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A novel and efficient approach to 2,5-disubstituted oxazoles is
developed via a 1,3-dipolar cycloaddition/ring cleavage/1,2-H
migration/denitrogenation/copper-catalyzed aerobic oxidative
dehydrogenative cyclization cascade. The desired products can be
obtained from readily available aromatic terminal alkenes and
azides employing air as the oxidant under mild conditions, and it
offers an attractive alternative method for the synthesis of
oxazole derivatives.

Oxazoles are privileged scaffolds found in many pharmacologically
active synthetic molecules and natural products, which exhibit
attractive biological activities, including antibacterial, antifungal,
antiviral, and antitumor properties.1 Consequently, a variety of
protocols have been developed for the synthesis of oxazoles, such
as the classical intramolecular cyclization of acyclic precursors,2
oxidation of oxazolines,’ the coupling of prefunctionalized oxazoles
with organometallic reagents,4 and other elegant methods recently
reported.5 However, some of these methods face the limitation of
low atom efficiency, inaccessible starting materials or the utilization
of stoichiometric amounts of sometimes toxic transition-metal
catalysts or oxidants. In the interests of atom economy and green
chemistry, new approaches to oxazoles from readily available
starting materials, in addition to generating minimal and nontoxic
waste, are highly desirable.

Transition-metal-catalyzed C-H functionalization has proven to
be a versatile and highly functional-group-compatible approach for
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the synthesis of diverse heterocycles.6 Among them, the coppe
catalyzed C-H functionalization, especially the copper/O, catalyze~'
system,7 has triggered widespread interest in recent years due .
the fact that: copper is an inexpensive and low toxicity transitic »
metal, air (O,) is abundant, low cost, and sustainable, and in most
cases water is the byproduct. Herein, we present a method for tl 2
synthesis of 2,5-disubstituted oxazoles via sequential azide-alkene
1,3-dipolar cycloaddition/ring cleavage/1,2: 1
migration/denitrogenation, followed by copper-catalyzed aerobic
oxidative dehydrogenative cyclization of the resulting imines. Tt s
cascade reaction employs naturally abundant air as the sole oxidan.
as well as the oxygen source and generates nitrogen and water s
by-products. To the best of our knowledge, such a construction o.
oxazoles from simple, easily available terminal alkenes and azid~-
has not been reported, and it offers an attractive alterna...
method for the synthesis of many oxazole derivatives.

We initiated our research on the model reaction of styrene (1 )
with benzyl azide (2a) under different reaction conditions (Table 7 .
Under an atmosphere of air, the 2,5-disubstituted oxazole (3a) w..
obtained in 82% isolated yield upon treatment of a 1: 1.2 mixture
1a and 2a with 10 mol % CuCl in toluene at 80°C for 8 h (Table ~
entry 1). Without any catalysts, TLC analysis indicated no desire '
product formation (Table 1, entry 2). Other Cu salts, regardless ¢
their oxidation state (either | or Il), also showed catalytic activit
but they were found to be less effective (Table 1, entries 3-9). On
the other hand, metal catalysts, such as Ce(OTf)z, Pd(OAc),, In(C ()3,
[Rh(COD)CI], or Ag(OAc), were not productive for this convers.
(Table 1, entries 10-14). Next, the effect of different solvents wr
surveyed. The reaction was obviously restrained when it w?
performed in 1,4-dioxane, DMF, DMSO or DCE (Table 1, entries 1
18). It is worth noting that 10 mol % of the CuCl was sufficient tr
promote the reaction effectively, and the yield of 3a was or ¢
slightly increased when 1 equiv of CuCl was used, which clearlv
indicated that the reaction proceeded in a catalytic manner (Table 1,
entry 19 vs. entry 1). When the reaction was conducted under
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argon, no desired product was obtained, confirming that air (O,)
plays a key role in the formation of oxazole 3a (Table 1, entry 20).

