by Hmber to CERVANTES, Duc DO KHAC, Marcel FETIZON and Frederic GUIR
Laboratoire de Synthèse Organique, Ecole Polytechnique

91128 PALAISEAU Cedex . France
and
Jean-Claude BELOEIL, Jean-Yves LALLEMAND and Thierry PRANGE Institut de Chimie des Substances Naturelles, C.N.R.S. 91190 GIF-sur-YVETTE . France

(Received in France 24 March 1986)
Abstract : Photochemical [2 + 2] cycloaddition of enol acetate 10a to
cyclohexene led to a 3 : 1 mixture of the tetracyclic photoadducts A
and B which, through reverse aldol reactions, under mild alkaline
conditions produced two campounds : a tetracyclic ketone 13 and a
tricyclic diketone 14 . Hydrolytic cleavage in methanolic hydrochloric
acid of 45 and 16 resulting from irradiation of the enol ether 10 b
to cyclohexene gave rise to the rearranged tricyclic diketone 14 only.
The trans stereochemistry $3 a, 8 \beta$ of the fused-ring system in 14 ,
established by X-ray measurements, is different from the stereochemistry
of the naturally occuring taxane derivatives .
Ejus elementi compositionem quod vim habet in taxo baccata, photochimiae
beneficio, quidam in exemplo simpliciore reddito experti sunt.
Perincommode tamen accidit ut materiae ita quaesitae figura dissimilis
sit ejus rei natura praebitae.
This work was submitted as part of a 3ème cycle D. Thesis - Humberto
CERVANIES-CUEVAS, 26.01.1983 - Universite PARIS XI - Centre d'ORSAY, France
and a conference : H. CERVANTES, D. DO KHAC, Thierry PRANGE and M. FETIZON× :
Fifth asian symposium on medicinal plants and spices - 647, August 1984-
SEOUL (S. Korea).

INTRODUCTION

Taxus baccata had a very bad reputation in the roman world. According to PLINY the ELDER ${ }^{(")}$, even its shadow is fatal to manmals, including men ${ }^{1,2,3}$. Since that time, interest in taxane and its derivatives ${ }^{4}$ grew up. Now it goes far beyond the structural novelty of the uncanmon tricyclic carbon framework 1, due to the rather potent antileukemic and antitumoral activity ${ }^{5}$ of taxol ${ }^{6} \underline{2}$, and cephalomannine ${ }^{7} \underline{3}$, among others (scheme 1).

In spite of mumerous investigations $8,9,10,11,12$ no total synthesis of any taxane diterpenes has been reported yet. If the strategy consists in building first rings A and B, then introducing ring C, the major problem to settle is the construction of the latter ring with the right stereochemistry. Among the various methods which show sane promise in the formation of functionalized eight membered ring systems, we selected an intemolecular de MAYO's reaction ${ }^{13\left({ }^{\circ x}\right)}$:
(*) In order to underline this time-honoured observation, a short sumary of our paper is also provided in latin.
(w:) The stereochemistry of the trans fused ring of 6^{13} at $\mathrm{C}-1$ and $\mathrm{C}-8$ renained undeternined .
a photochemical cycloaddition of cyclohexene, or, more generally, an olefin, to an enol derivative of a cyclohexane-1,3-dione 4 . The resulting adduct $\underline{5}$, undergoes a retroaldol reaction leading to the expected product $\underline{6}$ (scheme 1).

In order to overcome the problems connected to regiospecificity and to focus our attention on the stereochemistry of the final compound $\underline{6}$, we decided to study a model reaction, in which a fairly accessible cyclohexane-1,3-dione would have a plane of symmetry. For this purpose, symmetrical bicyclo [3.2.1] octane-2,4-dione 7 is almost ideal, since it is closely related to the conpound 8 , which would lead to taxane derivatives, and very easily prepared in large quantity from commercially available a-fenchol 9 (scheme 1).

4
$+$

?

11. $x=\mathrm{CH}_{2}$

11 b $x=0$

12

$10 \quad \mathrm{a}, \mathrm{R}=\mathrm{C}-\mathrm{CH}_{3}$ $\mathrm{B}, \mathrm{R}=\mathrm{CH}_{3}$

However, it has been found previously that, although there is a fairly good regio and stereoselectivity in many photochenical $[2+2]$ cycloadditions, the structure of the final product is difficult to predict ${ }^{14}$.

Our exploratory experiments have, thus, been carried out with model substances 10a and 10b (scheme 1).

Synthesis of 8,8-dimethyl bicyclo [3.3.1] octane-2,4 dione 7 (scheme 1)
α-fenchol $\underline{9 a}$ was converted into its tosylate $\underline{9 b}$ which gave α-fenchene ${ }^{15}$ 11a upon solvolysis. The best pratical method for oxidation of α-fenchene is ozonolysis ${ }^{16}$. The resulting α-fenchocamphorone ${ }^{17}$ (apocamphor) 11 b is then submitted to a selenium dioxide oxidation ${ }^{18}$, whereby the yellow α diketone 12 (norcamphorquinone) is obtained in good yield. Diazomethane reacts with this non enolizable diketone with ring expansion and o-methylation of the intermediate diketone $\underline{7}$. The latter enol ether $\underline{10 b}$ is hydrolysed into diketone $\underline{7}$ in the presence of diluted hydrochloric acid ${ }^{19}$. Acetylation of the dione $\underline{7}$ with acetic anhydride, in the presence of n-butyllithium, according to the method of PATTENDEN ${ }^{20}$ leads to the enol acetate 10a.

