\mathrm{CH}_{2}\right), 126.6,126.7,128.6,131.8$ (2 CH), 39.1, 41.3, 121.3, 137.9, 140.1, 141.3 (C). $-\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Br}$ (411.4): calcd. C 72.98, H 7.60, Br 19.42; found C 72.99, H 7.59, Br 19.15.

1-(4'-Bromobiphenyl-4-yl)-3-(hex-3-ynyl)bicyclo[1.1.1]pentane (23aja) and 4,4'-Bis[3-(hex-3-ynyl)bicyclo[1.1.1]pent-1-yl]biphenyl (23ajb): From 19j (41.7 mmol), prepared according to GP 6, 22a ($4.338 \mathrm{~g}, 13.9 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(400 \mathrm{mg}, 0.547 \mathrm{mmol})$ in THF, 23aja ($2.081 \mathrm{~g}, 39 \%$) and 23ajb $(3.121 \mathrm{~g}, 50 \%$) were obtained according to GP 7 and subsequent column chromatography (200 g of silica gel, column $20 \times 7 \mathrm{~cm}$, hexane/benzene, $4: 1$).

23aja: $R_{\mathrm{f}}=0.38$; m.p. $115-117{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.12$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96(\mathrm{~s}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.15-2.20\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}_{2}\right), 7.28(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.40-7.60 (m, $\left.6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Br}$ (379.3): calcd. C 72.82, H 6.11; found C 72.61, H 6.25 .

23ajb: $R_{\mathrm{f}}=0.28$; m.p. ${ }^{136-139}{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.04$ (t, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $1.69\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$), 1.88 ($\mathrm{s}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}$), $2.00-2.15\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.41\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $14.3\left(2 \mathrm{CH}_{3}\right), 52.2\left(6 \mathrm{CH}_{2}\right), 12.4,16.2,31.1\left(2 \mathrm{CH}_{2}\right), 126.4,126.8$ $(4 \mathrm{CH}), 38.6,41.4,79.4,81.6,139.1,140.2$ (2 C). - $\mathrm{C}_{34} \mathrm{H}_{38}$ (446.7): calcd. C 91.42, H 8.58; found C 91.30, H 8.65.

1-Octyl-3-(4'-octylbiphenyl-4-yl)bicyclo[1.1.1]pentane (23be): From 19e (2 mmol), prepared according to GP 6, 4-bromo-4'-octylbiphenyl (22b) ($345 \mathrm{mg}, 1 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(65 \mathrm{mg}$, 0.089 mmol) in $\mathrm{Et}_{2} \mathrm{O}$, 23be ($357 \mathrm{mg}, 80 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column $15 \times 3 \mathrm{~cm}, \mathrm{PE}), R_{\mathrm{f}}=0.34$; m.p. $89^{\circ} \mathrm{C}(\mathrm{MeOH})$. $-\mathrm{IR}: \tilde{v}=$ $3030 \mathrm{~cm}^{-1}, 2960,2925,2855,1595,1460,1271,1162,1009,822$. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.83-0.98\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.19-1.42(\mathrm{~m}, 24 \mathrm{H}, 12$ CH_{2}), 1.44-1.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$), $2.63(\mathrm{t}, J=$ $\left.7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.22\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.49(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(2 \mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right)$, $29.3\left(2 \mathrm{CH}_{2}\right), 22.7,26.7,29.4,29.4,29.5,29.7,29.8,29.9,31.5$, 31.7, 31.9, $35.6\left(\mathrm{CH}_{2}\right), 126.4,126.7,126.9,128.8(2 \mathrm{CH}), 39.1,41.4$, 138.5, 139.1, 140.4, 141.9 (C). - MS (EI): $m / z(\%)=444(0.2)\left[\mathrm{M}^{+}\right]$, 378 (19), 279 (21), 180 (13), 86 (54), 57 (53), 41 (100). - $\mathrm{C}_{33} \mathrm{H}_{48}$ (444.7): calcd. C 89.12, H 10.88; found C 89.19, H 10.84

5-Octyl-2-[4-(3-octylbicyclo[1.1.1]pent-1-yl)phenyl]pyrimidine (23ce): From 19e (1.5 mmol), prepared according to GP 6, 4-(5-octylpyrimidine-2-yl)phenyl trifluoromethanesulfonate (22c) ($208 \mathrm{mg}, 0.5 \mathrm{mmol}$), and PdCl_{2} (dppf) ($24 \mathrm{mg}, 0.033 \mathrm{mmol}$) in THF, 23ce ($140 \mathrm{mg}, 63 \%$) was obtained according to GP 7 and subsequent column chromatography (25 g of silica gel, column $20 \times$ $\left.2 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 19: 1\right), R_{\mathrm{f}}=0.21$; m.p. $34^{\circ} \mathrm{C} .{ }^{-1} \mathrm{H}$ NMR: $\delta=0.80-$ $0.96\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~m}, 22 \mathrm{H}, 11 \mathrm{CH}_{2}\right), 1.48-1.56(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.56-1.72 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$), $2.61(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $7.32\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.34(\mathrm{~d}, J=$ $\left.8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.58$ (s, $2 \mathrm{H}, \mathrm{Ar}$). ${ }^{13} \mathrm{C}$ NMR: $\delta=14.0(2$ $\left.\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 22.6,22.7,26.6,29.0,29.2,29.3,29.4,29.6$, $29.8,30.1,30.7,31.7,31.8,31.9\left(\mathrm{CH}_{2}\right), 126.2,127.6,156.9(2 \mathrm{CH})$, 39.1, 41.5, 132.6, 135.5, 144.0, 162.5 (C). - MS (EI): $m / z(\%)=447$ (34) $\left[\mathrm{M}^{+}+\mathrm{H}\right], 446$ (11) $\left[\mathrm{M}^{+}\right], 432$ (16) $\left[\mathrm{M}^{+}-\mathrm{CH}_{2}\right], 381$ (38), 334 (100), 295 (33), 282 (29). $-\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~N}_{2}$ (446.7): calcd. C 83.35, H 10.38 , N 6.27 ; found C 83.28 , H 10.37, N 6.24 .

2-[4-(3-Octylbicyclo[1.1.1]pent-1-yl)phenyl]-5-octyloxypyrimidine (23de): From 19e $(1.5 \mathrm{mmol})$, prepared according to GP 6, 4-(5-octyloxypyrimidine-2-yl)phenyl trifluoromethanesulfonate (22d) $(400 \mathrm{mg}, 0.92 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(36 \mathrm{mg}, 0.049 \mathrm{mmol})$ in THF, 23de ($300 \mathrm{mg}, 70 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column 15 $\left.\times 3 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 9: 1\right), R_{\mathrm{f}}=0.26$; m.p. $45^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{\mathrm{v}}=3050$ $\mathrm{cm}^{-1}, 2960,2930,2860,1613,1577,1548,1442,1285,857,788$. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.29(\mathrm{~m}, 22 \mathrm{H}, 11$ CH_{2}), $1.48-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.83$ (quint, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.91\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 4.08\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.31(\mathrm{~d}, J=$ $\left.8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.44(\mathrm{~s}, 2 \mathrm{H}$, Ar). - ${ }^{13} \mathrm{C}$ NMR: $\delta=14.0,14.1\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 22.6,22.7$, 25.8, 26.6, 29.0, 29.1, 29.2, 29.3, 29.6, 29.8, 31.7, 31.7, 31.9, 68.7 $\left(\mathrm{CH}_{2}\right), 126.2,127.2,143.6(2 \mathrm{CH}), 39.1,41.5,135.4,143.2,151.3$, 157.5 (C). - MS (EI): m/z (\%) = 462 (30) [M $\left.{ }^{+}\right]$, 447 (12) [M ${ }^{+}-$ $\left.\mathrm{CH}_{3}\right], 430$ (18), 396 (23), 386 (20), 349 (100) [$\left.\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}\right], 311$ (20), 256 (16), 237 (17), 186 (15), 57 (72). $-\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}$ (462.6): calcd. C 80.46, H 10.02, N 6.06 ; found C 80.60 , H 10.13, N 6.11 .

