Purines, pyrimidines, and related fused systems 19.* Use of S_N^H methodology for the synthesis of a new heterocyclic system, pyrrolo[3´,2´:3,4]pyrimido[4,5-c]pyridazine

V. V. Gorunenko, A. V. Gulevskaya^{*}, and A. F. Pozharskii

Rostov State University, 7 ul. Zorge, 344090 Rostov-on-Don, Russian Federation. Fax: +7 (863 2) 22 3958. E-mail: AGulevskaya@chimfak.rsu.ru

Sonogashira cross-coupling of 3-chloro-6,8-dimethylpyrimido[4,5-c]pyridazine-5,7(6*H*,8*H*)-dione with terminal alkynes afforded the corresponding 3-(alkyn-1-yl) derivatives. Oxidative amination of the latter compounds with primary alkylamines was accompanied by heterocyclization to give 6,8-dimethylpyrrolo[3´,2´:3,4]pyrimido[4,5-c]pyridazine-7,9(6*H*,8*H*)-diones.

Key words: 3-chloro-6,8-dimethylpyrimido[4,5-*c*]pyridazine-5,7(6*H*,8*H*)-dione, 1-alkynes, cross-coupling, Sonogashira reaction, catalysis, palladium complexes, 3-(alkyn-1-yl)-6,8-dimethylpyrimido[4,5-*c*]pyridazine-5,7(6*H*,8*H*)-diones, oxidative amination, 6,8-dimethylpyrrolo[3',2':3,4]pyrimido[4,5-*c*]pyridazine-7,9(6*H*,8*H*)-diones.

Recently,² we have reported a new procedure for annelation of the pyrrole ring to neutral azines based on the tandem $S_N^H - S_N^H$ process involving the formation of the C-C and C-N bonds between the π -deficient substrate and bifunctional *C*,*N*-nucleophile. In particular, the reaction of 6,8-dimethylpyrimido[4,5-*c*]pyridazine-5,7(6*H*,8*H*)-dione (**1**) with aliphatic imines in the presence of an oxidant afforded 1-R¹-2-R²-3-R³-6,8-dimethylpyrrolo[3',2':3,4]pyrimido[4,5-*c*]pyridazine-7,9(6*H*,8*H*)-diones (**2**) (Scheme 1). In the present study, we applied the S_N^H methodology³ to the synthesis of derivatives of a previously unknown isomeric heterocyclic system, *viz.*, pyrrolo[3',2':3,4]pyrimido[4,5-*c*]pyridazine **3**.

One would expect that 3-alkynyl-4-aminopyrimidopyridazines **4** would serve as direct precursors of compounds **3** since it is known that such compounds undergo cyclization to form the pyrrole ring under the action of bases^{4,5} and other catalysts.^{6–8} We chose 3-chloro-6,8dimethylpyrimido[4,5-*c*]pyridazine-5,7(6*H*,8*H*)-dione (**5**) as the starting compound for the synthesis of pyridazines **4**.⁹ Then we intended to use successively Sonogashira cross-coupling¹⁰ and oxidative amination because the Cl atom in compound **5** can be replaced with a CH-acid residue,¹¹ whereas pyrimidopyridazinedione **1** is readily aminated at the C(4) atom in an RNH₂—oxidant system.¹²

We found that chloropyridazine 5 (Scheme 2) reacted with terminal alkynes 7a-e in DMF under argon in the

* For Part 18, see Ref. 1.

Scheme 1

presence of palladium complexes and catalytic amounts of CuI and K_2CO_3 to give 3-(alkyn-1-yl) derivatives **8a**—e in 22—74% yields. The reaction of compound **5** with volatile trimethylsilylacetylene (**7f**) was carried out in a sealed tube in the absence of a solvent with the use of the Pd₂dba₃—PPh₃ system (dba is dibenzylideneacetone as the ligand) as the catalyst and Et₃N as the base.

It is known that additives of CuI make it possible to perform such transformations at room temperature.^{13,14} However, the reaction of compound **5** with alkynes proceeds at a noticeable rate only at 90–100 °C. Apparently, the reason is that the Cl atom in molecule **5** is insuffi-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 422-427, February, 2003.