Table 1 Optimization of reaction conditions”

N
' a
X catalyst, air (O
©/\ + ©/\N3 : : 2) O)\©
solvent, 80 °C, 8 h

1a 2a 3a
- b
Entry Catalyst Solvent Yield (%) of

3a

1 CuCl (10 mol %) toluene 82
2 none toluene 0
3 CuBr (10 mol %) toluene 79
4 Cul (10 mol %) toluene 72
5 CuCl; (10 mol %) toluene 58
6 CuBr; (10 mol %) toluene 55
7 Cul, (10 mol %) toluene 45
8 Cu(OTf), (10 mol %) toluene 35
9 Cu(OAc); (10 mol %) toluene 34
10 Ce(OTf); (10 mol %) toluene 0
11 Pd(OAc), (10 mol %) toluene 0
12 In(OTf); (10 mol %) toluene <5
13 Ag(OAc) (10 mol %) toluene <5
14 [Rh(COD)CI]; (10 mol %) toluene 0
15 CuCl (10 mol %) 1,4-dioxane 69
16 CuCl (10 mol %) DMF 63
17 CuCl (10 mol %) DMSO 56
18 CuCl (10 mol %) DCE 30
19° CuCl (1 equiv.) toluene 84
20° Cucl (10 mol %) toluene 0

“Reaction conditions: styrene 1a (0.5 mmol, 1 equiv.), benzyl azide
2a (0.6 mmol, 1.2 equiv), catalyst (0.05 mmol, 10 mol %), solvent (3.0
mL), 80 °C, 8 h under air (except for entry 2 and entry 20). ® |solated
yield of pure product based on 1a. “ CuCl (0.5 mmol, 1 equiv.) was
used. ? The reaction was carried out under argon atmosphere (1
atm). Entry in bold highlights optimized reaction conditions.

Under the optimized reaction conditions, the scope of terminal
alkenes 1 was firstly investigated. As summarized in Table 2,
aromatic  terminal alkenes bearing electron-withdrawing
substituents on the aryl ring participated in the cascade reaction in
excellent yield (3b-3d), and electron-rich aromatic alkenes also
reacted smoothly in good yields (3e-3h). Moreover, substitution at
the meta (3d) and ortho (3e) positions were not detrimental to the
reaction yield. Heteroaryl-substituted alkenes were also tolerated
in this transformation, generating the corresponding 2,5-
disubstituted oxazoles 3i, 3j and 3k in 70%, 72% and 78% isolated
yields, respectively. Naphthyl-substituted alkene afforded 3l in 69%
yield. When optically active alkene (R)-2,2'-diisopropoxy-3-vinyl-
1,1'-binaphthalene was examined as a substrate, to our delight, (R)-
5-(2,2'-diisopropoxy-[1,1'-binaphthalen]-3-yl)-2-phenyloxazole 3m
was formed in 60% yield. Unfortunately, aliphatic terminal alkenes
or internal alkenes did not work under these reaction conditions
(3n). In addition, the azide substrates were further examined. It was
found that the substituents at the phenyl ring of the benzyl azides
little influenced the reactivity of the substrate, and the desired
oxazole products were produced in high yields (30-3t). Especially,

2 | J. Name., 2012, 00, 1-3
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steric hindrance did not seem to adversely affect the gfficiency ine
and 3s). Furthermore, 2-(azidomethyl)i¥phtRdIeEC¥aulg48rB
smoothly transformed into the corresponding product in 68% vyie'
(3u). It is noteworthy that alkyl azides such
(azidomethyl)cyclohexane and 1-azidohexane were well tolerated .2
the reaction and led to excellent yields (3v and 3w).

Table 2 Substrate scope for the reaction of terminal Alkenes 1 anu

azides 2°°
air (Oy)

N
2
R1/\ + Rz/\N3 CuCl (10 mol %) | c;>/R
toluene, 80°C,8h R!
1 2 3
N N N N
(j/ ’:o>\ph /@/”:o% P /@Io% Ph cl\©/[o>\'3h
F cl
3a (82%) 3b (87%) 3c (86%) 3d (80%)
B B B -
\ D
O>‘Ph o /@/E‘J)\ph /@/EO Ph e
)J\O MeO
3e (81%) 3f (73%) 3g (69%) 3h (80%)
N /0 7N N
N S / r;l)\ ; OJ\Ph ’O>\Ph
e o e
S N
Boc
3i (70%) 3j (72%) 3k (78%) 31 (69%)

N
IO>~Ph
N N N
OO ipr \/\/\/[\ | \>—< :}— | \>—< >7E5r
8 O)\Ph Ph/[ o Ph): o
OO Pr 3n (0%)? 30 (82%) 3p (80%)

3m (60%)°

Cl
N N N N
O Orem G Iy JLy=)ome
o Ph ph” O Ph
Ph cl

3q (78%) 3r (83%) 3s (82%) 3t (80%)

i LN) Jo O Phﬁ*&

3u (68%) 3v (81%) 3w (82%)

“ Reactions conditions: 0.5 mmol of 1 and 0.6 mmol of 2 in the presence of
CuCl (10 mol %) in 3.0 mL of toluene at 80 °C for 8 h under air. ® Isolat( d
yield of pure product based on 1. © (R)-2,2'-Diisopropoxy-3-vinyl-1,”
binaphthalene was used as the substrate. ¢ Oct-1-ene was used as th
substrate.