5-[4-(3-Octylbicyclo[1.1.1]pent-1-yl)phenyl]-2-octyloxypyrimidine (23ee): From 19e (4 mmol), prepared according to GP 6, 4-(2-oc-
tyloxypyrimidine-5-yl)phenyl trifluoromethanesulfonate (22e) ($432 \mathrm{mg}, 1 \mathrm{mmol}$), and PdCl_{2} (dppf) ($43 \mathrm{mg}, 0.059 \mathrm{mmol}$) in THF, 23ee ($365 \mathrm{mg}, 79 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column $15 \times$ $\left.3 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 9: 1\right), R_{\mathrm{f}}=0.17$; m.p. $85^{\circ} \mathrm{C}$. $-\mathrm{IR}: \tilde{\mathrm{v}}=3060 \mathrm{~cm}^{-1}$, 2925, 2906, 2855, 1600, 1542, 1455, 1343, 1025, 840, 805. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.83-0.98\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~m}, 22 \mathrm{H}, 11 \mathrm{CH}_{2}\right)$, $1.42-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.91 (s, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 4.39\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.32(\mathrm{~d}, J=$ $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.44\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.68(\mathrm{~s}, 2 \mathrm{H}$, Ar). - ${ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(2 \mathrm{CH}_{3}\right), 52.5\left(3 \mathrm{CH}_{2}\right), 22.7,22.7,26.0$, 26.7, 28.9, 29.2, 29.3, 29.4, 29.7, 29.9, 31.2, 31.8, 31.9, $67.9\left(\mathrm{CH}_{2}\right)$, 126.9, 127.0, $147.1(2 \mathrm{CH}), 39.2,41.3,128.1,132.4,141.8,164.7$ (C). - MS (EI): $m / z(\%)=462(25)\left[\mathrm{M}^{+}\right], 349(100)\left[\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{17}\right]$, 311 (30), 237 (39), 207 (11), 199 (12), 180 (17), 167 (12), 149 (33), 111 (13), 91 (18), 57 (44). - $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}$ (462.60): calcd. C 80.46, H 10.02, N 6.06 ; found C 80.49, H 10.03 , N 6.14 .

1-(4'-Ethylbiphenyl-4-yl)-3-[2-(tetrahydropyran-2-yloxy)ethyl]bicyclo[1.1.1]pentane (23ff): From $\mathbf{1 9 f}$ (89 mmol), prepared according to GP $6,22 f(11.38 \mathrm{~g}, 43.6 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(1.30 \mathrm{~g}$, 1.78 mmol) in THF, 23 ff ($1.605 \mathrm{~g}, 10 \%$) and 3,3'-bis[2-(tetra-hydropyran-2-yloxy)ethyl]-1,1'-bis(bicyclo[1.1.1]pentyl) (1.107 g, 6.4%) were obtained according to GP 7 and subsequent column chromatography (200 g of alumina deactivated with $5 \% \mathrm{H}_{2} \mathrm{O}$, column $30 \times 5 \mathrm{~cm}$, hexane/EtOAc, 40:1).

23ff: $R_{\mathrm{f}}=0.33$; m.p. $30-32^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.28(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48-1.75\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.75-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.05\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.75\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45-3.65(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.80-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.68(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, OCH), 7.22-7.37 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.50-7.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=15.6\left(\mathrm{CH}_{3}\right), 52.8\left(3 \mathrm{CH}_{2}\right), 19.6,25.5,28.5,30.8,31.6$, 62.3, $65.8\left(\mathrm{CH}_{2}\right), 126.4,126.7,127.0,128.2(2 \mathrm{CH}), 98.9(\mathrm{CH}), 36.9$, $41.8,138.5,139.2,140.1,143.1$ (C).

3,3'-Bis[2-(tetrahydropyran-2-yloxy)ethyl]-1,1'-bis(bicyclo[1.1.1]pentyl): Oil, $R_{\mathrm{f}}=0.50 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.48\left(\mathrm{~s}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right)$, $1.40-1.65\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.69\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.30$ (dt, $\left.J=9.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.35-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.65$ (dt, $J=9.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 3.85 (ddd, $J=11.4,7.5,3.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.50(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=$ $49.4\left(6 \mathrm{CH}_{2}\right), 19.5,25.4,30.1,31.7,62.1,66.1\left(2 \mathrm{CH}_{2}\right), 98.7(2 \mathrm{CH})$, 36.3, 39.4 (2 C).

1-(4'-Ethylbiphenyl-4-yl)-3-[3-(tetrahydropyran-2-yloxy)propyl]bicyclo[1.1.1]pentane ($\mathbf{2 3 f g}$): From $\mathbf{1 9 g}$ (115 mmol), prepared according to GP 6, $22 \mathrm{f}(7.48 \mathrm{~g}, 28.6 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(1.40 \mathrm{~g}$, $1.91 \mathrm{mmol})$ in THF, $\mathbf{2 3 f \mathrm { fg } (6 . 8 2 \mathrm { g } , 6 1 \%) \text { was obtained according to }}$ GP 7 and subsequent column chromatography (250 g of alumina deactivated with $5 \% \mathrm{H}_{2} \mathrm{O}$, column $30 \times 5 \mathrm{~cm}$, hexane/EtOAc, 15:1) as an oil, $R_{\mathrm{f}}=0.31 .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.38-1.65 (m, $8 \mathrm{H}, 4 \mathrm{CH}_{2}$), 1.68-1.90 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.88 (s, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $2.61\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28-3.41(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{OCH}_{2}$), 3.41-3.55 (m, $1 \mathrm{H}, \mathrm{OCH}_{2}$), $3.58-3.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.75-3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.53(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 7.11-$ $7.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.39-7.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{2}$ (390.6): calcd. C 83.03, H 8.78; found C 82.71, H 8.99.