1066-5285/03/5202-441 \$25.00 © 2003 Plenum Publishing Corporation

Table 1.	Characteristics of 3	-(alkyn-1-yl)-6	8-dimethylpyrimido[4	5-clpyridazine-5.7(6F	L 8H)-diones 8a-f
Table I.	Characteristics of a	(unkyn i yi) o	,o announyipyinnaoli	,5 cjpynauzine 5,7(01	i, on j alones ou i

Com poun	- R d	Synthesis method	$R_{\rm f}$	$ au^a$ /h	Yield (%)	M.p. ∕°C	1	Η NM δ ($\begin{array}{l} R (CDCl_3), \\ (J/Hz) \end{array}$		IR, v/cm ⁻¹		UV, λ _{max} /nm (logε)
							N-Me	H(4)	R	Ring	C=O	C≡C	
8a	Ph	А, В, С	0.6	1	74—80	175—176	3.49, 3.90	8.22	7.39 (m, 3 H, Ph); 7.62 (m, 2 H, Ph)	1558, 1585, 1599	1666, 1787	2218	295 (4.46); 357 (3.47)
8b	4-ClC ₆ H ₄	A	0.6	5	22	317—319	3.40, ^b 3.79	7.96	7.67 (d, 2 H, C_6H_4 , J = 8.7); 8.19 (d, 2 H, C_6H_4 , J = 8.6)	1573, 1586, 1600	1660, 1713	2270	365 (4.45)
8c	CH ₂ OH	<i>A</i> , <i>C</i>	0.1	8	32—38	203-205	3.48, 3.88	8.13	4.58 (s, 2 H, CH ₂)	1554, 1594, 1648	1675, 1728	2238	276 (4.30); 349 (3.53)
8d	CH ₂ OTH	Р <i>В</i>	0.5	2	46	103—105	3.48, 3.89	8.14	1.50–2.95 (m, 8 H, THP); 4.56 (d, 2 H, CH ₂ , <i>J</i> = 1.9); 4.90 (m, 1 H, THP)	1558, 1598	1665, 1718	2250	276 (4.35); 350 (3.54)
8e	C ₆ H ₁₃	В	0.65	1	47	76—77	3.47, 3.87	8.06	0.89 (t, 3 H, Me, J = 6.7); 1.28–1.38 (m, 4 H, $(CH_2)_3(\underline{CH}_2)_2Me$); 1.41–1.52 (m, 2 H, $(CH_2)_2\underline{CH}_2C_3H_7$); 1.60–1.72 (m, 2 H, $CH_2\underline{CH}_2C_4H_9$); 2.49 (t, 2 H, $\underline{CH}_2C_5H_{11}, J = 7.0$)	1572, 1612	1679, 1732	2237	269 (4.29); 355 (3.44)
8f	TMS	—	0.65	1	71	120—121	3.47, 3.87	8.21	0.28 (s, 9 H, SiMe ₃)	1572, 1612	1679, 1732	2184	281 (4.37); 347 (3.64)

^{*a*} Reaction time.

^b DMSO-d₆ was used as the solvent.

ciently mobile because of the electron-releasing effect of the N atom at position 8. Product **8b** was obtained in low yield due, probably, to its further cross-coupling with the starting arylacetylene.

The use of aryl iodides or aryl triflates as the electrophilic component in the catalytic cross-coupling gave the best results.^{15,16} Hence, we prepared triflate **6** by condensation of hydrazinouracil **9** with glyoxylic acid followed by acylation of pyrimidopyridazinetrione **10** with trifluoromethanesulfonic anhydride (Scheme 3). However, crosscoupling of compound **6** with phenylacetylene and propargyl alcohol under the above-mentioned conditions afforded the products in only slightly higher yields (80 and 38%, respectively, compared to 74 and 32% obtained in the reactions with compound **5**).

The structures of substituted acetylenes **8** were confirmed by UV, IR, and ¹H NMR spectroscopy (Table 1). Compounds **8** are virtually colorless (λ_{max} 347–365 nm). Their IR spectra have a band at 2180–2270 cm⁻¹ ($\nu_{C=C}$). The ¹H NMR spectra show singlets of two NMe groups at δ 3.5 and 3.9 and signals for H(4) at δ 8.0–8.2.

