117. Short Syntheses of (\pm)-Grandisol and (\pm)-Lineatin via a Common Intermediate

by Ivana Aljancic-Solaja ${ }^{1}$), Max Rey, and André S. Dreiding*
Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

(16. III. 87)

Abstract

A 6 -step synthesis of (\pm)-grandisol (1) is presented, which involves dichloroketene addition to 3-methyl-3butenyl acetate (4), reductive dechlorination of the adduct 6 to the ketone 7 and saponification to 8 , aldolization of 7 or 8 with acetone and cyclization to the bicyclic ketone 9 , Wolff-Kishner reduction to 14, and finally ring opening to 1 . Since 9 is a known intermediate of the synthesis of (\pm)-lineatin (2), the latter can now be obtained in 6 steps.

We present convenient and stereoselective syntheses of (\pm)-grandisol $\left.(\mathbf{1})^{2}\right)$ and (\pm)lineatin (2) ${ }^{3}$) involving 6 steps each from commercially available 3-methyl-3-butenol (3). The first 4 (new) steps lead to the common intermediate 9 , which has already been transformed [5] to 2 and is now converted to 1 .

1

2

The acetate $4(94 \%$ yield from 3) was reacted with dichloroketene 5, prepared in situ from trichloroacetyl chloride and Zn , to give the dichlorocyclobutanone $\mathbf{6}(\text { Scheme } 1)^{4}$). Dechlorination of 6 with Zn afforded the C_{s}-symmetrical acetoxy ketone 7 (63% from 4), which was saponified to the hydroxy ketone $8(85 \%)$.

Reaction of 7 or 8 with acetone in the presence of $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$ and a phase-transfer catalyst $\left(\mathrm{Et}_{3}\left(\mathrm{PhCH}_{2}\right) \mathrm{N}^{+} \mathrm{Cl}^{-}\right)$introduced the remaining 3 C -atoms at one of the two enantiotopic CH_{2} groups of the 4 -membered ring to yield the bicyclic keto ether 9 (39% from 8 or 34% from 7). This transformation involved an aldol condensation with dehydration (to 10) and an intramolecular Michael-type addition of the OH group to the conjugated double bond. Obviously, the AcO group of 7 was hydrolyzed at some intermediate stage. The conditions for this aldol condensation (see Exper. Part) are essential for its success. As by-products, we also observed some of the hydroxy enone $\mathbf{1 0}$, the keto

[^0]Scheme 1

a) $\mathrm{Cl}_{3} \mathrm{CCOCl}, \mathrm{Zn}, \mathrm{Et}_{2} \mathrm{O}$. b) $\mathrm{Zn}, \mathrm{AcOH}$, pyridine. c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}, 30 \%$ aq. NaOH soln., $\mathrm{Et}_{3}\left(\mathrm{PhCH}_{2}\right) \mathrm{N}^{+} \mathrm{Cl}^{-}$. f) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, triethylene glycol, $180-220^{\circ}$.d) $\mathrm{RuO}_{4}[5]$. g) $\mathrm{LiN}(\mathrm{f} \cdot \mathrm{Pr})_{2}$, hexane. e) DIBAH, $\mathrm{H}_{3} \mathrm{O}^{+}[5]$.

10

11

12
ether 11, and the enone 12. Keto ether 9 and hydroxy enone 10 were found to be interconvertible, a $72: 28$ equilibrium being reached from both sides under the aldol reaction conditions. Keto ether 11 resulted from an alternative aldol condensation, namely by attack of the enolate of acetone at the $\mathrm{C}=\mathrm{O}$ group of $\mathbf{8}$, followed by an intramolecular Michael addition of the OH group to the enone system. The success of our synthetic approach is due to the fact that the cyclization $\mathbf{1 0} \rightarrow \mathbf{9}$ causes the desired stereoselectivity by thermodynamic preference of the cis-fusion of the six-membered to the four-membered ring.