1-\{4'-[2-(Z)-(trans-2-Ethyloxycyclopropyl)vinyl|biphenyl-4-yl\}-3-\{[4-(tetrahydropyran-2-yloxylbutyl\}bicyclo[1.1.1]pentane (23gh): From 19h (2 mmol), prepared according to GP 6, 22g (170 mg , $0.5 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(24 \mathrm{mg}, 0.033 \mathrm{mmol})$ in THF, 23gh ($115 \mathrm{mg}, 48 \%$) was obtained according to GP 7 and subsequent column chromatography (20 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{PE} /$ $\mathrm{Et}_{2} \mathrm{O}, 4: 1$) as an oil, $R_{\mathrm{f}}=0.25 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.73(\mathrm{q}, J=$
$6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cpr}), 1.12-1.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cpr}), 1.19$ (t, $J=7.0 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.92\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.11$ (m, 1 H, Cpr), 3.31 (ddd, $J=6.4,3.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cpr}), 3.42$ (dt, $\left.J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.46-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.60(\mathrm{q}$, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.76\left(\mathrm{dt}, J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.59(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 5.05(\mathrm{dd}$, $J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.26-7.32 (m, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.45-7.58\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=15.1\left(\mathrm{CH}_{3}\right), 52.2\left(3 \mathrm{CH}_{2}\right), 15.9,19.7,23.4,25.5,29.9,30.8$, $31.5,63.4,66.1,67.6\left(\mathrm{CH}_{2}\right), 20.0,61.4,98.9,126.5,126.7,126.8$, $127.8,129.1,132.7(\mathrm{CH}), 39.0,41.4,136.4,138.8,139.3,140.6(\mathrm{C})$.
\{3-[($E)$-Pent-3-enyl]bicyclo[1.1.1]pent-1-yl\}phenyl 4-Cyano-3,5-difluorobenzoate ($\mathbf{2 3 h} \mathbf{h m}$): From $\mathbf{1 9 m}(23.65 \mathrm{mmol})$, prepared according to GP 6, 4-bromophenyl 4-cyano-3,5-difluorobenzoate (22h) $(5.0 \mathrm{~g}, 14.79 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})(542 \mathrm{mg}, 0.74 \mathrm{mmol})$ in THF, $\mathbf{2 3 h m}(2.272 \mathrm{~g}, 39 \%)$ was obtained according to GP 7 and subsequent column chromatography (250 g of silica gel, column $30 \times$ 5 cm , hexane $\left./ \mathrm{Et}_{2} \mathrm{O}, 10: 1\right), R_{\mathrm{f}}=0.42$; m.p. $75-77{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right.$, 95:5). $-{ }^{1} \mathrm{H}$ NMR: $\delta=1.55-1.70\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{3}\right), 1.98(\mathrm{~s}, 6$ $\left.\mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.95-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.88-5.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$, $7.05\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $8.05\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=18.0\left(\mathrm{CH}_{3}\right)$, $52.3\left(3 \mathrm{CH}_{2}\right), 29.7,31.3\left(\mathrm{CH}_{2}\right), 107.0(\mathrm{dd}, J=23.0,4.0 \mathrm{~Hz}), 126.6$, $130.3(2 \mathrm{CH}), 124.8,131.1(\mathrm{CH}), 163.5(\mathrm{dd}, J=261.5,6.9 \mathrm{~Hz})(2$ C), $39.2,41.6,108.8,125.4,148.8,156.1(\mathrm{t}, J=21.0 \mathrm{~Hz}), 163.4$, $165.6(\mathrm{t}, J=6.3 \mathrm{~Hz})(\mathrm{C})$.

4-[4-(3-Butylbicyclo[1.1.1]pent-1-yl)- α, α-difluorobenzyloxy]-2,3',4',6-tetrafluorobiphenyl (23ic): From 19c (42.69 mmol), prepared according to GP 6, (4-bromophenyl)difluoromethyl 3,5, $3^{\prime}, 4^{\prime}$ -tetrafluorobiphenyl-1-yl ether (22i) $(7.00 \mathrm{~g}, 15.65 \mathrm{mmol})$, and PdCl_{2} (dppf) ($572 \mathrm{mg}, 0.782 \mathrm{mmol}$) in THF, 23ic ($6.508 \mathrm{~g}, 85 \%$) was obtained according to GP 7 and subsequent column chromatography (250 g of silica gel, column $30 \times 5 \mathrm{~cm}$, hexane), $R_{\mathrm{f}}=0.38$; m.p. $89-91{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 90: 1\right) .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.95(\mathrm{t}, J=$ $\left.5.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.55(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 6.95\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2}\right)$, $7.15-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right), 7.35\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.65$ $\left(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.2(3$ $\left.\mathrm{CH}_{2}\right), 22.9,28.8,31.3\left(\mathrm{CH}_{2}\right), 105.3(\mathrm{~d}, J=29.3 \mathrm{~Hz}), 122.5,125.3$ $(\mathrm{t}, J=3.8 \mathrm{~Hz})(2 \mathrm{CH}), 117.3(\mathrm{dd}, J=16.2,4.7 \mathrm{~Hz}), 119.5(\mathrm{dd}, J=$ $14.2,5.0 \mathrm{~Hz}), 126.7(\mathrm{t}, J=5.2 \mathrm{~Hz})(\mathrm{CH}), 159.8(\mathrm{dd}, J=249.0$, $9.1 \mathrm{~Hz})(2 \mathrm{C}), 39.2,41.2,119.3(\mathrm{t}, J=354.8 \mathrm{~Hz}), 122.5,125.9(\mathrm{t}$, $J=21.9 \mathrm{~Hz}), 125.0(\mathrm{t}, J=5.4 \mathrm{~Hz}), 130.5(\mathrm{t}, J=30.8 \mathrm{~Hz}), 149.9$ (dd, $J=248.6,14.6 \mathrm{~Hz}), 150.4(\mathrm{dd}, J=252.2,14.8 \mathrm{~Hz}), 150.8(\mathrm{t}$, $J=14.8 \mathrm{~Hz})(\mathrm{C})$.

5-[4-(4-Cyclopropylbutyloxy)phenyl]-2-(3-octylbicyclo[1.1.1]pent-1yl)pyrimidine (23je): From 19e (6 mmol), prepared according to GP 6, 5-[4-(4-cyclopropylbutyloxy)phenyl]-2-bromopyrimidine (22j) ($520 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{dppf})(53 \mathrm{mg}, 0.072 \mathrm{mmol})$ in THF, 23je ($566 \mathrm{mg}, 84 \%$) was obtained according to GP 7 and subsequent column chromatography (50 g of silica gel, column $15 \times$ $\left.3 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 19: 1\right), R_{\mathrm{f}}=0.17$; m.p. $57^{\circ} \mathrm{C} .-\mathrm{IR}: \tilde{v}=3080 \mathrm{~cm}^{-1}$, 3005, 2960, 2855, 2625, 1610, 1586, 1432, 1258, 1172, 850, 800. ${ }^{1} \mathrm{H}$ NMR: $\delta=0.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cpr}), 0.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cpr}), 0.61-0.78$ (m, 1 H, Cpr), $0.89\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.37(\mathrm{~m}, 14 \mathrm{H}$, $7 \mathrm{CH}_{2}$), 1.47-1.65 (m, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 1.85 (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.96\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 4.03\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.97$ $\left(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.34\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.53$ (s, $2 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1\left(\mathrm{CH}_{3}\right), 52.1\left(3 \mathrm{CH}_{2}\right), 4.4(2$ CH_{2}), 22.6, 26.0, 26.5, 29.0, 29.2, 29.6, 29.7, 31.5, 31.8, 34.4, 68.0 $\left(\mathrm{CH}_{2}\right), 114.3,129.4,155.0(2 \mathrm{CH}), 10.7(\mathrm{CH}), 34.4,37.4,130.1$, 130.6, 161.1, 162.4 (C). - MS (FAB): $m / z(\%)=447(100)\left[\mathrm{M}^{+}+\right.$
$\mathrm{H}], 446$ (11) $\left[\mathrm{M}^{+}\right], 338$ (52), 334 (41), 55 (57). $-\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}$ (446.7): calcd. C 80.67, H 9.48, N 6.27; found C 80.75, H 9.48, N 6.33.