RESULTS and DISCUSSION

The photocycloaddition of enol acetate 10 a was investigated first . Irradiation of 10a with a large excess of cyclohexene in methylene chloride at $-50^{\circ} \mathrm{C}$, using pyrex filtered light from a mediun pressure Hg lamp, gave a mixture of two adducts \underline{A} and \underline{B}, in a combined yield of $80 \&$ (scheme 3). Attempts to separate these isomers met with limited success. When the mixture $\underline{A}+\underline{B}$ is treated with potassium hydroxide in anhydrous ethanol, the major compound (65 8) which is highly fluorescent in U.V. light in t.l.c. (silica gel Merck PF 254) is the tetracyclic enone $\underline{13}^{13,21}$ (U.V. $\underset{\lambda \max }{\mathrm{EtOH}}: 252 \mathrm{~nm}, \varepsilon=6.900$, I.R. $\mathcal{V C}=0=1678 \mathrm{~cm}^{-1}$; no olefinic proton in ${ }^{1} \mathrm{H}$ n.m.r.) -

A tentative assignment of ${ }^{13} \mathrm{C}$ chemical shifts of compound $\underline{13}$ is shown on scheme 2 . No other pure compounds could be isolated (schene 2) .

In the presence of potassium hydroxide in aqueous ethanol at $20^{\circ} \mathrm{C}$, the mixture A^{+} B was converted into two ketones in 80 \& yield (ratio $2: 3$). The major compound which is not fluorescent in t.l.c. under the conditions described above, is a crystalline coupound, m.p. 91-92 ${ }^{\circ} \mathrm{C}$ (pentane). There is a very weak absorption in U.V. ($\lambda_{\max }=300 \mathrm{~nm}(\varepsilon=56), 220 \mathrm{~mm}(\varepsilon=248)$) indicative of a non conjugated system. In the infared spectrum, there is a very intense absorption band at $1678 \mathrm{~cm}^{-1}$, which coincides with the $\nu_{\mathrm{C}=0}$ band of 14 . Such low values have already been observed in diketones similar to the expected one 15 (scheme 3).

Since no firm proof of the structure of our compound could be obtained from its
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra, it was submitted to X -ray crystallography studies which gave results shown on scheme 3 .

As expected, rings B and C of 14 are transfused. However, their relative stereochemistry with respect of the bridgehead protons is opposite to taxane's one. The minor component of the mixture is the unsaturated ketone 13

SCHEME 2

Triclinic crystals of 14 were obtained from pentane-ether solution ($0,2 \times 0,4 \times 0,3 \mathrm{~mm}$). Crystal data : $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$, space group $\mathrm{P}_{1}^{-}(2=2)$, $a=11.006(4) ; b=10.127(3) ; c=6.897(3) ; \AA$, $a=$ $99^{\circ} .8 ; B=101^{\circ} .6$ and $\gamma=106^{\circ} .2 ; U=701.26 \AA^{\circ}$; 1300 independent reflections were measured with I $>2 \sigma$ (I) on a four circle PN 1100 automatic diffractoneter using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation. The structure was solved by direct method 22 and anisotropically refined to a final conventional R factor of 5.48 (all hydrogen atoms were located on difference Fourier synthesis) .

The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, CAMBRIDCE CG 2 IEW Any request should be accompanied by the full literature citation for this commanication.

Scheme 3 : Molecular structure of 14
The figure shows one of the two independent molecules in the unit cell.

Similarly, photocycloaddition of enol ether 10 b to cyclohexene led to two products \underline{C} and \underline{D} (ratio: $3: 1$) which could be readily separated. However the crude mixture of \underline{C} and D, treated with methanolic $0,1 \mathrm{~N}$ hydrochloric acid, at room temperature, afforded a mixture of two easily separable compounds. The major compound (55 g) based on the starting methyl ether, is the diketone $\underline{14}$. The minor compound is $\underline{C}\left(\begin{array}{ll}25 & 8\end{array}\right)$. No trace of the unsaturated ketone $\underline{13}$ could be detected (scheme 4).

Since the amount of ketone 14 , resulting from the rearrangement of the mixture $\underline{C}+\underline{D}$ is larger than the amount of the major cycloaddition product \underline{C}, we may assume that both \underline{C} and \underline{D} are converted into $\underline{1} 4$, very likely at different rates.

As the configuration of H_{8}, either in \underline{C} or in \underline{D} has been confirmed by X-ray ana-
 that ${ }^{3}{ }_{\mathrm{H}_{9}-\mathrm{H}_{8}}$ coupling is about the same (9.75 Hz and 10.50 Hz respectively), hence proton $\mathrm{H}-9$ should be 8 in both compounds (scheme 5) should $\mathrm{H}-9$ be α, the ${ }^{3} \mathrm{~J}_{\mathrm{H}_{9}-\mathrm{H}_{8}}$ coupling constant would be smaller $(\simeq 4 \mathrm{~Hz})^{23}$.

Scheme 5 : $2 \mathrm{D}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ chemical shift correlation spectrum of compounds $\underline{C}=\underline{15}$
Assignment of the ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ spectra of compound \underline{C} was obtained from two dimensional n.m.r. experiments : ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ chemical shift correlation ${ }^{24}$ (COSY) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ chemical shift correlation ${ }^{25}$ (scheme 5). This method was very efficient, especially for the assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $-\mathrm{CH}_{2}-, 4,5,6,7,12$ and 13 . The spectra of compound \underline{D} were interpreted by comparison with the results discussed above for compounds $C={ }^{13} \mathrm{C}$ n.m.r. spectra of \underline{C} and \underline{D} were in full agreement with their assigned structure $\underline{15}$ (cis-anti-cis) and 16 (cis-anti-trans) respectively. The latter was the most unstable in acidic condition using to open the cyclobutane ring (scheme 4). In particular there is a large difference in the chemical shifts of C_{2} and $\mathrm{C}_{9}(5 \mathrm{ppm}), \mathrm{C}_{8}(10 \mathrm{ppm})$ and $\mathrm{C}_{3}(17 \mathrm{ppm})$ for 15 and 16 , produced probably by conformational changes of C and D rings (scheme 6). On the other hand, the cyclobutyl "a" carbon resonance of the trans-fused isomer \underline{E} comes at appreciably higher field, compared to the cis-anti-cis stereoisomer \underline{E}^{26}.

Hence, the geometry of A and B rings (with a $\mathrm{Cis}\left(\mathrm{H}_{9 \beta}\right)$ and $\mathrm{MeO}_{B}\left(\mathrm{C}_{9}\right)$ configuration) was identical in the two isomers 15 and 16 and the photocycloaddition occured from the endo side . It seems likely that photochemical [2 + 2] cycloaddition of cyclohexene to enol-ether 10 affords a stereoselective route for B and C rings, different from the stereochemistry of the naturally occuring taxane derivatives .