The bicyclic keto ether 9 had previously been prepared by another procedure and been converted to lineatin (2) by RuO_{4} oxidation ($\rightarrow \mathbf{1 3}$) followed by double carbonyl reduction with diisobutylaluminium hydride (DIBAH) and acidic workup [5]. Thus, our synthesis of $\mathbf{9}$ represents a formal total synthesis of $\mathbf{2}$.

Scheme 2

Our conversion of 9 to (\pm)-grandisol (1) starts with a Wolff-Kishner reduction to the bicyclic ether $14(85 \%)$. Simple $\operatorname{LiN}(i-\operatorname{Pr})_{2}$ treatment then gave $1(95 \%)$. The ring opening $\mathbf{1 4} \rightarrow \mathbf{1}$ may have occurred by direct β^{\prime} - and/or by indirect, intramolecular α, β^{\prime}-elimination (Scheme 2). Such reactions are known [7] to occur with acyclic dialkyl ethers upon treatment with alkyl lithium or alkyl sodium.

This work was supported by the Swiss National Science Foundaiion and by Sandoz AG, Basel.

Experimental Part

1. General. Anal. GC: SE-54 WCOT column $(25 \times 0.3 \mathrm{~mm}), \mathrm{H}_{2}$ as carrier gas, FI detector, split injection. LC: Merck LiChroprep Si 60 on silica gel $(40-63 \mu)$ at 2-6 bar. IR: Perkin-Elmer 298 . ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR: Varian $X L-200(200 \mathrm{MHz})$ and Bruker $A M-400(400 \mathrm{MHz})$; the ${ }^{13} \mathrm{C}$-one-bond multiplicities were obtained from DEPT pulse spectra. MS: Varian MAT 711 or $1129(\mathrm{CI}=$ chemical ionisation). GC/MS/IR: SE-54 ($25 \mathrm{~m} \times 0.3 \mathrm{~mm}$) or OV-1701 ($12 \mathrm{~m} \times 0.3 \mathrm{~mm}$) WCOT column coupled with a Digilab-FTS-15-FT-IR spectrometer with Digilab GC/C interface and a Hewlett-Packard 5970B mass selective detector, He as carrier gas.
2. 3-Methyl-3-butenyl Acetate (4). Procedure given in [8] modified as follows: A mixture of 3-methyl-3-butenol $(3 ; 21.5 \mathrm{~g}, 250 \mathrm{mmol})$, pyridine $(21.8 \mathrm{~g}, 275 \mathrm{mmol})$, and $\mathrm{Ac}_{2} \mathrm{O}(28.1 \mathrm{~g}, 275 \mathrm{mmol})$ was left at r.t. for 18 h , poured into ice $/ \mathrm{H}_{2} \mathrm{O}$, acidified to pH 4 with 1 N HCl and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with sat. NaHCO_{3} soln. and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Distillation through a short Vigreux column afforded $30.1 \mathrm{~g}(94 \%)$ of 4, b.p. $143-145^{\circ} / 760$ Torr ([8]: $143-145^{\circ} / 760$ Torr), as a colourless oil, 99% pure by GC. IR (film): $3090 \mathrm{w}, 2980 \mathrm{~m}, 1748 \mathrm{~s}$, $1657 w, 1370 \mathrm{~m}, 1245 \mathrm{~s}, 1050 \mathrm{~s}, 900 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.81,4.74(2$ split $s, 2 \mathrm{H}-\mathrm{C}(4)) ; 4.18(t, J=7$, $2 \mathrm{H}-\mathrm{C}(1)) ; 2.34(t, J=7,2 \mathrm{H}-\mathrm{C}(2)) ; 2.05\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{COO}\right) ; 1.76\left(t, J=1, \mathrm{CH}_{3}-\mathrm{C}(3)\right) \cdot \mathrm{MS}(70 \mathrm{eV}): n o M^{+\cdot}, 73(2), 69$ (3), 68 (35), 67 (20), 43 (100).
3. 2-(2,2-Dichloro-I-methyl-3-oxocyclobutyl)ethyl Acetate (6). To a stirred suspension of $\mathbf{4}(38.5 \mathrm{~g}, 300 \mathrm{mmol})$ and commercial (Merck \& Co.) $\mathrm{Zn}(\mathrm{Cu})$ couple ($58.5 \mathrm{~g}, 895 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(900 \mathrm{ml})$, a soln. of $\mathrm{CCl}_{3} \mathrm{COCl}$ $(70.9 \mathrm{~g}, 390 \mathrm{mmol})$ in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(210 \mathrm{ml})$ was added dropwise within 4 h at reflux. After stirring for an additional 6 h at reflux, the excess of metal was filtered off, and the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$, sat. NaHCO_{3}, soln., and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation left 72.3 g of crude 6 as a dark brown oil. A pure sample of $6(1.86 \mathrm{~g}, 68 \%)$ was obtained as a colourless oil by bulb-to-bulb distillation at $105^{\circ} / 0.05$ Torr of 2.50 g of crude 6 from another experiment performed in the same way on a $27-\mathrm{mmol}$ scale (5.90 g of crude 6). IR (film): $2970 \mathrm{~m}, 2930 \mathrm{~m}, 1812 \mathrm{~s}$, $1742 s, 1365 m, 1235 s, 1135 m, 1045 m, 990 m, 760 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 4.25\left(t, J=6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.32$, $2.86\left(A B, J=16.9,2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 2.29,2.12\left(2 d t, J=14.5,6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.08\left(s, \mathrm{CH}_{3} \mathrm{COO}\right) ; 1.40\left(s, \mathrm{CH}_{3}-\mathrm{C}\left(1^{\prime}\right)\right)$. MS (70 eV): no $M^{+\cdot}, 200(1), 198(3), 196(4), 161$ (4), 140 (4), 138 (26), $136(42), 101(8), 43(100)$. Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$ (239.10): C 45.21, H 5.06; found: C 44.99, H 5.01.