Oxidative amination of 3-(alkyn-1-yl)pyrimidopyridazinediones 8a,d-f with primary alkylamines in the presence of AgPy₂MnO₄ at 0–20 °C afforded 1-R¹-2-R²-6,8dimethylpyrrolo[3',2':3,4]pyrimido[4,5-c]pyridazine-7,9(6H,8H)-diones (11a–i) in 22–85% yields (Scheme 4). Treatment of trimethylsilylethynyl derivative 8f with propylamine and an oxidant gave not the expected pyrrole 11i but the product of its desilylation 11j in 22% yield. An attempt to prepare pyrrole 11k by the reaction of compound 8f with KNH₂ in liquid ammonia and KMnO₄ at the temperature from -60 to -55 °C failed (the starting compound remained unconsumed). Compounds 8a,d also did not react with KNH₂ under these conditions.

The physicochemical characteristics of pale-yellow compounds **11a**—**h**,**j** (λ_{max} 365—372 nm) are given in Table 2. Their IR spectra have absorption bands at 1650—1720 cm⁻¹ ($v_{C=0}$). The ¹H NMR spectra of these compounds show a signal for the H(3) proton of the pyrrole ring at δ 6.81—7.06, which is characteristic of fused pyrroles.¹⁷ It should be noted that the protons of the α -CH₂ and α -CH groups of the substituent at the N(1) atom in compounds **11** are deshielded by the C(9)=O group and are observed at low field (δ 4.73—5.55), whereas the protons of the terminal Me group of pyrroles **11b,d** are, apparently, shielded by the benzene ring (δ 0.50—0.59).

It is reasonable to assume that the transformation $8 \rightarrow 11$ occurs through spontaneous heterocyclization of intermediate *o*-aminohetarylacetylenes **4**. An analogous tandem process involving S_N^{H} -amination followed by intramolecular cyclization under the conditions of the classical Chichibabin reaction has been described earlier for 3-ethynylpyridine.¹⁸ However, we do not rule out that the reaction proceeds through enamine intermediate **12**, because an attempt to perform oxidative amination of hetarylacetylene **8a** with piperidine (Scheme 5) led to the formation of ketone **15** in 20% yield instead of the expected amino derivative **13**. The formation of ketone **15** can be explained only as a result of hydrolysis of enamine **14**. The ability of acetylenes to add amines at the triple bond giving rise to enamines is well known.¹⁹

To summarize, we prepared a series of derivatives of the new heterocyclic system, viz., pyrrolo[3',2':3,4]pyr-imido[4,5-*c*]pyridazine **11**. Evidently, hetarylacetylenes **8**