$\mathrm{C}=\underline{15}$

F
scheme 6
(Carbon-13 chemical shifts of E and $E, \delta\left(\mathrm{CS}_{2}\right)$ downfield from Cl_{4} as internal standard)

After the completion of our studies, BLECHERT and al. ${ }^{27}$ described a preparation of tricyclic compound 17, starting from bicyclic enol-ether 18 , and INOUYE and al. ${ }^{28}$ presented a synthesis of 19 from enol ether 20 with a cis $C_{3} B, C_{8} B$ fusion for B anc C rings (scheme 6). Recently, BERKOWTTZ and al. ${ }^{29}$ reported a synthesis of tricyclic compounds 21 , in which the stereochemistry B / C fused ring at C_{3} has remained undetermined, from a photocycloaddition of cyclohexene with homocamphorquinone derivatives 22 (scheme 7).

18

17

20

21

19

22
schemal

Acknowledgements

We thank Dr S. KAN (Université PARIS XI), Dr M. BERTRANNE and Dr G. ARANDA (Ecole Polytechnique) for recording ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra . We also thank Professor R. LESUEUR for the latin summary .

Experimental Section

General methods : All reactions were performed under argon unless otherwise specified, using standard syringe techniques for transfer of materials. Where necessary organic solutions were dried over MgSO_{4} and the product was isolated by filtration and evaporation of the filtrate using rotary evaporator. Infared spectra were measured on a PERKIN-ELMER 399 spectrophotaneter . Proton nuclear magnetic resonance spectra were obtained at 400 MHz . ${ }^{13} \mathrm{C}$ n.m.r. spectra were recorded at 25.2 MHz using a VARIAN CFT. 20 or a VARIAN XL. 100 spectrometer operating in the FOURIER transform mode . Chemical shifts are reported in parts per million (δ) downfield from tetramethylsilane as internal standard. Coupling constants (J) are given in hertz (Hz) with the following abreviations for splitting patterns : s = singlet, $d=$ doublet, $\tau=$ triplet, $q=$ quartet, $m=$ multiplet. Melting points were determined on a BUCHI melting point apparatus and are uncorrected. Preparative t.1.c. plates were prepared of about 1 mm in thickness (Merck silica gel PF - 254). Column chromatography was performed on 230-400 mesh MERCK silica gel 60 Tetrahydrofuran (THF) and ether were dried by distillation over sodiun benzophenone .
Dichloromethane was purified by washing with sulfuric acid and water, followed by distillation from phosphorus pentoxide .

Irradiations were carried out in dichloramethane as the solvent under argon by using a TW 150 W HANAU lamp and a pyrex filter ($\lambda>295 \mathrm{rm}$). The reaction was followed by U.V. absorption of the starting material .

2D spectra : All spectra were recorded on a BRUKER WM 400 (conc. $80 \mathrm{mg} / 0.6 \mathrm{ml}$), ${ }^{1} \mathrm{H}-\mathrm{H}^{1} \mathrm{H}$ chemical shift correlation (COSY) : the applied pulse sequence was ($\pi / 2$) $-\left(\mathrm{t}_{1}\right)-(\pi / 4)-$ (FID, t_{2}). The spectral width in F_{1} and F_{2} was 1200 Hz ; the number of data points in t_{2} was 2048, and 512 increments were recorded. Before POURIER transformation, the data were multiplied with unshifted sinebell. Total acquisition time was 10 hours. The $\pi / 2$ pulse was $10 \mu \mathrm{~s}$.
${ }^{1_{H}-13}{ }^{1}$ shift correlation $:$ The pulse sequence was $\left(\pi / 2,{ }^{1} H\right)-\left(t_{1} / 2\right)-\left(\pi,{ }^{13} C\right)-\left(t_{1} / 2\right)-$ $\left(\tau_{1}\right)-\left(\pi / 2,{ }^{1} \mathrm{H} ; \pi / 2,{ }^{13} \mathrm{C}\right)-\left(\tau_{2}\right)-\left(\mathrm{BB},{ }^{1} \mathrm{H} ; \mathrm{FID}, \tau_{2}\right)$ with $\tau_{1}=0.00357 \mathrm{~s}$ and $\tau_{2}=001785$ second. The spectral width in F_{1} was 1200 Hz and in $\mathrm{F}_{2}, 7246 \mathrm{~Hz}$; the number of data points in t_{2} was 4096 and 256 increments were recorded. Before FOURIER transformation, the data were multiplied with unshifted sine-bell in F_{2} and exponential in F_{1}. Total acquisition was 20 hours . The $\pi / 2$ pulse was $14 \mu \mathrm{~s}$ for ${ }^{13} \mathrm{C}$ and the decoupler $\pi / 2$ pulse was $43 \mu \mathrm{~s}$.
$\underline{\alpha-f e n c h e n e ~(11 a): ~ F e n c h y l ~ a l c o h o l ~(~} 12 \mathrm{~g}, 0.078 \mathrm{~mol}$) and 4-toluenesulfonyl chloride ($19 \mathrm{~g}, 0.10$ mol) were heated at reflux $\left(120^{\circ} \mathrm{C}\right)$ in pyridine (120 ml) for 24 h . The reaction mixture was added to cold aqueous NaHCO_{3}, and the mixture was extracted with pentane ($3 \times 60 \mathrm{ml}$), organic layers combined, washed with aqueous $\mathrm{HCl}(108)$, water, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration gave $10.06 \mathrm{~g}(95 \mathrm{q})$ of 11 a . I.R. (film) : 3065,1665 and $875 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ n.m.r. (400 MHz) $\delta: 0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 1.03(1 \mathrm{H}, \mathrm{m}) ; 1.25(2 \mathrm{H}, \mathrm{m}) ; 1.65(1 \mathrm{H}, \mathrm{t}) ; 1.85(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{3 \beta},{ }^{3} \mathrm{~J}=5 \mathrm{~Hz},{ }^{2} \mathrm{~J}=18 \mathrm{~Hz}\right) ; 1.92(1 \mathrm{H}, \mathrm{m}) ; 2.03\left(1 \mathrm{H}, \mathrm{d},{ }^{3}{ }_{\mathrm{J}}=5 \mathrm{~Hz}\right) ; 2.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3 \alpha},{ }^{2} \mathrm{~J}=\right.$ $18 \mathrm{~Hz}) ; 4.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{10}\right) ; 4.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{10}\right) ;{ }^{13} \mathrm{C}$ n.m.r. : $53.8\left(\mathrm{C}_{1}\right) ; 156.7\left(\mathrm{C}_{2}\right) ; 37.6\left(\mathrm{C}_{3}\right)$; $45.0\left(\mathrm{C}_{4}\right) ; 28.8\left(\mathrm{C}_{5}\right.$ or $\left.\mathrm{C}_{6}\right) ; 28.7\left(\mathrm{C}_{5}\right.$ or $\left.\mathrm{C}_{6}\right) ; 46.0\left(\mathrm{C}_{7}, \mathrm{~s}\right) ; 20.8\left(\mathrm{C}_{9}\right) ; 21.8\left(\mathrm{C}_{8}\right) ; 102.9\left(\mathrm{C}_{10}\right.$, t) .