4. 2-(1-Methyl-3-oxocyclobutyl)ethyl Acetate (7). Crude 6 (72.2 g ; see Exper. 3) was added dropwise to a stirred suspension of Zn dust ($105.3 \mathrm{~g}, 1.61 \mathrm{~mol}$) in $\mathrm{AcOH}(330 \mathrm{ml})$ and pyridine (48 ml) during 45 min at $35-40^{\circ}$. After stirring for 2 h at 40° and 2 h at 70°, the mixture was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}(1200 \mathrm{ml})$, and the precipitated Zn salts were filtered off. $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$ was added to the filtrate and the mixture neutralized with solid NaHCO_{3}. The precipitated NaOAc was filtered off, the filtrate washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation left 67.3 g of a pale yellow oil which, after distillation through a short Vigreux column, afforded 32.3 g of 7, b.p. 127-130 $/ 14$ Torr, as a colourless oil (63% from 4 ; 96% pure by GC). IR (film): $2960 \mathrm{~m}, 2920 \mathrm{~m}, 2875 \mathrm{w}, 1785 \mathrm{~s}, 1740 \mathrm{~s}, 1390 \mathrm{~m}$, $1370 \mathrm{~s}, 1240 \mathrm{~s}, 1145 \mathrm{~m}, 1040 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 4.19\left(t, J=6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.0-2.6\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$, $\left.2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 2.05\left(s, \mathrm{CH}_{3} \mathrm{COO}\right) ; 2.00\left(t, J=6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 1.35\left(s, \mathrm{CH}_{3}-\mathrm{C}\left(1^{\prime}\right)\right) . \mathrm{MS}(70 \mathrm{eV}):$ no $M^{+\cdot}, 128$ (13), $110(4), 68$ (77), 43 (100). Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}(170.21)$: C 63.51, H 8.29; found: C 63.19, H 8.32.
5. 3-(2-Hydroxyethyl)-3-methylcyclobutan-1-one (8). To a stirred soln. of $7(2.55 \mathrm{~g}, 15 \mathrm{mmol})$ in MeOH (50 $\mathrm{ml}), \mathrm{Ba}(\mathrm{OH})_{2}(1.28 \mathrm{~g}, 7.5 \mathrm{mmol})$ was added in small portions during 10 min at 0°. After 30 min , the mixture was warmed to r.t., the MeOH evaporated, and the residue stirred with $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(30 \mathrm{ml})$ for several min. The insoluble material was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$, and the combined filtrates were dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and bulb-to-bulb distillation at $90-95^{\circ} / 0.1$ Torr afforded $1.63 \mathrm{~g}(85 \%)$ of $\mathbf{8}$ as a colourless oil, 100% pure by GC. IR (film): $3430 \mathrm{~s}, 2960 \mathrm{~s}, 1780 \mathrm{~s}, 1650 \mathrm{w}, 1380 \mathrm{~m}, 1140 \mathrm{~m}, 1060 \mathrm{~m}, 1040 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 3.79(t$, $\left.J=6.7,2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.1-2.7(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(2), 2 \mathrm{H}-\mathrm{C}(4)) ; 1.93\left(t, J=6.8,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.62(\mathrm{~s}, \mathrm{OH}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 1.35\left(s, \mathrm{CH}_{3}-\mathrm{C}(3)\right)$. $\mathrm{MS}(70 \mathrm{eV}):$ no $M^{+\cdot}, 113(1), 111(1), 110(1), 100(36), 68(76), 67(68), 56(100), 41(88)$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$ (128.17): C 65.59, H 9.44; found: C 65.82, H 9.64.
6. 2,2,6-Trimethyl-3-oxabicyclof4.2.01octan-8-one (9). 6.1. From 8 . To a stirred soln of $\mathbf{8}(0.64 \mathrm{~g}, 5 \mathrm{mmol})$ in acetone ($10 \mathrm{ml}, 136 \mathrm{mmol}$), $30 \% \mathrm{aq}$. NaOH soln. ($5 \mathrm{ml}, 50 \mathrm{mmol}$) and triethylbenzylammonium chloride (0.25 ml of a l m soln. in $\mathrm{H}_{2} \mathrm{O}$) were added dropwise separately and simultaneously over 10 min at r.t. After stirring for 42 h , the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, the combined extracts dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed at 100 Torr. The crude product consisted, according to GC and GC/MS/IR, of a mixture of 4-methyl-3-penten-2-one,