General Procedure (GP 8) for the Preparation of Triflates 22c-e: To a solution of the appropriate phenol ${ }^{[27]}(1.5 \mathrm{mmol})$ in anhydrous pyridine (5 mL), trifluoromethanesulfonic anhydride ($460 \mathrm{mg}, 274$ $\mu \mathrm{L}, 1.63 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After stirring for 24 h at room temp., the mixture was poured into ice-cold water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined extracts were dried, the solvent was evaporated, and the residue was purified by column chromatography (25 g of silica gel, column $15 \times 2 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

4-(5-Octylpyrimidine-2-yl)phenyl Trifluoromethanesulfonate (22c): Compound 22c ($593 \mathrm{mg}, 95 \%$) was obtained from 2-(4-hydroxy-phenyl)-5-octylpyrimidine ($427 \mathrm{mg}, 1.5 \mathrm{mmol}$) according to GP 8, $R_{\mathrm{f}}=0.50 .-{ }^{1} \mathrm{H} \mathrm{NMR}: \delta=0.89\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-$ $1.45\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.59-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64(\mathrm{t}, J=$ $\left.7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.38\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.52(\mathrm{~d}, J=$ $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.63(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}) .-{ }^{13} \mathrm{C}$ NMR: $\delta=13.9\left(\mathrm{CH}_{3}\right)$, $22.5,29.0,29.1,29.2,30.0,30.6,31.7\left(\mathrm{CH}_{2}\right), 121.2,129.8,150.9$ (2 $\mathrm{CH}), 118.7(\mathrm{q}, J=320.9 \mathrm{~Hz}), 133.6,137.9,150.9,160.7(\mathrm{C})$.

4-(5-Octyloxypyrimidine-2-yl)phenyl Trifluoromethanesulfonate (22d): Compound 22d ($496 \mathrm{mg}, 77 \%$) was obtained from 2-(4-hy-droxyphenyl)-5-octyloxypyrimidine ($451 \mathrm{mg}, 1.5 \mathrm{mmol}$) according to GP 8, $R_{\mathrm{f}}=0.61 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.22-1.25 (m, $10 \mathrm{H}, 5 \mathrm{CH}_{2}$), 1.84 (quint, $J=76.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.11\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.36(\mathrm{dt}, J=8.9,2.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.44\left(\mathrm{dt}, J=8.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.45(\mathrm{~s}, 2 \mathrm{H}$, Ar). ${ }^{13} \mathrm{C}$ NMR: $\delta=13.5\left(\mathrm{CH}_{3}\right), 22.6,25.8,29.0,29.1,29.2,31.7$, $68.9\left(\mathrm{CH}_{2}\right), 121.2,129.3,143.7(2 \mathrm{CH}), 118.7(\mathrm{q}, J=320.0 \mathrm{~Hz})$, 137.7, 150.5, 151.9, 155.6 (C).

4-(2-Octyloxypyrimidine-5-yl)phenyl Trifluoromethanesulfonate (22e): Compound 22e ($561 \mathrm{mg}, 86 \%$) was obtained from 5-(4-hy-droxyphenyl)-2-octyloxypyrimidine ($451 \mathrm{mg}, 1.5 \mathrm{mmol}$) according to GP $8, R_{\mathrm{f}}=0.39 .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.22-1.55\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.87$ (quint, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.41\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.40(\mathrm{dt}, J=8.8,2.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.59\left(\mathrm{dt}, J=8.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.69(\mathrm{~s}, 2 \mathrm{H}$, Ar). $-{ }^{13} \mathrm{C}$ NMR: $\delta=13.8\left(\mathrm{CH}_{3}\right), 22.4,25.8,28.7,29.0,29.1,31.6$, $68.0\left(\mathrm{CH}_{2}\right), 121.1,128.1,157.1(2 \mathrm{CH}), 118.6(\mathrm{q}, J=320.8 \mathrm{~Hz})$, $126.1,134.95,149.3,165.1$ (C).

General Procedure (GP 9) for the Preparation of Cyanides from

 23ab,ae: A mixture of 23ab or 23ae (0.75 mmol) and CuCN ($170 \mathrm{mg}, 1.9 \mathrm{mmol}$) in anhydrous N-methyl-2-pyrrolidone (2 mL) was stirred at $185{ }^{\circ} \mathrm{C}$ for 13 h . After cooling to room temp., the mixture was treated with a solution of $\mathrm{FeCl}_{3}(120 \mathrm{mg}, 0.74 \mathrm{mmol})$ in 1% aq. $\mathrm{HCl}(5 \mathrm{~mL})$, stirred for 20 min at $50^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined extracts were dried, the solvent was evaporated, and the residue was purified by column chromatography (25 g of silica gel, column $18 \times 2 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$, 9:1).4'-(3-Propylbicyclo[1.1.1]pent-1-yl)biphenyl-4-carbonitrile (24ab): From 23ab ($295 \mathrm{mg}, 0.864 \mathrm{mmol}$), 24ab ($191 \mathrm{mg}, 77 \%$) was obtained according to GP $9, R_{\mathrm{f}}=0.20$; m.p. $108{ }^{\circ} \mathrm{C}$. $-{ }^{1} \mathrm{H}$ NMR: $\delta=$ $0.95\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.53$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.93\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.32(\mathrm{dt}, J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.52\left(\mathrm{dt}, J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\delta=14.4\left(\mathrm{CH}_{3}\right), 52.3\left(3 \mathrm{CH}_{2}\right), 19.9,33.9\left(\mathrm{CH}_{2}\right), 126.9$, 127.0, 127.6, $132.6(2 \mathrm{CH}), 39.2,41.3,110.6,119.0,137.0,142.4$, 145.6 (C). - MS (EI): $m / z(\%)=287$ (4) [M $\left.{ }^{+}\right], 244(100)\left[\mathrm{M}^{+}-\right.$ $\mathrm{C}_{3} \mathrm{H}_{7}$], 230 (11), 203 (13). $-\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}$ (287.4): calcd. C 87.76, H 7.37, N 4.87; found C 87.84, H 7.57, N 4.92.

4'-(3-Octylbicyclo[1.1.1]pent-1-yl)biphenyl-4-carbonitrile (24ae):

 From 23ae ($309 \mathrm{mg}, 0.75 \mathrm{mmol}$), 24ae ($225 \mathrm{mg}, 84 \%$) was obtained according to GP $9, R_{\mathrm{f}}=0.23$; m.p. $80^{\circ} \mathrm{C}$. - IR: $\tilde{v}=3040 \mathrm{~cm}^{-1}$, 2960, 2945, 2920, 2910, 2865, 2850, 2840, 2225, 1605, 1492, 1470, 1274, 1160, 1006, 837, 823, 801, 733, 729. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.89(\mathrm{t}$, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 1.44-1.58(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$), $7.32\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.51$ $\left(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.64\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.70$ (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.0\left(\mathrm{CH}_{3}\right), 52.1(3$ $\left.\mathrm{CH}_{2}\right), 22.6,26.6,29.2,29.6,29.8,31.5,31.8\left(\mathrm{CH}_{2}\right), 126.7,126.8$, 127.3, 132.4 (2 CH), 39.1, 41.1, 110.5, 118.8, 136.8, 142.2, 145.3 (C). - MS (EI): $m / z(\%)=357$ (7) [M $\left.{ }^{+}\right], 258$ (13), 244 (100) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{17}\right], 219$ (10), 206 (33). - $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}$ (357.52): calcd. C 87.34, H 8.74, N 3.92; found C 87.27, H 8.71, N 4.08 .4-(3-\{4'-[2-(trans-2-Ethyloxycyclopropyl)vinyl]biphenyl-4-yl\}-bicyclo[1.1.1]pent-1-yl)butan-1-ol (25): A solution of 23gh (115 mg , $0.24 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred with the strongly acidic ion-exchange resin Lewatit SPS $118(50 \mathrm{mg})$ for 16 h at room temp., filtered through Celite, and the filtrate was concentrated. Column chromatography of the residue (20 g of silica gel, column $15 \times$ $\left.2 \mathrm{~cm}, \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}, 4: 1\right)$ furnished $25(69 \mathrm{mg}, 72 \%)$ as an oil, $R_{\mathrm{f}}=$ 0.25. - ${ }^{1} \mathrm{H}$ NMR: $\delta=0.73(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cpr}), 1.12-1.26$ (m, $2 \mathrm{H}, \mathrm{Cpr}, \mathrm{OH}$), $1.20\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.33-1.48 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52-1.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.12$ (m, $1 \mathrm{H}, \mathrm{Cpr}), 3.32$ (ddd, $J=6.4,3.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cpr}), 3.58$ (q, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68\left(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.06(\mathrm{dd}$, $J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.26-7.32 (m, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.46-7.58\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=15.1\left(\mathrm{CH}_{3}\right), 52.1\left(3 \mathrm{CH}_{2}\right), 15.9,22.9,31.5,32.9,62.4,66.1$ $\left(\mathrm{CH}_{2}\right), 19.6,61.3,126.4,126.6,126.7,127.8,129.0,132.7(\mathrm{CH})$, 38.9, 41.3, 136.4, 138.7, 139.2, 140.5 (C).