Apocamphor (11b) : A solution of 20.0 g of α-fenchene 11 a in 180 ml of absolute methanol was exhaustively ozonized at -70 to $-80^{\circ} \mathrm{C}$. The ozonized solution was then added to a vigorously stirred mixture of 150 ml of absolute methanol, 40 ml of glacial acetic acid and 80 g of sodium iodide. The resulting iodine colored solution was stirred for 4 h and diluted with a liter of water . Sodium bisulfite was added until the color of the iodine disappeared ; this was followed by the addition of sodium carbonate until the solution was basic. The reaction mixture was then extracted with 800 ml of diethyl ether and the ethereal extract was dried over anhydrous magnesium sulfate. The drying agent was renoved by filtration and the solvent was distilled under reduced pressure. The residu gave 12.05 g of $11 \mathrm{~b}(60 \mathrm{~g}) ; \mathrm{m} . \mathrm{p} .=124-125^{\circ} \mathrm{C}$. I.R. $\left(\mathrm{CCl}_{4}\right): 1752 \mathrm{co}^{-1}$. ${ }_{1_{H} \text { n.m.r. }} \delta: 1.04\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right) ; 1.40(3 \mathrm{H}, \mathrm{m}) ; 1.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right) ; 1.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3 \alpha}, 2_{\mathrm{J}}=20\right.$
$\mathrm{Hz}) ; 2.03\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}+\mathrm{H}_{5 \beta}+\mathrm{H}_{68}\right.$) ; $2.2\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{1}\right) ; 2.41\left(1 \mathrm{H}, \mathrm{d}\right.$ of $\left.\mathrm{d},{ }^{2} \mathrm{~J}=20 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4 \mathrm{~Hz}\right)$; ${ }^{13}$ C n.m.r. $: 59.4\left(C_{1}\right) ; 218.8\left(C_{2}\right) ; 44.2\left(C_{3}\right) ; 43.5\left(C_{4}\right) ; 27.7\left(C_{5}\right) ; 22.8\left(C_{6}\right) ; 45.4\left(C_{7}\right)$; $21.7\left(\mathrm{C}_{8}\right) ; 20.8\left(\mathrm{C}_{9}\right)$.

Norcamphorquinone (12) : Apocamphor 11b (3.7 g) and selenium dioxide (7 g) were heated at $140^{\circ} \mathrm{C}$ in acetic acid (5 ml) for 15 h . After cooling the reaction mixture was treated with 2 N aqueous NaOH and extracted with ether ($3 \times 40 \mathrm{ml}$). The organic layers combined, washed with $\mathrm{H}_{2} \mathrm{O}$, then brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration gave 3.6 g of 12 (90 \%). m.p. $=113-116^{\circ} \mathrm{C}$; I.R. $\left(\mathrm{CCl}_{4}\right)$: 1780 and $1760 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ n.m.r. $\delta: 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-8) ; 1.15$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-9) ; 1.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \alpha}+\mathrm{H}_{6 \alpha}\right) ; 2.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \beta}+\mathrm{H}_{6 \beta}\right) ; 2.52\left(2 \mathrm{H}, \mathrm{d}\right.$ of $\left.\mathrm{d}, \mathrm{H}_{1}+\mathrm{H}_{4}\right)$. ${ }^{13}$ C n.m.r. : $57.7\left(\mathrm{C}_{1}\right) ; 202.7\left(\mathrm{C}_{2}\right) ; 202.7\left(\mathrm{C}_{3}\right) ; 57.7\left(\mathrm{C}_{4}\right) ; 23.0\left(\mathrm{C}_{5}\right) ; 23.0\left(\mathrm{C}_{6}\right) ; 41.05$ $\left(\mathrm{C}_{7}\right) ; 23.0\left(\mathrm{C}_{8}\right) ; 19.9\left(\mathrm{C}_{9}\right)$.

Enol-ether (10b) : 3 g of diazomethane in ether (prepared from 21.0 g of diazald, with the diazald kit) was added dropwise with cooling at $0^{\circ} \mathrm{C}$ to 3.5 g of norcamphorquinone 12 in ether (100 ml), then at $25^{\circ} \mathrm{C}$ overnight . The reaction mixture was treated with $10 \&$ aqueous HOAC (100 ml) . The organic layer washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration gave 3.82 g of $10 \mathrm{~b}(1008):$ yellow liquid. I.R. (film) : 3065, 1665 and $1660 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}$ n.m.r. $\delta:$ $0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-9) ; 1.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10) ; 1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7 \alpha}\right) ; 1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6 \alpha}\right) ; 2.24(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{6 \beta}+\mathrm{H}_{7 \beta}$) ; $2.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5},{ }^{3} \mathrm{~J}=6 \mathrm{~Hz}\right) ; 2.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}\right) ; 3.69(3 \mathrm{H}, \mathrm{s}, 0-\mathrm{Me})$; $5.15\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}$ n.m.r. : $59.5\left(\mathrm{C}_{1}\right) ; 203.8\left(\mathrm{C}_{2}\right) ; 98.0\left(\mathrm{C}_{3}\right) ; 183.7\left(\mathrm{C}_{4}\right) ; 52.1\left(\mathrm{C}_{5}\right)$; $25.3\left(\mathrm{C}_{6}\right) ; 28.9\left(\mathrm{C}_{7}\right) ; 46.6\left(\mathrm{C}_{8}\right) ; 25.6\left(\mathrm{C}_{9}\right) ; 20.8\left(\mathrm{C}_{10}\right)$; $56.0(0-\mathrm{Me})$.