Com-	R ¹	R ²	$R_{\rm f}$	Yield	M.p.			¹ H NMR (C	CDCl_3 , δ (<i>J</i> /Hz)		II	λ,	UV,
pound	1			(%)	/°C	N-Me	H(3)	F	λ 1	R ²	v/c1	m ⁻¹	λ_{max}/nm
								NCH ₂ (NCH)	Other		Ring	C=0	(loge)
11a	Et	Ph	0.45	62	214—216	3.53 3.98	7.05	4.86 (q, 2 H, <i>J</i> = 7.0)	0.98 (t, 3 H, Me, J = 7.0)	7.52 (s, 5 H, Ph)	1526, 1573, 1633	1673, 1700,	266 (4.50), 325 (3.83), 372 (3.63)
11b	Pr	Ph	0.50	61	175—178	3.53 3.99	7.05	4.79 (t, 2 H, J = 7.2)	0.50 (t, 3 H, Me, J = 7.4); 1.37 (m, 2 H, CH ₂ CH ₂ Me)	7.52 (s, 5 H, Ph)	1545, 1572, 1599	1652, 1705,	267 (4.53), 327 (3.85), 373 (3.65)
11c	Pr ⁱ	Ph	0.43	41	221—222	3.53 3.97	6.97	5.55 (sept, 1 H, $J = 7.0$)	1.32 (d, 6 H, $CH\underline{Me}_2,$ J = 7.0)	7.46–7.48 (m, 3 H, Ph); 7.55–7.58 (m, 2 H, Ph)	1545, 1585, 1612	1665, 1718,	266 (4.50), 325 (3.80), 365 (3.58)
11d	Bu	Ph	0.52	85	145—146	3.53 3.98	7.04	4.82 (t, 2 H, J = 7.2)	0.59 (t, 3 H, Me, J = 7.2); 0.80-0.95 (m, 2 H, (CH ₂) ₂ <u>CH₂</u> Me); 1.23-1.35 (m, 2 H, CH ₂ <u>CH₂</u> Et)	7.52 (s, 5 H, Ph)	1532, 1572, 1599	1652, 1705	267 (4.51), 328 (3.85), 372 (3.64)
11e	<i>cyclo</i> -C ₆ H	11 Ph	0.40	47	207-209	3.54 3.98	6.96	5.04 (m, 1 H)	0.80-2.00 (m, 10 H, cyclo-C ₆ H ₁₁)	7.44–7.49 (m, 3 H, Ph); 7.53–7.56 (m, 2 H, Ph)	1545, 1572	1665, 1718	267 (4.51), 327 (3.83)
11f	Pr	CH ₂ OTHP	0.35	23	122—123	3.56 3.95	7.06	0.90 (t, 3 H, Me, . 3.65–3.89 (m, 2 OCH THP and C	J = 7.3; 1.50–2.00 (m, H, OCH ₂ THP); 4.66– C(2)CH ₂)	8 H, CH ₂ <u>CH</u> 2Me and THP) 4.96 (m, 5 H, <u>CH</u> 2Et,	; 1573	1660, 1700	325 (3.78)
11g	Pr	C ₆ H ₁₃	0.40	59	80—81	3.51 3.94	6.81	4.73 (t, 2 H, J = 7.2)	0.90 (t, 3 H, Me, J = 7.2); 1.75–1.80 (m, 2 H, CH_2CH_2Me)	0.88 (t, 3 H, Me, J = 7.2); 1.20–1.70 (m, 8 H, CH ₂ (<u>CH</u> ₂) ₄ Me); 2.76 (t, 3 H, CH ₂ (CH ₂) ₄ Me, $J = 7.6$)	1545, 1572, 1585	1665, 1705,	324 (3.75), 366 (3.48)
11h	Bu	<i>n</i> -C ₆ H ₁₃	0.40	42	85—86	3.50 3.93	6.81	4.77 (t, 2 H, <i>J</i> = 7.6)	0.85–0.95 (m, 6 H, (1.27–1.37 (m, 6 H, (CH ₂) ₃ (<u>CH₂</u>) ₂ Me); I CH ₂ <u>CH₂Et and (CH</u> (m, 2 H, CH ₂ <u>CH₂Bt</u> <u>CH₂C₅H₁₁, $J = 7.6$)</u>	$CH_{2})_{3}Me \text{ and } (CH_{2})_{5}Me);$ $(CH_{2})_{2}CH_{2}Me \text{ and }$ 1.40-1.58 (m, 4 H, $T_{2})_{2}CH_{2}Pr); 1.80$ n); 2.75 (t, 2 H,	1585, 1599, 1619	1678, 1718	324 (3.77), 68 (3.50), 464 (2.68)
11j	Pr	Н	0.20	22	139—140	3.51 3.96	7.04 (d, 1 H, J = 3.5); 7.39 ^{<i>a</i>} (d, 1 H, J = 3.5)	4.78 (t, 2 H, J = 7.2)	0.73 (t, 3 H, Me, J = 7.4); 1.79 (m, 2 H, CH_2CH_2Me)	_	1545, 1599	1665, 1705	322 (3.73), 362 (3.49)

^{*a*} The chemical shift of H(2).

Scheme 5

15

can also be used in the synthesis of other fused polynuclear systems based on pyrimidopyridazinedione **1**.

Experimental

The IR spectra were recorded on a Specord IR-71 instrument in Nujol mulls. The ¹H NMR spectra were measured on Bruker-250 (250 MHz) and Unity-300 (300 MHz) spectrometers with Me₄Si as the internal standard. The UV spectra were recorded on a Specord M-40 instrument in CHCl₃. Chromatography was carried out on Al₂O₃ (Brockmann activity III–IV) using CHCl₃ as the eluent; visualization was carried out with iodine vapor. The melting points were measured in glass tubes on a PTP instrument and were not corrected.