General Procedure (GP 10) for the Conversion of 23ff,fg to the Corresponding Bromides: To a stirred solution of triphenylphosphane $(1.05 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, a solution of $\mathrm{Br}_{2}(671 \mathrm{mg}, 216$ $\mu \mathrm{L}, 4.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at $-10{ }^{\circ} \mathrm{C}$. To this mixture, a solution of $\mathbf{2 3 f f}$ or $\mathbf{2 3 f g}(4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added over a period of 15 min at $0^{\circ} \mathrm{C}$. After stirring for 2 h at room temp., the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, washed with brine (20 mL), dried, and the solvent was evaporated. The residue was purified by column chromatography (50 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane/EtOAc, 20:1).

1-(2-Bromoethyl)-3-(4'-ethylbiphenyl-4-yl)bicyclo[1.1.1]pentane (26ff): From $\mathbf{2 3 f f}(1.60 \mathrm{~g}, 4.25 \mathrm{mmol})$, $\mathbf{2 6 f f}(1.25 \mathrm{~g}, 83 \%)$ was obtained according to GP 10 as an oil, $R_{\mathrm{f}}=0.52 .-{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.16(\mathrm{t}, J=$ $\left.7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{BrCH}_{2}$), 7.26 (dd, $J=6.8,1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.51 (dd, $\left.J=8.2,5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=15.6\left(\mathrm{CH}_{3}\right)$, $52.5\left(3 \mathrm{CH}_{2}\right), 28.5,30.2,35.0\left(\mathrm{CH}_{2}\right), 126.4,126.8,127.0,128.2$ (2 CH), 38.0, 41.9, 138.4, 139.4, 139.6, 143.2 (C). $-\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Br}$ (355.3): calcd. C 70.99 , H 6.52 ; found C 70.58 , H 6.55.

1-(3-Bromopropyl)-3-(4'-ethylbiphenyl-4-yl)bicyclo[1.1.1]pentane ($\mathbf{2 6 f g}$): From $\mathbf{2 3 f g}(11.05 \mathrm{~g}, 28.29 \mathrm{mmol}), \mathbf{2 6 f g}(8.96 \mathrm{~g}, 86 \%)$ was obtained according to GP 10 as an oil, $R_{\mathrm{f}}=0.50 .{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.20\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75-1.95$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.38\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{BrCH}_{2}\right), 7.20(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.44\left(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{Br}$ (369.3): calcd. C 71.54, H 6.82; found C 71.31, H 6.76.

General Procedure (GP 11) for the Dehydrobromination of 26ff,fg: To a solution of sublimed $t \mathrm{BuOK}(1.23 \mathrm{~g}, 11 \mathrm{mmol})$ in anhydrous

DMSO (100 mL), compound 26ff or $\mathbf{2 6 f g}$ (10 mmol) was added portionwise over a period of 40 min such that the temperature was maintained at $25^{\circ} \mathrm{C}$. After stirring for 12 h at room temp., the mixture was poured into ice-cold water $(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, dried, and the solvent was evaporated. The residue was purified by column chromatography (70 g of silica gel, column $15 \times 3 \mathrm{~cm}$, hexane/EtOAc, 30:1).

1-(4'-Ethylbiphenyl-4-yl)-3-vinylbicyclo[1.1.1]pentane (27ff): From $\mathbf{2 6 f f}(1.066 \mathrm{~g}, 3 \mathrm{mmol}), \mathbf{2 7 f f}(594 \mathrm{mg}, 72 \%)$ was obtained according to GP $11, R_{\mathrm{f}}=0.70$; m.p. $83-86{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.33\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.70(\mathrm{q}, J=$ $\left.7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.07\left(\mathrm{dd}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.10$ (dd, $\left.J=17.2,2.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 6.02-6.09(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.35$ $\left(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.57\left(\mathrm{dd}, J=8.2,6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\delta=15.6\left(\mathrm{CH}_{3}\right), 53.4\left(3 \mathrm{CH}_{2}\right), 28.5,115.0\left(\mathrm{CH}_{2}\right), 126.5$, 126.8, 127.0, $128.2(2 \mathrm{CH}), 137.6(\mathrm{CH}), 40.2,41.3,138.4,139.4$, 139.9, 143.2 (C).

1-(4'-Ethylbiphenyl-4-yl)-3-(prop-1-enyl)bicyclo[1.1.1|pentane (27fg) and 1-(3-tert-Butyloxypropyl)-3-(4' ${ }^{\prime}$-ethylbiphenyl-4-yl)bicyclo[1.1.1]pentane (28): From 26fg (8.50 g, 23 mmol), 27fg (3.32 g, 50%, $E / Z=77: 23)$ and $28(2.51 \mathrm{~g}, 30 \%)$ were obtained according to GP 11.

27fg: $R_{\mathrm{f}}=0.63$; m.p. $89-92{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.27(\mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71\left(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}, E\right)$, $1.76\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}, Z\right), 2.07\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.70(\mathrm{q}$, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.52(\mathrm{dq}, J=16.5,6.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}, E)$, $5.67(\mathrm{dd}, J=16.5,1.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}, E), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.45-7.55 (m, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$). $-\mathrm{C}_{22} \mathrm{H}_{24}$ (288.4): calcd. C 91.61, H 8.39; found C 91.55, H 8.28.

28: $R_{\mathrm{f}}=0.35$; m.p. $85-86{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .-{ }^{1} \mathrm{H}$ NMR: $\delta=1.21(\mathrm{~s}, 9$ $\left.\mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $1.92\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.69\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{OCH}_{2}\right), 7.27\left(\mathrm{dd}, J=7.8,3.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.50(\mathrm{dd}, J=$ $7.9,3.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$). $-\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}$ (362.4): calcd. C 86.13, H 9.45; found C 86.01, H 9.39 .