4-hydroxy-4-methyl-2-pentanone, 3,5,5-trimethyl-2-cyclohexen-1-one, 8, 11, 9, 10, and $\mathbf{1 2}$ (order of GC elution) in the ratio 14:33:3:5:4:28:5:6. Using tridecane as internal standard in GC, the yield for 9 was determined to be 50%, and the yields of 10,11 , and 12 were 10,7 , and 9%, resp.; the starting material was still present to the extent of 14%. LC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 8: 2$) afforded a major fraction from which, after bulb-to-bulb distillation at $85^{\circ} / 2$ Torr, $0.33 \mathrm{~g}(39 \%)$ of 9 were obtained as a colourless oil, 99% pure by GC. Spectral data: as reported in [5].
6.2. From 7. Acetate $7(0.85 \mathrm{~g}, 5 \mathrm{mmol})$ was reacted and worked up as described in 6.1 (stirring for 21 h). The crude product was treated once more with the same amounts of acetone, NaOH , and $\mathrm{Et}_{3}\left(\mathrm{PhCH}_{2}\right) \mathrm{N}^{+} \mathrm{Cl}^{-}$(stirring for 20 h) and worked up as in 6.1 . The crude product consisted, according to GC and GC/MS/IR, of a mixture of 4-methyl-3-penten-2-one, 4-hydroxy-4-methyl-2-pentanone, 3,5,5-trimethyl-2-cyclohexen-1-one, 8, 11, 9, 10, and 12 in the ratio of $14: 33: 2: 8: 4: 25: 4: 4$. Using tridecane as internal standard, the yields estimated for $\mathbf{8}, \mathbf{1 1}, \mathbf{9}, \mathbf{1 0}$, and 12 were $21,7,42,9$, and 5%, resp. LC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 8: 2$) gave, aside from 4-methyl-3-penten-2-one, two fractions. Repeated LC (hexane/Et $\mathrm{L}_{2} \mathrm{O}$: 2) of the faster moving fraction yielded a small amount of pure $\mathbf{1 2}$ and, after bulb-to-bulb distillation at $85^{\circ} / 2$ Torr, $0.29 \mathrm{~g}(34 \%)$ of $9,98 \%$ pure by GC. From the other fraction, after repeated LC (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:1), small amounts of pure 11 and $\mathbf{1 0}$ were obtained as colourless oils.