8,8-Dimethylbicyclo [3.3.1] octane-2,4-dione (7) : A solution of 10 b (4.0 g) in ether (60 ml) was added to aqueous $4 \mathrm{~N} \mathrm{HCl}(60 \mathrm{ml})$ with stirring at $20^{\circ} \mathrm{C}$ overnight. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 60 \mathrm{ml})$. The organic layers conbined washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration gave 3.80 g of dione $工(97 \mathrm{q}) \cdot \mathrm{m} . \mathrm{p} .=208-211^{\circ} \mathrm{C}\left(\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl} \mathrm{C}_{2}\right)$. I.R. $\left(\mathrm{CHCl}_{3}\right): 1726,1704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ n.m.r. $\delta: 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-9) ; 1.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10) ; 1.91(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{6 \alpha}+\mathrm{H}_{7 \alpha}\right) ; 2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6 \beta}+\mathrm{H}_{7 \beta}\right) ; 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}+\mathrm{H}_{5}\right) ; 3.03\left(1 \mathrm{H}, 2 \mathrm{t},{ }^{2} \mathrm{~J}=19 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $\left.2 \mathrm{~Hz}, \mathrm{H}_{3 \beta}\right) ; 3.38\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}=19 \mathrm{~Hz}, \mathrm{H}_{3 \alpha}\right) \cdot{ }^{13} \mathrm{C}$ n.m.r. $: 60.0\left(\mathrm{C}_{1}\right) ; 207.6\left(\mathrm{C}_{2}\right) ; 50.9\left(\mathrm{C}_{3}\right)$; $207.6\left(\mathrm{C}_{4}\right) ; 60.0\left(\mathrm{C}_{5}\right) ; 25.2\left(\mathrm{C}_{6}\right) ; 25.2\left(\mathrm{C}_{7}\right) ; 41.9\left(\mathrm{C}_{8}\right) ; 24.76\left(\mathrm{C}_{9}\right) ; 22.1\left(\mathrm{C}_{10}\right)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26 ; $\mathrm{H}, 8.49$; Found : C, 71.96 ; H, 8.48 .

Enol-Acetate (10a) : N-butyllithium (1.6 M) in hexane was added dropwise to a mixture of 7 (2 g) in THF (140 ml) and triphenylmethane (10 mg) with stirring under argon at $-30^{\circ} \mathrm{C}$ (until the colour turned to pink), then acetic anhydride (3 ml) was added. The reaction mixture was left to warm to roam temperature, and treated with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$, extracted with ether ($3 \times 50 \mathrm{ml}$), washed with aqueous $\mathrm{NaHCO}_{3}(58)$, water, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration to dryness gave 2.3 g of 10 a (80 8), yellow liquid. I.R. (film) : $1770,1672,1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ n.m.r. $\delta:$ $1.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-9) ; 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10) ; 1.59\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}_{7 \alpha},{ }^{2} \mathrm{~J}=10 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10 \mathrm{~Hz}\right) ; 1.88(1 \mathrm{H}, \mathrm{t}$, $\left.{ }_{3}{ }_{6}{ }^{2},{ }^{2} \mathrm{~J}=10 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10 \mathrm{~Hz}\right) ; 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{C}_{\mathrm{J}}-\mathrm{CH}_{3}\right) ; 2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6 B}+\mathrm{H}_{7 B}\right) ; 2.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{1}\right.$, $\left.3_{J}^{6 \alpha}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right) ; 2.45\left(1 \mathrm{H}, \mathrm{d}\right.$ of $\left.\mathrm{d}, \mathrm{H}_{5} ;{ }^{3} \mathrm{~J}=6 \mathrm{~Hz} \mathrm{~B}^{4}{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right) ; 5.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right)$. ${ }^{13}$ C n.m.r. : $59.5\left(\mathrm{C}_{1}\right) ; 203.1\left(\mathrm{C}_{2}\right) ; 113.7\left(\mathrm{C}_{3}\right) ; 167.2\left(\mathrm{C}_{4}\right) ; 51.3\left(\mathrm{C}_{5}\right) ; 28.8\left(\mathrm{C}_{6}\right) ; 24.3\left(\mathrm{C}_{7}\right)$;

Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 69.21 ; H, 7.74 ; Found : C, 68.98 ; H, 7.75 .
Photocycloaddition of enol-acetate 10 a to cyclohexene $:$ A solution of $10 \mathrm{a}(2.2 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) and cyclohexene (30 ml) was purged with argon for 0.5 h in a photoreaction vessel then irradiaded with a TW. 150 .W HANAU medium pressure Hg lamp through a pyrex filter at $-50^{\circ} \mathrm{C}$ for 6 h until t.l.c. $\left(\mathrm{SiO}_{2}\right.$, EtaAc : pentane $\left.1: 4\right)$ indicated loss of starting material. Concentration to dryness gave 2.7 g of two photoadducts $A+B / 3: 1$ (after crystallisation fran pentane ; m.p. $=$
${ }^{145-155^{\circ}}{ }^{\circ}$) ; I.R. $\left(\mathrm{CCl}_{4}\right) \delta: 1730$ and $1694 \mathrm{~cm}^{-1}$, major compound $A:{ }^{1} \mathrm{H}$ n.m.r. $\delta: 2.87(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J=9.75 \mathrm{~Hz}, \mathrm{H}_{11}\right) ; 2.77(1 \mathrm{H}, \mathrm{q}(2 \mathrm{t}), \mathrm{J}=9 \mathrm{~Hz}) ; 2.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.75 \mathrm{~Hz}, \mathrm{H}_{1}\right) ; 1.95(3 \mathrm{H}, \mathrm{s}$, C-Me) ; 0.93 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15+\mathrm{Me}-16$) ; minor compound $\frac{\mathrm{B}}{\mathrm{C}}: 2.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}_{11}\right) ; 2.4$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}_{1}\right) ; 1.93(3 \mathrm{H}, \mathrm{s},-\mathrm{C}-\mathrm{Me}) ; 0.91(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15+\mathrm{Me}-16)$.