3-Propylbicyclo[1.1.1]pentane-1-carbonyl Chloride (29): To a solution of $\mathbf{1 0 b}(5.40 \mathrm{~g}, 35.0 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}$, oxalyl chloride $(8.87 \mathrm{~g}, 6.0 \mathrm{~mL}, 69.9 \mathrm{mmol})$ was added dropwise at $20^{\circ} \mathrm{C}$ followed by two drops of DMF. After stirring the solution for 30 min at this temp., the solvent was evaporated under reduced pressure and the residue was purified by bulb-to-bulb distillation at $45^{\circ} \mathrm{C}$ (0.1 Torr) to give $29(5.37 \mathrm{~g}, 89 \%)$ in almost pure form. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.90$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.20-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48(\mathrm{t}, J=$ $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.0\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1$ $\left(\mathrm{CH}_{3}\right), 52.6\left(3 \mathrm{CH}_{2}\right), 19.5,32.9\left(\mathrm{CH}_{2}\right), 40.0,45.4,171.0(\mathrm{C})$.

1-Propyl-3-[4-(3-butylbicyclo[1.1.1]pent-1-yl)benzoyl]bicyclo[1.1.1]pentane (30): To a solution of 20ca $(2.625 \mathrm{~g}, 9.40 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, a 1.7 m solution of $t \mathrm{BuLi}$ in pentane $(11.1 \mathrm{~mL}$, 18.9 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring for 1 h at this temp., $29(2.12 \mathrm{~g}, 12.28 \mathrm{mmol})$ was added in a single portion and the reaction mixture was allowed to warm to room temp. It was stirred for a further 30 min at this temp. and then poured into cold $5 \% \mathrm{NaHCO}_{3}$ solution (50 mL). The layers were separated and the organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$ solution and brine (20 mL each), dried, and concentrated. Column chromatography of the residue (100 g of silica gel, column $20 \times 4 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}$, $10: 1)$ gave $30(2.47 \mathrm{~g}, 78 \%)$ as an oil, $R_{\mathrm{f}}=0.48 .-{ }^{1} \mathrm{H}$ NMR: $\delta=$ $0.85-1.00\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.25-1.40\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.40-1.55$ (m, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $1.93\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.15\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.25$
$\left(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.95\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1,14.3\left(\mathrm{CH}_{3}\right), 52.1,53.3\left(3 \mathrm{CH}_{2}\right), 19.6,22.8,28.7$, 31.2, $33.6\left(\mathrm{CH}_{2}\right), 126.0,128.8(2 \mathrm{CH}), 39.2,40.7,41.4,44.1,134.6$, 146.6, 197.4 (C). $-\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}$ (336.5): calcd. C 85.66, H 9.59; found C 85.92, H 9.43.
β-Chloro-4-(3-butylbicyclo[1.1.1]pent-1-yl)- α-(3-propylbicyclo[1.1.1]-pent-1-yl)styrene (31): To a suspension of chloromethyltriphenylphosphonium chloride $(4.51 \mathrm{~g}, 13 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$, a 2.33 m solution of BuLi in hexane $(5.6 \mathrm{~mL}, 13 \mathrm{mmol})$ was added over a period of 20 min at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min at this temp., a solution of $30(1.88 \mathrm{~g}, 5.59 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added over 30 min and the resulting mixture was stirred for a further 30 min at $-78^{\circ} \mathrm{C}$. It was then allowed to warm to room temp. and stirred for a further 4 h . Thereafter, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the resulting mixture was poured into an ice-cold $\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ mixture $(100 \mathrm{~mL}+100 \mathrm{~mL})$. After separation of the layers, the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine $(50 \mathrm{~mL}$ each), dried, and the solvent was evaporated. The residue was then thoroughly extracted with hexane $(100 \mathrm{~mL})$ for 2 h . The resulting hexane solution was filtered, concentrated, and rapidly filtered through 60 g of silica gel (column $20 \times 4 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 10: 1$) to give $31\left(1.92 \mathrm{~g}, 93 \%\right.$, $5: 1$ mixture of isomers) as an oil, $R_{\mathrm{f}}=$ 0.68. - ${ }^{1} \mathrm{H}$ NMR (major isomer): $\delta=0.88-1.05\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.25-1.65\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.05(\mathrm{~s}, 6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right), 6.03(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.09\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.15$ $\left(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.2,14.4\left(\mathrm{CH}_{3}\right)$, 52.1, $53.3\left(3 \mathrm{CH}_{2}\right), 19.8,22.9,28.9,31.4,33.6\left(\mathrm{CH}_{2}\right), 125.7,128.0$ $(2 \mathrm{CH}), 116.4(\mathrm{CH}), 39.0,40.5,41.3,42.0,137.6,140.8,141.7(\mathrm{C})$.

1-[4-(3-Butylbicyclo[1.1.1]pent-1-yl)phenyl]-2-(3-propyl-bicyclo[1.1.1]pent-1-yl)acetylene (32) and 4-(3-Butylbicyclo[1.1.1]-pent-1-yl)- α-(3-propylbicyclo[1.1.1]-pent-1-yl)styrene (33): A solution of chloroethylene $\mathbf{3 1}(1.85 \mathrm{~g}, 5 \mathrm{mmol})$ in anhydrous THF $(50 \mathrm{~mL})$ was treated with a 2.33 m solution of BuLi in hexane ($2.36 \mathrm{~mL}, 5.5 \mathrm{mmol}$) and the mixture was stirred at room temp. for 12 h . It was then poured into ice-cold $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the layers were separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine (10 mL each), dried, and the solvent was evaporated. The residue was separated by column chromatography (60 g of silica gel, column $20 \times 3 \mathrm{~cm}$, hexane) to give $32(886 \mathrm{mg} 53 \%)$ and 33 ($159 \mathrm{mg}, 9 \%$).

32: $R_{\mathrm{f}}=0.42$; m.p. $93-95^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR: $\delta=0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.60(\mathrm{~m}, 10 \mathrm{H}, 5$ $\left.\mathrm{CH}_{2}\right), 1.88\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.00\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.10(\mathrm{~d}, J=$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.32\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.1,14.3\left(\mathrm{CH}_{3}\right), 52.1,54.8\left(3 \mathrm{CH}_{2}\right), 19.8,22.9,28.8,31.3$, $33.6\left(\mathrm{CH}_{2}\right), 125.9,131.4(2 \mathrm{CH}), 38.5,39.0,41.4,42.4,79.5,88.9$, 121.0, 141.4 (C). $-\mathrm{C}_{25} \mathrm{H}_{32}$ (332.5): calcd. C 90.30, H 9.70; found C 90.21, H 9.63.

33: $R_{\mathrm{f}}=0.55$; oil. $-{ }^{1} \mathrm{H}$ NMR: $\delta=0.85-1.10\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 1.25-1.65 (m, $\left.10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.95(\mathrm{~s}, 6 \mathrm{H}, 3$ $\left.\mathrm{CH}_{2}\right), 5.08\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.15\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 7.20(\mathrm{~d}, J=$ $\left.7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta=14.2,14.4\left(\mathrm{CH}_{3}\right), 52.1,52.2\left(3 \mathrm{CH}_{2}\right), 19.9,23.0,28.9,31.5$, $34.0,112.7\left(\mathrm{CH}_{2}\right), 125.7,126.8(2 \mathrm{CH}), 39.0,39.4,41.4,42.8,138.8$, 140.5, 148.7 (C).