1-(5-Methyl-2-oxabicyclo[3.1.1]hept-1-yl)propan-2-one (11): IR (CHCl_{3}): 2960s, 2920s, 2860m, 2730w, $1710 s, 1455 m, 1425 m, 1362 m, 1312 m, 1240 m, 1208 m, 1085 m, 1055 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right): 4.03(t, J=6.7$, $\left.2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 2.58(s, 2 \mathrm{H}-\mathrm{C}(1)) ; 2.15(\mathrm{~s}, 3 \mathrm{H}-\mathrm{C}(3)) ; 2.05-1.93,1.69-1.64\left(2 \mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right) ; 1.86(t$, $\left.J=6.7,2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 1.10\left(s, \mathrm{CH}_{3}-\mathrm{C}\left(5^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 207.2(s, \mathrm{C}(2)) ; 77.5\left(s, \mathrm{C}\left(1^{\prime}\right)\right) ; 60.6(t$, $\left.\mathrm{C}\left(3^{\prime}\right)\right) ; 52.5(t, \mathrm{C}(1)) ; 43.8\left(2 t, \mathrm{C}\left(6^{\prime}\right), \mathrm{C}\left(7^{\prime}\right)\right) ; 37.2\left(t, \mathrm{C}\left(4^{\prime}\right)\right) ; 36.4\left(s, \mathrm{C}\left(5^{\prime}\right)\right) ; 31.5\left(q, C \mathrm{H}_{3}-\mathrm{C}\left(5^{\prime}\right)\right) ; 26.6(q, \mathrm{C}(3)) . \mathrm{MS}$ $(70 \mathrm{eV}): 153(4), \mathrm{I} 40(97), 111(11), 110(10), 98(20), 69(68), 68(39), 43(100) . \mathrm{CI}-\mathrm{MS}: 169$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ (168.24): C 71.39, H 9.59; found: C 71.42, H 9.68.

3-(2-Hydroxyethyl)-2-isopropylidene-3-methylcyclobutan-1-one (10): IR (film): $3440 \mathrm{~m}, 2930 \mathrm{~m}, 2870 \mathrm{~m}, 1738 \mathrm{~s}$, $1665 s, 1440 \mathrm{~m}, 1370 \mathrm{~m}, 1172 \mathrm{~m}, 1078 \mathrm{~m}, 1020 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.9-3.6\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.9,2.58(A B$, $J=17,2 \mathrm{H}-\mathrm{C}(4)) ; 2.08,1.80\left(2 s,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(2)\right) ; 2.1-1.8\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.43\left(s, \mathrm{CH}_{3}-\mathrm{C}(3)\right) ; 1.35(s, \mathrm{OH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$). MS (70 eV): $168\left(2, M^{+}\right), 153(7), 137(9), 125$ (26), 107 (14), 82 (64), 67 (100), 55 (37). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ (168.24): C 71.39, H 9.59; found: C 71.53, H 9.65.