The physicochemical characteristics of the resulting compounds are given in Tables 1 and 2. The results of elemental analysis are presented in Table 3.

3-(Alkyn-1-yl)-6,8-dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones (8a–e) (general procedure). *A*. A mixture of compound **5** (1 mmol), alkyne **7** (1.5 mmol), K₂CO₃ (1.5 mmol), Pd(PPh₃)₄ (0.02 mmol), and CuI (0.05 mmol) in anhydrous DMF (3 mL) was stirred at 90–100 °C under argon (reaction times are given in Table 1) and then concentrated to dryness. The residue was extracted with CHCl₃. The extract was concentrated to ~5 mL and chromatographed on a column with Al₂O₃ using CHCl₃ as the eluent. The pale-yellow fraction was collected (R_f are given in Table 1). The product was recrystallized from MeOH (compound **8b** was recrystallized from DMSO). Compounds **8** were obtained as colorless crystals.

B. A mixture of compound 5 (1 mmol), alkyne 7 (1.5 mmol), K_2CO_3 (1.5 mmol), Pd_2dba_3 (0.02 mmol), PPh_3 (0.16 mmol), and CuI (0.05 mmol) in anhydrous DMF (3 mL) was stirred at

Table 3.	Results	of	elemental	analysis	of	compounds	8a—f
and 11a-	-h,j						

Com- pound	Molecular formula	<u>Fo</u> Ca	Found (%) Calculated				
		C	Н	Ν			
8a	C ₁₆ H ₁₂ N ₄ O ₂	<u>65.90</u>	<u>4.05</u>	<u>18.97</u>			
		65.75	4.11	19.18			
8b	C ₁₆ H ₁₁ N ₄ O ₂ Cl	<u>58.78</u>	<u>3.10</u>	<u>17.31</u>			
		58.81	3.37	17.15			
8c	$C_{11}H_{10}N_4O_3$	<u>53.90</u>	<u>4.01</u>	<u>22.58</u>			
		53.65	4.07	22.76			
8d	$C_{16}H_{18}N_4O_4$	<u>58.35</u>	<u>5.70</u>	<u>17.04</u>			
		58.18	5.45	16.97			
8e	$C_{16}H_{20}N_4O_2$	<u>64.23</u>	<u>6.70</u>	<u>18.54</u>			
		64.00	6.67	18.67			
8f	$C_{13}H_{16}N_4O_2Si$	<u>54.30</u>	<u>5.70</u>	<u>19.24</u>			
		54.17	5.56	19.44			
11a	$C_{18}H_{17}N_5O_2$	<u>64.54</u>	<u>5.09</u>	20.76			
		64.48	5.07	20.90			
11b	$C_{19}H_{19}N_5O_2$	<u>65.29</u>	<u>5.42</u>	<u>20.30</u>			
		65.33	5.44	20.06			
11c	$C_{19}H_{19}N_5O_2$	<u>65.50</u>	5.27	20.17			
		65.33	5.44	20.06			
11d	$C_{20}H_{21}N_5O_2$	<u>66.34</u>	<u>5.57</u>	<u>19.17</u>			
		66.12	5.79	19.28			
11e	$C_{22}H_{23}N_5O_2$	<u>67.83</u>	<u>5.88</u>	<u>17.96</u>			
		67.87	5.91	17.99			
11f	$C_{19}H_{25}N_5O_4$	<u>58.85</u>	<u>6.25</u>	<u>18.13</u>			
		58.91	6.46	18.09			
11g	$C_{19}H_{27}N_5O_2$	<u>63.60</u>	<u>7.45</u>	<u>19.73</u>			
		63.87	7.56	19.61			
11h	$C_{20}H_{29}N_5O_2$	<u>64.81</u>	<u>7.55</u>	<u>18.95</u>			
		64.69	7.82	18.87			
11j	$C_{13}H_{15}N_5O_2$	<u>57.05</u>	<u>5.61</u>	<u>25.44</u>			
		57.14	5.49	25.64			

 $90-100 \circ C$ under argon (reaction times are given in Table 1) and then treated as described in the method *A*.