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Project Me 405/15-3), the Fonds der Chemischen Industrie, and, by generous gifts of chemicals, the companies BASF AG, Bayer

AG, Chemetall GmbH, Degussa, Hoechst, and Hüls AG. We are grateful to Dr. Burkhard Knieriem for his careful proofreading of the manuscript.
[1] [1a] J. Michl, in: Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials (Eds.: J. E. Harrod, R. M. Laine), Kluwer, Dordrecht, The Netherlands, 1995, p. 243 ff. $-{ }^{[1 b]}$ R. M. Harrison, T. F. Magnera, J. Vacek, J. Michl, in: Modular Chemistry (Ed.: J. Michl), Kluwer, Dordrecht, The Netherlands, 1997, p. 1 ff. - ${ }^{[1 \mathrm{cc}]}$ J. Michl, P. Kaszynski, A. C. Friedli, G. S. Murthy, H.-C. Yang, R. E. Robinson, N. D. McMurdie, T. Kim, in: Strain and Its Implications in Organic Chemistry (Eds.: A. de Meijere, S. Blechert), NATO ASI Ser. C, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989, vol. 273, p. 463-482.
${ }^{[2]}$ K. B. Wiberg, Angew. Chem. 1986, 98, 312-322; Angew. Chem. Int. Ed. Engl. 1986, 25, 312-322.
[3] [3a] P. Kaszynski, J. Michl, in: Advances in Strain in Organic Chemistry (Ed.: B. Halton), JAI Press Ltd., Greenwich, 1995, vol. 4, pp. 283-311, and references cited therein. $-{ }^{[36]}$ M. D. Levin, P. Kaszynski, J. Michl, Chem. Rev. 2000, 100, 169-234.
${ }^{[4]}$ [4a] P. Kaszynski, A. C. Friedli, J. Michl, J. Am. Chem. Soc. 1992, 114, 601-620, and references cited therein. - ${ }^{[46]} \mathrm{P}$. Kaszynski, A. C. Friedli, N. D. McMurdie, J. Michl, Mol. Cryst., Liq. Cryst. 1990, 191, 193-197.
${ }^{[5]}$ K. B. Wiberg, D. S. Connor, J. Am. Chem. Soc. 1966, 88, 4437-4442.
[6] [6a] K. Semmler, G. Szeimies, J. Belzner, J. Am. Chem. Soc. 1985, 107, 6410-6411. - [6b] J. Belzner, U. Bunz, K. Semmler, G. Szeimies, K. Opitz, A.-D. Schlüter, Chem. Ber. 1989, 122, 397-398. - ${ }^{[6 c]}$ F. Alber, G. Szeimies, Chem. Ber. 1992, 125, 757-758.
${ }^{[7]}$ K. B. Wiberg, F. H. Walker, J. Am. Chem. Soc. 1982, 104, 5239-5240.
${ }^{[8]}{ }^{[8 a]}$ E. W. Della, D. K. Taylor, J. Org. Chem. 1994, 59, 2986 2996, and references cited therein. $-{ }^{[8 b]}$ K. M. Lynch, W. P. Daily, J. Org. Chem. 1995, 60, 4666-4668.
${ }^{\text {[9] }}$ For several recent communications, see: ${ }^{[9 \mathrm{a}]}$ C. Mazal, A. J. Paraskos, J. Michl, J. Org. Chem. 1998, 63, 2116-2119. - ${ }^{[9 \mathrm{~b}]}$ S. Mazieres, M. K. Raymond, G. Raabe, A. Prodi, J. Michl, J. Am. Chem. Soc. 1997, 119, 6682-6683. - ${ }^{[9 c]}$ K. P. Dockery, W. G. Bentrude, J. Am. Chem. Soc. 1997, 119, 1388-1399. - [9d] W. Adcock, G. T. Binmore, A. R. Krstic, J. C. Walton, J. Wilkie, J. Am. Chem. Soc. 1995, 117, 2758-2766. - [9e] E. W. Della, I. J. Lochert, Org. Prep. Proc. Int. 1996, 28, 411-442. - [9f] J. T. Banks, K. U. Ingold, E. W. Delly, J. C. Walton, Tetrahedron Lett. 1996, 37, 8059-8060. - [9g] R. Pellicciary, M. Raimondo, M. Marinozzi, B. Natalini, G. Constyntino, C. Tompsen, J. Med. Chem. 1996, 39, 2874-2876. - ${ }^{[9 \mathrm{~h}]}$ J. D. D. Rehm, B. Ziemer, G. Szeimies, Eur. J. Org. Chem. 1999, 2079-2085.
${ }^{[10]}$ K. B. Wiberg, S. T. Waddell, J. Am. Chem. Soc. 1990, 112, 2194-2216, and references cited therein.
${ }^{[11]}$ K. B. Wiberg, Acc. Chem. Res. 1984, 17, 379-386. K. B. Wiberg, Chem. Rev. 1989, 89, 975-983.
${ }_{[12]}^{[12 a]}$ G. Szeimies in: Advances in Strain in Organic Chemistry (Ed.: B. Halton), JAI Press Ltd., Greenwich, 1992, vol. 2, pp. $1-51$, and references cited therein. $-{ }^{[12 \mathrm{~b}]}$ P. Kaszynski, J. Michl, in: The Chemistry of the Cyclopropyl Group (Ed.: Z. Rappoport), Wiley, New York, 1995, vol. 2, p. 773 ff.
[13] [13a] J. Michl, P. Kaszynski, N. D. McMurdie, J. Org. Chem. 1991, 56, 307-316. ${ }^{[13 b]}$ N. S. Zefirov, L. S. Surmina, N. K. Sadovaya, A. V. Blokhin, M. A. Tyurekhodzhaeva, Yu. N. Bubnov, L. I. Lavrinovich, A. V. Ignatenko, Yu. K. Grishin, O. A. Zelenkina, N. G. Kolotyrkina, S. V. Kudrevich, A. S. Koz'min, Zh. Org. Khim. 1990, 26, 2317-2333; J. Org. Chem. USSR (Engl. Transl.) 1990, 26, 2002-2014.
${ }^{[14]}$ J. Belzner, Dissertation, Universität München, 1988.
${ }^{[15]}$ M. Messner, Dissertation, Universität Hamburg, 1992.
${ }^{[16]}{ }^{[16 a]}$ P. K. Freeman, L. L. Hutchinson, J. Org. Chem. 1983, 48, 4705-4708, and references cited therein. $-{ }^{[16 \mathrm{bb}]} \mathrm{E}$. W. Della, H. Gangodawila, P. E. Pigou, J. Org. Chem. 1988, 53, 592-596. ${ }^{[16 c]}$ Direct radical substitution of an iodine atom with formation of a $\mathrm{C}-\mathrm{C}$ bond was observed when MeLi or $n \mathrm{BuLi}$ were used for the lithiation of bicyclo[1.1.1]pentyl iodides of type $\mathbf{8}$: J. L. Adcock, A. A. Gakh, J. Org. Chem. 1992, 57, 6206-6210.
${ }^{[17]}$ G. Szeimies in: Strain and Its Implications in Organic Chemistry
(Eds.: A. de Meijere, S. Blechert), NATO ASI Ser. C, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989, vol. 273, p. 361-381.
${ }^{[18]}$ K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. I. Kodama, I. Nakajima, A. Minato, M. Kumada, Bull. Chem. Soc. Jpn. 1976, 49, 1958-1969.
${ }^{[19]}$ The staffane $\mathbf{1 6 a}$ has recently been prepared by practically the same catalytic procedure in $20-40 \%$ yield. A much better result (66%) was obtained by oxidative coupling of the bridgehead cuprates. ${ }^{[9 \mathrm{a}]}$