7-Isopropylidene-2,2,6-trimethyl-3-oxabicyclo[4.2.0]octan-8-one (12): IR (film): $2930 \mathrm{~m}, 2870 \mathrm{~m}, 1740 \mathrm{~s}, 1665 \mathrm{~s}$, $1440 \mathrm{~m}, 1065 \mathrm{~m}, 740 \mathrm{~m}$. 'H-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.9-3.6(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(4)) ; 2.52(\mathrm{~s}, \mathrm{H}-\mathrm{C}(1)) ; 2.08,1.80(2 \mathrm{~s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(7)\right) ; 2.1-1.9(m, 2 \mathrm{H}-\mathrm{C}(5)) ; 1.53,1.40\left(2 s,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(2)\right) ; 1.25\left(s, \mathrm{CH}_{3}-\mathrm{C}(6)\right) . \mathrm{MS}(70 \mathrm{eV}): 208\left(7, M^{+\cdot}\right)$, 193 (7), 153 (7), 111 (100), 107 (13), 43 (23). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ (208.30): C 74.96, H 9.67; found: C 74.81, H 9.85 .
7. Equilibration of 9 and $\mathbf{1 0}$. A sample of pure 9 and a sample of pure $\mathbf{1 0}$ (each $3 \mathrm{mg}, 0.018 \mathrm{mmol}$) were stirred separately, each with 30% aq. NaOH soln. $(0.1 \mathrm{ml}, 1 \mathrm{mmol})$ and $\mathrm{Et}_{3}\left(\mathrm{PhCH}_{2}\right) \mathrm{N}^{+} \mathrm{Cl}^{-}\left(5 \mu \mathrm{l}\right.$ of a 1 m soln. in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. After 30 min , the mixtures were extracted with $\mathrm{Et}_{2} \mathrm{O}$. GC showed the soln. in both samples to contain 9 and $\mathbf{1 0}$ in the ratio of $72: 28$.
8. 2,2,6-Trimethyl-3-oxabicyclo[4.2.0]octan (14). To a soln. of $9(0.97 \mathrm{~g}, 5.8 \mathrm{mmol})$ in triethyleneglycol (13 ml), hydrazine hydrate ($5.6 \mathrm{ml}, 116 \mathrm{mmol}$) was added and the mixture heated at 90° for 1 h , i.e. until GC showed the absence of 9 . After cooling to r.t., anh. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.75 \mathrm{~g}, 19.9 \mathrm{mmol})$ was added and the mixture heated in a bulb-to-bulb distillation apparatus to 180° for 30 min and then to 220° for 30 min , while the product was allowed to distill into the receiver bulb. The distillate was diluted with $80 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, extracted with pentane ($2 \times 30 \mathrm{ml}$), and the extract was washed with $1 \% \mathrm{HCl}$ soln. $(20 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$, and brine (30 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was distilled off over a short Vigreux column at atmospheric pressure, and the residue was purified by bulb-to-bulb distillation at $95 \% / 45$ Torr to give $0.76 \mathrm{~g}(85 \%)$ of 14 [9] as a colourless oil, 96% pure by GC. IR (film): $2980 \mathrm{~s}, 2950 \mathrm{~s}$, $2870 \mathrm{~s}, 1465 m, 1378 m, 1365 m, 1220 m, 1095 m, 1078 s, 812 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.6-3.4(m, 2 \mathrm{H}-\mathrm{C}(4))$; $2.0-1.1(m, \mathrm{H}-\mathrm{C}(1), 2 \mathrm{H}-\mathrm{C}(5), 2 \mathrm{H}-\mathrm{C}(7), 2 \mathrm{H}-\mathrm{C}(8)) ; 1.09,1.06\left(2 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(2)\right) ; 0.94\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 70.7(s, \mathrm{C}(2)) ; 57.7(t, \mathrm{C}(4)) ; 47.7(d, \mathrm{C}(1)) ; 35.5(t, \mathrm{C}(6)) ; 34.0,32.7(2 d, \mathrm{C}(5), \mathrm{C}(7)) ; 28.0,26.3$, 24.8 ($\left.3 \mathrm{q},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(2), \mathrm{CH}_{3}-\mathrm{C}(6)\right) ; 18.2(t, \mathrm{C}(8))$. MS (70 eV): no $M^{+}, 88$ (4), 74 (6), 70 (9), 61 (14), 45 (24), 43 (100). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (154.25): C 77.86, H 11.76 ; found: C 77.80, H 11.76.
9. 2-Isopropenyl-1-methylcyclobutaneethanol ($=$ Grandisol; 1). To a soln. of $\mathrm{Li}(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{~N}$, prepared by dropwise addition of 1.4 M BuLi in hexane $(6.9 \mathrm{ml}, 9.7 \mathrm{mmol})$ to $(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{NH}(1.4 \mathrm{ml}, 10 \mathrm{mmol})$ at -78° with stirring, was added $14(135 \mathrm{mg}, 0.88 \mathrm{mmol})$. The mixture was kept 1 h at -70°, allowed to warm to r.t. and then heated at $75-80^{\circ}$ (oil bath) for 36 h . The mixture was poured into cold sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$, washed with $1 \% \mathrm{HCl}$ soln. $(20 \mathrm{ml})$ and brine $(2 \times 20 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removing the solvent at atmospheric pressure, the residual yellow oil was bulb-to-bulb distilled at $120-130^{\circ} / 14$ Torr to afford $128 \mathrm{mg}(95 \%)$ of 1 as a colourless oil, 96% pure by GC. IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{MS}$: as reported in [9].