C. A mixture of compound **6** (0.5 mmol), alkyne **7** (1 mmol), K_2CO_3 (1 mmol), $Pd(PPh_3)_4$ (0.01 mmol), and CuI (0.01 mmol) in anhydrous DMF (3 mL) was stirred at 90–100 °C under argon (reaction times are given in Table 1) and then treated as described in the method *A*.

6,8-Dimethyl-3-(trimethylsilylethynyl)pyrimido[**4,5-***c*]**pyridazine-5,7(6H,8H)-dione (8f).** A mixture of compound **5** (227 mg, 1 mmol), trimethylsilylacetylene (0.2 mL, 1.2 mmol), Pd_2dba_3 (20 mg, 0.02 mmol), CuI (10 mg, 0.05 mmol), PPh_3 (42 mg, 0.16 mmol), and Et_3N (5 mL) was heated in a sealed tube under argon at 100 °C for 1 h and then treated as described above for compounds **8a**—e.

6,8-Dimethylpyrimido[**4,5-***c*]**pyridazine-3,5,7(2***H***,6***H***,8***H***)-trione (10).** A mixture of compound **9** (138 mg, 1 mmol) and glyoxylic acid (111 mg, 1 mmol) in MeOH (5 mL) was refluxed for 2 h and concentrated to dryness. The residue was extracted with CHCl₃. The extract was concentrated to ~5 mL and chromatographed on a column with Al_2O_3 using a CHCl₃-MeOH mixture (20 : 1) as the eluent. The colorless

Gorunenko et al.

fraction with $R_{\rm f}$ 0.5 was collected and concentrated to obtain compound **10** as colorless crystals in a yield of 112 mg (53%), m.p. 238–240 °C (from MeCN). IR, v/cm⁻¹: 3300–3600 (NH); 1782, 1728, 1662 (C=O). ¹H NMR (DMSO-d₆), & 3.20 (s, 3 H, N(8)Me); 3.51 (s, 3 H, N(6)Me); 7.41 (s, 1 H, H(4)); 13.2 (br.s, disappeared after deuteration, 1 H, NH). Found (%): C, 46.32; H, 3.59; N, 27.12. C₈H₈N₄O₃. Calculated (%): C, 46.15; H, 3.85; N, 26.92.

6,8-Dimethyl-3-(trifluoromethylsulfonyl)pyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione (6). Trifluoromethanesulfonic anhydride (0.2 mL, 1.2 mmol) was added portionwise to a solution of compound **10** (207 mg, 1 mmol) in pyridine (3 mL) cooled to 0 °C. The reaction mixture was stirred at 0 °C for 1 h and then at 20 °C for 48 h. Then the reaction mixture was diluted with water (3 mL) and the precipitate that formed was filtered off. Compound 6 was obtained as colorless crystals in a yield of 210 mg (68%), m.p. 159–160 °C (from PrⁱOH). IR, v/cm⁻¹: 3106 (C–H arom.); 1772, 1720 (C=O). ¹H NMR (CDCl₃), δ : 3.50 (s, 3 H, N(8)Me); 3.89 (s, 3 H, N(6)Me); 8.06 (s, 1 H, H(4)). Found (%): C, 32.00; H, 2.06; N, 16.34. C₉H₇F₃N₄O₅S. Calculated (%): C, 31.76; H, 2.05; F, 16.76; N, 16.47; S, 9.41.

1,2-Disubstituted 6,8-dimethylpyrrolo[3',2':3,4]pyrimido[4,5-c]pyridazine-7,9(6H,8H)-diones (11a—h,j) (general procedure). A solution of compound 8 (1 mmol) in amine (30-40 mL) was stirred at 20 °C for 15 min (in the case of EtNH₂, at 0 °C) and then AgPy₂MnO₄ (1 mmol) was added. The completion of the reaction was determined chromatographically. The reaction mixture was concentrated to dryness and the residue was extracted with CHCl₃. The extract was concentrated to ~5 mL and chromatographed on a column with Al₂O₃ using CHCl₃ as the eluent. The first yellow fraction was collected and concentrated. The residue was recrystallized from Pr^iOH and compound 11 was obtained as yellow crystals.

