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Mixed er-NHC/Phosphine Pd(II) Complexes and Their Catalytic 
Activity in Buchwald-Hartwig Reaction under Solvent-Free 
Conditions
Alexandra A. Ageshina,a Grigorii K. Sterligov,a,b Sergey A. Rzhevskiy,a,b Maxim A. Topchiy,a,b Gleb A. Chesnokov,a,b Pavel S. 
Gribanov,a,c Elizaveta K. Melnikova,b,c Mikhail S. Nechaev,a,b Andrey F. Asachenko,a,b and Maxim V. Bermeshev*a

A series of novel (NHC)PdCl2-PR3 complexes was synthesized and fully characterized by 1H, 13C, 31P NMR and 
FT-IR spectroscopy. These complexes showed high catalytic activity toward solvent-free Buchwald-Hartwig 
amination. Both primary and secondary amines were efficiently utilized under the same reaction conditions. 
Solvent-free synthesis of valuable N-aryl carbazoles and similar N-heterocyclic systems was described.

Introduction
In the past 30 years, palladium-catalyzed cross-coupling 
reactions leading to formation of C–N bonds have become 
widely used in laboratory practice, as well as industrial fine 
organic synthesis.1, 2 The Buchwald-Hartwig amination is one 
of the most popular cross-coupling reactions,3, 4 allowing the 
efficient synthesis of N- and N,N-substituted arylamines, which 
are structural fragments of drugs5, 6 and materials for organic 
electronics.7-9

Typically, cross-coupling reactions are performed in solutions, 
whereas the absence of solvent may be advantageous. 
Solvent-free cross-coupling reactions proceed at higher rates 
than conventional ones (in solvent); considerably higher 
reactant and catalyst concentrations drastically facilitate the 
reaction. The absence of frequently used green protic solvents 
reduces formation of aryl halide reduction byproducts. In case 
of virtually quantitative product yield, work-up is significantly 
simplified. Solvent-free conditions avoid hazards and toxicity 
associated with some aprotic solvents. Furthermore, energy 
costs of solvent-free reactions are reduced.
Reports on solvent-free Buchwald–Hartwig amination are 
quite limiting, only 14 works have been published on the 
topic.10-23 A number of solvent-free mechanochemical 
Buchwald-Hartwig amination protocols have been 
published.24-26 In continuation of our research on the 

development of new transition metals N-heterocyclic carbene 
(NHC) complexes and their performance under 
environmentally benign conditions,21-23, 27-31 we decided to 
continue our study of the Buchwald–Hartwig amination (BHA) 
under solvent-free conditions. Earlier, in our works we have 
developed efficient catalytic systems for amination of aryl 
halides by secondary amines (Pd(OAc)2/RuPhos)21 and 
selective amination by primary arylamines to form 
diarylamines (expanded ring NHC complex (6-
Dipp)Pd(cinn)Cl)22, 23 under solvent-free conditions. Thus, we 
were interested in the development of catalytic system which 
would combine activity of both phosphine- and NHC-based 
systems, and be suitable for solvent-free monoarylation of 
primary and secondary amines and double arylation of primary 
amines.
Previously it was shown that the introduction of auxiliary 
ligands to NHC-Pd complexes can be beneficial and usually 
provides new features in their catalytic activity.32-34 Thus, it 
was shown that introduction of the “throw-away” pyridyl 
ligands facilitate C–C bond formation,35 substitution of pyridyl 
ligand to alkylamine ligand renders higher activity for both C–C 
and C–N cross-couplings.36, 37 Also Cazin et al. showed that 
combination of NHC-Pd complex with phosphine ligand can 
enhance catalytic performance in Suzuki-Miyaura cross-
coupling.38 Wang et al. showed that NHC-Pd complex with 
arsine, stibine or phosphine auxiliary ligands are active 
catalysts for both Hiyama and Buchwald-Hartwig cross-
coupling reactions.39, 40 It can be assumed that combination of 
phosphine catalyst, active in one reaction, and NHC-catalyst, 
active in another one, may produce well-defined catalytic 
system active in both reactions.
From our results reported previously it could be assumed that 
combination of 6-Dipp and RuPhos ligands on a palladium 
centre would give the most efficient catalyst for the solvent-
free amination reaction. However, introduction of phosphine 
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ligand inevitably causes alteration in both reactivity and 
selectivity of the resulting mixed NHC-phosphine palladium 
complex. That’s why we decided to study a series of NHC-Pd-
phosphine complexes with different combinations of 
NHC/phosphine ligands and find the most efficient catalyst for 
the reaction.