Rearrangement of photoproducts $A+\underline{B}: 10: a q u e o u s \mathrm{KOH}(10 \mathrm{ml})$ was added dropwise to a solution of photoproducts $\underline{A}+\underline{B}(410 \mathrm{mg})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ with stirring. After 24 h at roam temperature the reaction mixture was treated with $1 \mathrm{H} \mathrm{HCl}(\mathrm{Ph}=7)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ $\mathrm{ml})$. The organic layers were combined, washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and concentration to dryness gave a residue (335 mg) which was purified by flash column chromatography 28 using a mixture of pentane and ethylacetate ($4: 1 \mathrm{v} / \mathrm{v}$) as eluent to give ketone 13 (117 mg); $R f=0.5$ and diketone $14 \quad(216 \mathrm{mg}), \mathrm{Rf}=0.35$.

Ketone $\frac{13}{}$ (liquid) : I.R. (film) : $1678 \mathrm{~cm}^{-1}$. U.V. $\lambda_{\max }=252.5 \mathrm{~mm}(\varepsilon=6900$, EtOH), MS, m / z $\left(\mathrm{MH}^{+}\right)=131$ (C.I.).${ }^{1} \mathrm{H}$ n.m.r. (400 MHz) $22 \mathrm{H}, \delta 3.05$ and $3.08\left(2 \mathrm{H}\right.$, septuplet $\mathrm{H}_{4}+{ }_{3} \mathrm{H}_{9},{ }^{3} \mathrm{~J}_{\mathrm{H} 4-\mathrm{H} 9}=6$ $\mathrm{Hz},{ }^{3} \mathrm{~J}=6 \mathrm{~Hz}$ and $\left.{ }^{3} \mathrm{~J}=12 \mathrm{~Hz}\right) ; 2.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{1},{ }^{3} \mathrm{~J}=7.5_{0, ~} \mathrm{~Hz}\right) ; 2.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{11}, 3_{\mathrm{J}}=6 \mathrm{~Hz}\right)$; $2.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{13 \beta}\right) ; 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{12 \beta}\right) ; 1.75\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}_{5}+2 \mathrm{H}_{8}\right) ; 1.48{ }^{\wedge}\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}_{6}+2 \mathrm{H}_{7}+\right.$ $\mathrm{H}_{12 \alpha}+\mathrm{H}_{13 \alpha}$) ; $1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-16) ; 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15) .{ }^{13} \mathrm{C}$ n.m.r. : $47.3\left(\mathrm{C}_{1}\right) ; 140.6$ ($\mathrm{C}_{2} \mathrm{f}$; $39.4\left(\mathrm{C}_{3}\right) ; 24.4\left(\mathrm{C}_{4}\right) ; 25.1\left(\mathrm{C}_{5}\right) ; 22.8\left(\mathrm{C}_{6}\right) ; 27.8\left(\mathrm{C}_{7}\right) ; 41.0\left(\mathrm{C}_{8}\right) ; 179.5\left(\mathrm{C}_{9}\right) ; 199.3\left(\mathrm{C}_{10}\right)$; $61.2\left(C_{11}\right) ; 19.5\left(C_{12}\right) ; 19.3\left(C_{13}\right) ; 51.3\left(C_{14}\right) ; 26.7\left(C_{15}\right) ; 21.2\left(C_{16}\right)$.
Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 85.68 ; \mathrm{H}, 7.19$; Found : C, 85.15 ; H, 7.20 .
15,16-Dimethyltricyclo [9.2.1.0. ${ }^{3.8}$] tetradecan-2, 10 -dione:diketone $14: \mathrm{m} . \mathrm{p} .=91-92^{\circ} \mathrm{C}$ (pen-tane-ether) . I.R. $\left(\mathrm{CCl}_{4}\right): 1678 \mathrm{~cm}^{-1}$. U. V. $\lambda_{\max }=300 \mathrm{~mm}(\varepsilon=56)$ and $\lambda_{\max }=220 \mathrm{~mm}(\varepsilon=248$, $\mathrm{EtOH}) \cdot{ }^{1_{\mathrm{H}}}$ n.m.r. $\delta: 2.65\left(2 \mathrm{H}, \mathrm{d}\right.$ of $\mathrm{d}, \mathrm{H}_{1},{ }^{3} \mathrm{~J}=6 \mathrm{mz}$ and $\mathrm{H}_{11}, 3_{\mathrm{J}}=7.5 \mathrm{~Hz}$) $; 2.56(1 \mathrm{H}, \mathrm{d}$ of d , ${ }^{2} \mathrm{~J}=18 \mathrm{~Hz}$ and $\left.{ }^{3} \mathrm{~J}=3 \mathrm{~Hz}\right) ; 2.32_{3}\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{12 \beta}+\mathrm{H}_{13 \beta}\right) ; 2.25\left(1 \mathrm{H}, \mathrm{q}, \mathrm{H}_{9 \beta},{ }_{2} \mathrm{~J}=18 \mathrm{~Hz}\right.$ and ${ }^{3} \mathrm{~J}=$ $10 \mathrm{~Hz})$; $2.11\left(1 \mathrm{H}, \mathrm{t}\right.$ of $\mathrm{d}, \mathrm{H}_{3 \beta},{ }^{3} \mathrm{~J}_{\mathrm{H} 3-\mathrm{H8}}=12 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H} 3-H 4}=12 \mathrm{~Hz}$ and $\left.{ }_{3}{ }^{3} \mathrm{~J}_{\mathrm{H} 3}-\mathrm{H} 4 \beta_{3}=3 \mathrm{~Hz}\right) ; 1.55$ ($1 \mathrm{H}, \mathrm{q}$ of $\mathrm{d}, \mathrm{H}_{4 \alpha},{ }^{2} \mathrm{~J}_{\mathrm{H} 4 \alpha-\mathrm{H} 4 \beta}=12 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H} 4 \alpha-\mathrm{HB}}=12 \mathrm{~Hz},{ }_{J_{H 4 \alpha-H 5 \beta}}=12 \mathrm{~Hz}$ and ${ }^{\mathrm{H}}{ }^{3} \mathrm{~J}_{\mathrm{H} 4 \alpha-\mathrm{H} 5 \alpha}=3 \mathrm{~Hz}$); $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-16) ; 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15) \cdot{ }^{13} \mathrm{C}$ n.m.r. : $65.1\left(\mathrm{C}_{1}\right) ; 217.3\left(\mathrm{C}_{2}\right) ; 61.2\left(\mathrm{C}_{3}\right)$; $33.0\left(C_{4}\right) ; 29.67\left(C_{5}\right) ; 26.0\left(C_{6}\right) ; 35.4\left(C_{7}\right) ; 32.78\left(C_{8}\right) ; 51.3\left(C_{9}\right) ; 212.5\left(C_{10}\right) ; 63.3\left(C_{11}\right)$; $26.15\left(C_{12}\right.$ or $\left.C_{13}\right) ; 26.7\left(C_{13}\right.$ or $\left.C_{12}\right) ; 47.0\left(C_{14}\right) ; 32.78\left(C_{15}\right) ; 22.91\left(C_{16}\right)$.

Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 79.31 ; $\mathrm{H}, 7.49$; Found : C, 79.10 ; H, 7.50 .

Photocycloaddition of enol-ether 10 b to cyclohexene : A solution of 10 b (0.5 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (55 ml) and cyclohexene (16 ml) was purged with argon for 0.5 h in a photoreaction vessel then irradiated with a TQ 150 W HANAU medium pressure Hg lamp through a Heliosil ($\lambda>245 \mathrm{~mm}$) filter at $-50^{\circ} \mathrm{C}$ for 8 h until t.1.c. $\left(\mathrm{SiO}_{2}\right.$, EtOAc : pentane $\left.1: 4\right)$ indicated loss of starting material concentration to dryness gave 0.7 g of crude product. This product was purified by flash column chromatography 29 using silica gel ($230-400$ Mesh) and a mixture of petroleum-ether and ethyl-acetate ($4.5 / 0.5$ and $4 / 1 \mathrm{v} / \mathrm{v}$) as eluent to give $0.49 \mathrm{~g}(70 \mathrm{q})$ of a mixture of photoadducts of 15 and 16 . The material was shown to be a $3: 1$ mixture of 15 and 16 respectively by $400 \mathrm{M} \mathbf{~} \mathrm{zz} \cdot{ }^{1} \mathrm{H}$ n.m.r. . Since separation of the individual components of the photoadduct mixture was very difficult, the sequence was carried through on the mixture (0.2 g) with fractions of 20 ml . The fractions (6 to 10) isolated by the above chranatography were further purified on two $20 \times 20 \mathrm{~cm}$ silica gel Merck (PF_{254}) plates (thickness 1 mm), using a mixture or petroleum-ether and ethy1acetate ($4: 1, \mathrm{v} / \mathrm{v}$) as eluent to give 35 mg of 16 ($\mathrm{Rf}: 0.52$). Treatment of the mixture of photoadducts (15 and 16) 200 mg with $\mathrm{HCl}(0.1 \mathrm{~N})$ in $\mathrm{MeOH}(25 \mathrm{ml})$ at room temperature for 48 h , the reaction mixture was neutralised by solid NaHCO_{3}, the solvent was removed under reduced pressure to give 190 mg of the crude product. This product was purified by t.l.c. (PF ${ }_{254}$, Merck, silica gel 60) using a mixture of petroleum-ether and ethyl-acetate ($4.1, \mathrm{v} / \mathrm{v}$) to give $50 \mathrm{mg}(25 \mathrm{8})$ of 15 ($\mathrm{Rf}: 0.48$) and $110 \mathrm{mg}(55 \mathrm{i})$ of $14 \quad(\mathrm{Rf}=0.15)$.

15 : Liquid, I.R. $\left(\mathrm{CCl}_{4}\right): 1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ n.m.r. $\delta: 3.18(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; 2.6\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{9}, \mathrm{~J}=9.75\right.$ $\mathrm{Hz}) ; 2.60 \rightarrow 2.25\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}+\mathrm{H}_{11}+\mathrm{H}_{12}+2 \mathrm{H}_{13}\right) ; 2.05 \rightarrow 1.47\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}+2 \mathrm{H}_{4}+\mathrm{H}_{5}+\mathrm{H}_{3}+\mathrm{H}_{6}+\mathrm{H}_{8}\right.$ $\left.+\mathrm{H}_{12}\right) ; 1.40 \rightarrow 1.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}+\mathrm{H}_{6}+\mathrm{H}_{5}\right) ; 1.01$ and $1.0(6 \mathrm{H}, \mathrm{d}, \mathrm{Me}-15+\mathrm{Me}-16)$.
Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 79.65$; $\mathrm{H}, 7.86$; Found : C, $79.45 ; \mathrm{H}, 7.95$.
16 : Liquid, I.R. : $1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ n.m.r. $\delta: 3.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; 2.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{9}, \mathrm{~J}=10.5 \mathrm{~Hz}\right)$; $2.52(1 \mathrm{H}, \mathrm{q}) ; 1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-16) ; 1.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15)$.