3-Benzoylmethyl-6,8-dimethylpyrimido[**4**,**5**-*c*]**pyridazine 5,7(6H,8H)-dione (15).** A solution of compound **8a** (292 mg, 1 mmol) in piperidine (25 mL) was stirred at 20 °C for 15 min and then AgPy₂MnO₄ (385 mg, 1 mmol) was added. The reaction mixture was kept at 20 °C for one week and concentrated to dryness. The residue was extracted with CHCl₃. The extract was concentrated to ~5 mL and chromatographed on a column with Al₂O₃ using CHCl₃ as the eluent. The yellow fraction was collected and concentrated to obtain compound **15** as dark-yellow crystals in a yield of 62 mg (20%), m.p. 236–238 °C (from PrⁱOH). IR, v/cm⁻¹: 3062 (C–H arom.); 1718, 1692, 1678 (C=O). ¹H NMR (DMSO-d₆), δ : 3.36 (s, 3 H, N(8)Me); 3.73 (s, 3 H, N(6)Me); 4.89 (s, 2 H, CH₂); 7.54–8.10 (m, 5 H, Ph); 8.16 (s, 1 H, H(4)). Found (%): C, 62.10; H, 4.36; N, 18.15. C₁₆H₁₄N₄O₃. Calculated (%): C, 61.93; H, 4.52; N, 18.06. This study was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-32338).

References

- D. V. Besedin, A. V. Gulevskaya, and A. F. Pozharskii, *Khim. Geterotsikl. Soedin.*, 2000, 1403 [*Chem. Heterocycl. Compd.*, 2000, **36**, 1213 (Engl. Transl.)].
- A. V. Gulevskaya, D. V. Besedin, A. F. Pozharskii, and Z. A. Starikova, *Tetrahedron Lett.*, 2001, 42, 5981.
- O. N. Chupakhin, V. N. Charushin, and H. C. van der Plas, *Nucleophilic Aromatic Substitution of Hydrogen*, Academic Press, San Diego–New York–Boston–London–Sydney– Tokyo–Toronto, 1994, 367 pp.
- 4. A. L. Rodriguez, C. Koradin, W. Dohle, and P. Knochel, *Angew. Chem.*, *Int. Ed. Engl.*, 2000, **39**, 2488.
- 5. Y. Kondo, S. Kojimoto, and T. Sakamoto, J. Org. Chem., 1997, 62, 6507.
- 6. K. Iritani, S. Matsubara, and K. Utimoto, *Tetrahedron Lett.*, 1988, **29**, 1799.
- 7. A. Arcadi, S. Cacchi, G. Fabrizi, and F. Marinelli, *Synlett*, 2000, **3**, 394.
- 8. T. E. Müller and M. Beller, Chem. Rev., 1998, 98, 675.
- S. Nishigaki, M. Ichiba, and K. Senga, J. Org. Chem., 1983, 48, 1628.
- 10. K. Sonogashira, Y. Tohda, and N. Hagihara, *Tetrahedron Lett.*, 1975, 4467.
- A. V. Gulevskaya, V. V. Goryunenko, and A. F. Pozharskii, *Khim. Geterotsikl. Soedin.*, 2000, 1113 [*Chem. Heterocycl. Compd.*, 2000, 36, 975 (Engl. Transl.)].
- A. V. Gulevskaya, D. V. Besedin, and A. F. Pozharskii, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 1161 [*Russ. Chem. Bull.*, 1999, 48, 1150 (Engl. Transl.)].
- 13. J. Tsuj, Palladium Reagents and Catalysts. Innovations in Organic Synthesis, Wiley, New York, 1995, 168.
- 14. H. M. Colguhoun, J. Holton, D. J. Tompson, and M. V. Twigg, New Pathways for Organic Synthesis. Practical Applications of Transition Metals, Plenum Press, New York—London, 1984.
- 15. S. P. Stanforth, Tetrahedron, 1998, 54, 263.
- 16. N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
- 17. A. R. Katritzky and A. F. Pozharskii, *Handbook of Heterocyclic Chemistry*, 2nd ed., Pergamon, Amsterdam, 2000, 55.
- 18. J. Reisch, Chem. Ber., 1964, 97, 2717.
- 19. Chemistry of Acetylenes, Ed. H. G. Viehe, Marsel Dekker, New York, 1969.

Received April 18, 2002; in revised form September 11, 2002