REFERENCES

[1] J.H. Tumlinson, D. D. Hardee, R.C. Gueldner, A. C. Thompson, P. A. Hedin, J. P. Ninyard, Science 1969, 166, 1969.
[2] F.X. Webster, R. M. Silverstein, J. Org. Chem. 1986, 51, 5226; M. Demuth, A. Palomer, H. Sluma, A. K. Dey, C. Krüger, Y. Tsay, Angew. Chem. 1986, 98, 1093; A.I. Meyers, S. A. Fleming, J. Am. Chem. Soc. 1986, 108, 306; G. Rosini, E. Marotta, M. Petrini, R. Ballini, Tetrahedron 1985, 41, 4633 and ref. cited therein; Review: K. Mori, in 'The Total Synthesis of Natural Products', Ed. J. ApSimon, Wiley-Interscience, New York, 1981, Vol.4, p. 80.
[3] J. G. MacConnel, J.H. Borden, R.M. Silverstein, E. Stokkink, J. Chem. Ecol. 1977, 3, 549; V. Schurig, R. Weber, D. Klimetzek, U. Kohnle, K. Mori, Naturwissenschaften 1982, $69,602$.
[4] L. Skattebel, Y. Stenstrøm, Acta Chem. Scand., Ser. B 1985, 39, 291 and ref. cited therein.
[5] B. D. Johnston, N. K. Slessor, A. C. Oehlschlager, J. Org. Chem. 1985, 50, 114.
[6] K. Mori, T. Uematsu, M. Minobe, K. Yanagi, Tetrahedron 1983, 39, 1735.
[7] J. March, 'Advanced Organic Chemistry', 3rd edn., J. Wiley \& Sons, New York, 1985, p. 903; A. Maercker, W. Demuth, Liebigs Ann. Chem. 1977, 1909.
[8] L. Maguet, M. Lerer, Bull. Soc. Chim. Fr. 1965, 3262.
[9] R. Zurfluh, L. L. Dunham, V. L. Spain, J. B. Siddall, J. Am. Chem. Soc. 1970, 92, 425.

[^0]: ${ }^{1}$) On leave of absence from Institute of Chemistry, Technology and Metallurgy, Belgrade, Jugoslavia.
 ${ }^{2}$) Aggregation pheromone component isolated from Anthonomus grandis (Curculionidae, Coleoptera) [1]. There are 21 syntheses of grandisol (1) [2].
 ${ }^{3}$) Aggregation pheromone component produced by Trypodendron lineatis (Scolytidae, Coleoptera) [3]. There are 10 syntheses of lineatin (2) [4-6].
 ${ }^{4}$) $\mathrm{A}[2+2]$ addition of dichloroketene to construct the cyclobutane ring of $\mathbf{2}$ was also used in [5] and [6].