References

. P. DIOSCORIDES, Opera, Lyon, 86 (1598) .
2 . G. PLINIUS SECUNDUS, Historiae naturalis, Liber. XVI, 50 .
3 . P. MATTHIOLE, Commentaires sur les six livres de P. Dioscorides, Lyon, 409 (1660) .
4 . R.W. MILLER, Journal of Natural Products, 43/14, 425 (1980).
5 . C. R. SMITH Jr, R. G. POWELL and K. L. MIKOLAJCZAK, Cancer Treat. Rep. , 60, 1157 (1976).
6. M. C. WAIN, H. C. TAYLOR, M. E. WALL, P. COGGON and A. T. McPHALL, J. Am. Chen. Soc. , 93, 2325 (1971) .
7 . R. W. MILLER, R. G. POWELL and C. R. SMITH, J. Org. Chem., 46, 1469 (1981) .
8 . a) I. KITAGAWA, H. SIBUYA, H. FUJOKA, A. KAJIWARA, Y. YAMAMOTO, A. TAKAGI, K. SUZUKI and K. KORI, Symposium papers, 22nd Symposium of the Chemistry of Natural Products, Fukuoka, october, 132-9 (1979) ; Chem. Lett., 1001 (1980) .
b) C. ROBERT CLARK, Diss. Abstr. int. B. 41/11, 4, 117 (1981).
c) Y. INOYE, C. FUKAYA and H. HAKISAWA, Bull. Chem. Soc. Japan, 54, 1117 (1981) .

9 . a) B. M. TROST and H. HIEMSTRA, J. Am. Chem. Soc., 104, 886 (1982).
b) B. M. TROST and M. JONATHAN FRAY, Tetrahedron Letters, $25 / 41$, 4605 (1984).

10 . a) S. F. MARTIN, J. B. WHITE and R. WAGNER, J. Org. Chem., 47, 3190 (1982) .
b) K. SAKAN and B. M. CRAVEN, J. Am. Chem. Soc., 105, 3732 (1983) .
c) K. J. SHEA and P. D. DAVIS, Angew. Chem. Int. Ed. Eng1., 22, 419 (1983).
d) P. A. BROWN, P. R. JENKINS, J. FAWCETT and D. R. RUSSELL, J. Chem. Soc., Chem. Conmun., 253 (1984) .
11 . H. NAGOAKA, K. OHSAWA, T. TAKATA and Y. YAMADA, Tetrahedron Letters, 25/47, 5389 (1984).
12 . a) R. A. HOLTON and R. M. KENNEDY, Tetrahedron Letters, 25/40, 4455 (1984) .
b) R. A. HOLTON, J. Am. Chem. Soc., 106, 5731 (1984) .

13 . a) H. HIKINO and P. de MAYO, J. Am. Chem. Soc., 86, 3582 (1964).
b) B. D. CHALLAND, H. HIKINO, G. L. LANGE and P. de MAYO, Chem. Conmun., 704 (1967) ; 982 (1968) ; J. Org. Chem., 34, 794 (1969) .
c) P. de MAYO, Pure and Appl. Chem., 9, 597 (1964) ; Acc. Chem. Res. , 4, 41 (1971) .

14 . D. DO KHAC, M. FETIZON and S. LAZARE, Tetrahedron, 34/8/1207 (1978) .
15 . a) W. HUCKEL and P. VOLKMALN, Ann. Chem., 664, 31 (1953) .
b) M. HANACK, Ber. 94, 1087 (1961) .

16 . J. MEINWALD and P. G. GASSMANN, J. Am. Chem. Soc., 82, 5445 (1960) .
17 . a) W. HÜCKEL, P. VOLKMANN, Jutus Liebigs, Ann. Chem., 31, 664 (1963).
b) W. C. KOKKE, J. Org. Chem. , 38, 2989 (1973).

18 . a) H. HAYAKAMA, M. ISHIDATE and I. SANO, Ber., 7, 1189 (1941) .
b) W. C. KOKKE and F. A. VARKEOISSER, J. Org. Chem., 39, 1653 (1974) .
c) R. F. CHILDS and C. V. ROGERSON, J. Am. Chem. Soc., 102, 4159 (1980) .

19 . H. FAVRE, B. MARINER and J. C. RICHER, Canad. J. Chem., 34, 1329 (1956) .
20 . M. J. BEGLEY, M. MELLOR and G. PATTENDEN, J. Chem. Soc. Chem. Commum., 1195 (1980) ;
J. Chem. Soc. Perkin Trans I, 1905 (1983) .

21 . A. J. bARKER, M. J. BEGLEY, A. M. BUCK and G. PATTENDEN, J. Chem. Soc. Perkin I, 1919 (1983) .
22 . G. GERMAIN, P. MAIN and WOOLFSON, Acta Crystallogr. Sect. A, 27, 368 (1971) .

23 . a) P. E. EATON, J. Am. Chem. Soc., 84, 2344 (1962).
b) Y. TAMNRA, H. ISHIBASHI, M. HIRAI, Y. KITA and M. IKEDA, J. Org. Chem., 40, 2702 (1975) . c) P. MARGARETHA, Helv. Chim. Acta, 57, 1866 (1974).

24 . A. BAX, Two-dimensional Nuclear Magnetic Resonance in Liquids . Delft University Press, London, (1982).
25 . J. C. BELOEIL, M. A. DELSLC, J. Y. LALLLEMAND, G. DAUPHIN and G. JEMINET, J. Org. Chem., 49, 1797 (1984)

26 . R. G. SALOMON, KIRSIEN FOLTING, W. E. STREIB and J. K. KOCHI, J. Am. Chein. Soc. , 96, 1145 (1973) .

27 . Von HARRIBERT NEH, S. BlFCMERT, W. SCHNICK and M. JANSEN, Angew. Chem., 96/11, 903 (1984) .
28 . T. KOJIMA, Y. INOUYE and H. KAKISAWA, Chem. Lett., 323 (1985).
29 . W. F. BERKOWITZ, J. PERLMATTAN and A. AMARASEKARA, Tetrahedron Letters, 26/31, 3665 (1985) •
30 . W. C. STILL, M. KAHN and A. MITRA, J. Org. Chem., 43, 2923 (1978) .