Some control experiments were carried out in order to explo
the possible reaction pathway. The reaction of 1a and 2a in th
presence of 1802 (1 atm) generated ¥0-labeled product [180]-3a O
81% isolated yield under the standard conditions [Eq. (1), the 20
was determined by HRMS, see the Supporting Informat in],
indicating that the oxygen atom of the oxazole product originaic
from molecular oxygen. The reaction of acetophenone (4) and 7 .
under the standard conditions could not generate 3a [Eq. (2}
which might exclude 4 as the intermediate of this oxidativ
transformation. In addition, when 1 equivalent of 2,2,6,6
tetramethyl-1-piperidinyloxyl (TEMPO) was added, the yield of = »
fell to 8% [Eq. (3)]. The experiment result suggested a possibl~
radial mechanism.
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180, (1atm)

©/\ ©/\ _CuCI(10mol%)

toluene, 80 °C, 8 h

O
130)\© o

[80]-3a (81%)

M, (1atm) i N
CuCl (10 mol%) \
° 2
loluene, 80°C, 8h @
3a (0%)
O, (1atm)
CnCl (10 mol%) J (\l
N3 TEMPO (1eqniv)
©/\ @/\ o o
tolnene, 80 °C, 8 h
3a (8%)

A plausible mechanism for this cascade reaction is shown in
Scheme 1. The first step is the regioselective 1,3-dipolar
cycloaddition of benzyl azide 2a with styrene 1la to form the
triazoline intermediate A. Subsequently, A decomposes to the
zwitterionic species B, which undergoes 1,2 H-shift with the loss of
nitrogen to give the imine C.2 Then, one-electron oxidation of C by
the higher-oxidation-state cu' species generated from cu'cl with
molecular oxygean’gyields a radical intermediate D, and D could
then be envisaged reacting with molecular oxygen to give peroxy
radical E. The latter could then undergo a 1,5-hydrogen atom
abstraction®”** ' to afford intermediate F with regeneration of the
cu' species. Finally, intramolecular radical coupling would afford
the 4,5-dihydrooxazole intermediate G, which could be easily

oxidized by air to the final oxazole product 3.3

ESI/MS experiments were performed to gain evidence for the
possible intermediates in the proposed mechanism. Under an argon
atmosphere, a mixture of 1a (0.5 mmol), 2a (0.6 mmol) and CuCl
(0.05 mmol) in toluene (3.0 mL) was reacted at 80 °C for 8 h and 50
pL of the mixture was used for the ESI analysis in CH;OH. The
ESI/MS analyses showed a peak at m/z 210.1270, which was
identified as an imine species (see the Supporting Information).
Although the unstable imine C underwent decomposition during
the column chromatography, this result supported the generation
of the imine intermediate C.

N
®N
$]
[3+2] N=N 2 N._Ph
P + Ph" N, ———>Ph ’\\‘ Ph—>Ph O
H
1a 2a A CuCl B

) .
Ph)\7N\/Ph ph/vN\/ph ph/vaPh
E D Cc
[Cul

1o
\ ”] N, 1,2-H shift
. [Cu [Cu
o,O *

1,5-H abstraction

OH "
[CuT]
j)\/ Ph—O~-Ph  air o OYPh
N__Ph— 5 \</// )
p >N d N XN
F G H,0

Scheme 1 A plausible mechanism for the cascade reaction of terminal
alkenes and azides.

In summary, we have demonstrated a novel approach for the
synthesis of 2,5-disubstituted oxazoles that operates via sequential

This journal is © The Royal Society of Chemistry 20xx
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azide-alkene  1,3-dipolar  cycloaddition/ring  cleavage/beine
migration/denitrogenation, followed by céppetcHtalyzed EabB
oxidative dehydrogenative cyclization of the resulting imines. Tt
use of naturally abundant air as an oxidant as well as an oxy e
source, easily available starting materials including the copp.r
catalyst, and an experimentally convenient catalytic process are the
added advantages of the present protocol. Further investigations ¢ 1
the synthetic applications of this reaction are ongoing in our
laboratory.
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