${ }^{[20]}$ T. B. Patrick, K. K. Johri, D. H. White, W. S. Bertrand, R. Mokhtar, M. R. Kilbourn, M. J. Welch, Can. J. Chem. 1986, 64, 138-141.
${ }^{[21]}$ Commercial ZnCl_{2} was twice melted in vacuo (0.1 Torr), recrystallized from anhydrous THF, and dried for 4 h at $20^{\circ} \mathrm{C} /$ 0.1 Torr. NMR analysis of a precisely weighed sample $\left(\mathrm{D}_{2} \mathrm{O}\right.$, DMSO as internal reference) indicated the product to have the composition ZnCl_{2}. THF. This complex is much more soluble in THF than pure ZnCl_{2} and was used in all transmetallations for further coupling experiments.
${ }^{[22]}$ T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984, 106, 158-163, and references cited therein.
${ }^{[23]}$ [23a] M. A. Tius, X. Gu, J. W. Truesdell, S. Savariar, P. P. Crooker, Synthesis 1988, 36-40. - [23b] M. Hird, G. W. Gray, K. J. Toyne, Mol. Cryst., Liq. Cryst. 1991, 206, 187-204.
${ }^{[24]}$ [24a] V. N. Kalinin, Synthesis 1992, 413-432, and references cited therein. $-{ }^{[24 b]}$ E. Negishi, F. T. Luo, R. Frisbee, H. Matsuhita, Heterocycles 1982, 18, 117-122. - ${ }^{[24 \mathrm{c}]}$ T. Sakamoto, S. Nishimura, Y. Kondo, H. Yamanaka, Synthesis 1988, 485-486.
${ }^{[25]}$ K. A. Walker, L. J. Markoski, J. S. Moore, Synthesis 1992, 1265-1268.
${ }^{[26]}$ [26a] Q. Y. Chen, Y. B. He, Tetrahedron Lett. 1987, 28, $2387-$ 2388. - ${ }^{[266 b]}$ V. Snieckus, J. M. Fu, Tetrahedron Lett. 1990, 31, 1665-1668. - ${ }^{[26 c]}$ J. M. Saa, G. Martorell, A. Garsia-Raso, Tetrahedron Lett. 1990, 31, 2357-2360.
${ }^{[27]}$ The appropriately substituted arylpyrimidines, phenols, and oligofluorinated compounds were kindly supplied by Hoechst AG and the Chisso Petrochemical Corporation, respectively We are indebted to Dr. R. Wingen and Dr. R. Tarao for this support.
${ }^{\text {[28] [28a] R. Eidenschink, D. Erdmann, J. Krause, L. Pohl, Angew. }}$ Chem. 1977, 89, 103; Angew. Chem. Int. Ed. Engl. 1977, 16, 100. - ${ }^{[28 \mathrm{~b}]}$ G. W. Gray, S. M. Kelly, J. Chem. Soc., Perkin Trans. 2 1981, 26-31.
${ }^{[29]}$ U. Bunz, G. Szeimies, Tetrahedron Lett. 1989, 30, 2087-2088.
${ }^{[30]}$ M. I. Al-Hassan, J. Organomet. Chem. 1989, 372, 183-186.
${ }^{[31]}$ See, e.g., an application of this method for the first preparation
of dicyclopropylacetylene: G. Köbrich, D. Merkel, Angew. Chem. 1970, 82, 257-258; Angew. Chem. Int. Ed. Engl. 1970, 9, 243-244.
[32] The incorporation of a bicyclo[1.1.1]pentyl unit into a molecule leads to an increase of the liquid crystal transition temperatures and to lowering of the clearing points. For selected results, see: ${ }^{[32 a]}$ A. de Meijere, M. Messner, V. Vill, Mol. Cryst., Liq. Cryst. 1994, 257, 161-167. - ${ }^{[32 b]}$ A. de Meijere, M. Messner, S. I. Kozhushkov, D. Demus, K. Kobayashi, K. Miyazawa, S. Matsui, H. Hiroyuki (Chisso Petrochemical), Jpn. Pat. Appl. 97/ 44,615, 13.02.1997; PCT Int. Appl. WO 98 35,924, 20.08.1998; Chem. Abstr. 1998, 129, 223643t.
${ }^{[33]}$ L. Paquette, A. M. Doherty, C. M. Rayner, J. Am. Chem. Soc. 1992, 114, 3910-3926.
${ }^{[34]}$ S. Hartmann, D. N. Minnikin, H.-J. Röming, M. S. Baird, C. Ratledge, P. R. Wheeler, Chem. Phys. Lipids 1994, 71, 99-108.
${ }^{[35]} \mathrm{K}$. Mori, Tetrahedron 1974, 30, 3817-3820.
${ }^{[36]}$ G. W. Gray, M. Hird, B. Lacey, K. J. Toyne, J. Chem. Soc., Perkin Trans. 2 1989, 2041-2053.
${ }^{[37]}$ G. W. Gray, A. Mosley, J. Chem. Soc., Perkin Trans. 2 1976, 97-102.
${ }^{[38]}$ P. A. A. Klusener, J. C. Hanekamp, L. Brandsma, P. v. R. Schleyer, J. Org. Chem. 1990, 55, 1311-1321.
${ }^{[39]}$ G. McGaffin, A. de Meijere, Synthesis 1994, 583-591.
${ }^{[40]}$ [40a] Y. Tamary, H. Ochiai, F. Sanda, Z. Yoshida, Tetrahedron Lett. 1985, 26, 5529-5532. - ${ }^{[40 b]}$ T. A. Shustrova, E. M. Auvinen, E. V. Vasil'eva, I. A. Favorskaya, Zh. Org. Khim. 1981, 17, 329-332; J. Org. Chem. USSR (Engl. Transl.) 1981, 17, 277-279.
${ }^{[41]}$ N. Morisaki, H. Funabashi, J. Furukawa, R. Shimazawa, A. Kanematsu, Chem. Pharm. Bull. 1992, 40, 2945-2953.
${ }^{[42]}$ [42a] M. F. Ausell, J. C. Emmett, R. V. Coombs, J. Chem. Soc. C 1968, 217-225. $-{ }^{[42 \mathrm{~b}]}$ M. V. Bhatt, S. U. Kulharni, Synthesis 1983, 269-275. - ${ }^{[42 c]}$ A. Claesson, Acta Chem. Scand., Ser: B 1974, 28, 993-997. - ${ }^{[42 \mathrm{~d}]}$ K. Fujita, E. Moret, M. Schlosser, Chem. Lett. 1982, 1819-1822.
${ }^{[43]}$ E. J. Corey, S. G. Pyne, W. Su, Tetrahedron Lett. 1983, 24, 4883-4886.
${ }^{[44]}$ H. N. Rydon, Org. Synth. 1971, 51, 4447.
${ }^{[45]}$ K. B. Wiberg, N. McMurdie, J. Am. Chem. Soc. 1994, 116, 11990-11998.
${ }^{[46]}$ [46a] E. W. Della, P. E. Pigou, C. H. Schiesser, D. K. Taylor, J. Org. Chem. 1991, 56, 4659-4664. - [46b] T. B. Patrick, S. Khazaeli, S. Nadji, K. Hering-Smith, D. Reif, J. Org. Chem. 1993, 58, 705-708.
${ }^{[47]}$ M. D. Kurtis, A. L. Allred, J. Am. Chem. Soc. 1965, 87, 2254-2563.

Received October 8, 1999
[O99560]

[^0]: [a] Institut für Organische Chemie der Georg-August-Universität Göttingen,
 Tammannstrasse 2, 37077 Göttingen, Germany

[^1]: [a] This reaction was performed at $65^{\circ} \mathrm{C}$.