Results and discussion
Mixed N-heterocyclic carbene/phosphine complexes are 
accessible in a few ways: introduction of NHC into phosphine-
Pd complex (Pd(PR3)2Cl2), introduction of phosphine ligand into 
NHC-Pd complex ([(NHC)PdCl2]2) and one-pot synthesis from 
NHC·HCl, palladium(II) chloride and phosphine in presence of 
weak base. Whereas relatively high acidity of five-membered 
NHC precursors allows easy generation of free NHC, er-NHC’s 
ones are considerably less acidic,41, 42 favoring only second 
synthetic way as the most feasible. Following this strategy, a 
series of novel er-NHC-PdCl2-PR3 complexes was synthesized 
by reaction of bridged [(NHC)PdCl2]2 with a tertiary phosphine 
according to a reported technique.43 Introduction of 
phosphine into bridged palladium dichloride complex proceeds 
quickly and smoothly, affording corresponding mixed NHC-
phosphine complex in less than half an hour. Complexes (3a–j) 
were easily obtained in high to quantitative yields (Scheme 1). 
All complexes are yellow or yellowish solids, light, moisture 
and air stable. X-ray quality crystals of complexes 3a and 3f 
were grown by slow evaporation of pentane/dichloromethane 
solutions.
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Scheme 1 Synthesis of er-NHC-PdCl2-PR3 complexes.

Figure 1 Molecular structure of complexes 3a (left) and 3f (right). Hydrogen 
atoms and iPr groups are omitted for clarity.

All complexes were characterized by 1H, 13C, 31P NMR and FT-IR 
spectroscopy and HRMS. 13C NMR spectra of complexes 3a-j 
showed signal of C2-atom as doublet with 2JCP coupling 

constant from 175 to 192 Hz, which is characteristic for the 
trans position of the phosphine and NHC ligands.44-46

31P NMR spectra of all complexes except 3j (signal was 
broadened) expectedly showed sharp singlets shifted 
downfield when compared to free phosphine at room 
temperature (Table 1). Chemical shift of 31P atom was in 
accordance with donor ability of phosphine ligands, whereas 
electronic and steric properties of NHC-ligands have almost no 
effect on phosphorus chemical shift of coordinated phosphine. 
Previously it was shown, that 13C chemical shift of carbene 
atom (C2) may be a sensitive tool for measurement of 
donating ability of trans-ligand in square Pd(II) complexes.47 In 
case of complexes 3a, 3f-j 13C NMR spectra provided the 
following series of phosphine ligands based on their donating 
ability was obtained: RuPhos>SPhos~DavePhos>CyJohnPhos> 
>PPh3>P(o-Tol)3. Similar trend was observed for complexes 3a, 
3f-j from 31P NMR spectra: SPhos>RuPhos~ 
DavePhos>CyJohnPhos>>PPh3>P(o-Tol)3.

Table 1. 13C and 31P NMR data for complexes 3a–j (δ in ppm, J in Hz)a

C (carbene) 31P
(NHC)PdCl2-PR3 complex

δC
2JCP δP (complex) δP (PR3)

(6-Dipp)PdCl2-SPhos (3a) 198.5 182.6 39.0
IPrPdCl2-SPhos (3b) 175.0 187.2 40.1
SIPrPdCl2-SPhos (3c) 202.0 176.2 39.4

IMesPdCl2-SPhos (3d) 172.6 186.6 38.9
SIMesPdCl2-SPhos (3e) 200.1 175.1 38.5

-12.6

(6-Dipp)PdCl2-RuPhos (3f) 198.9 182.7 38.7 –12.7
(6-Dipp)PdCl2-DavePhos (3g) 198.4 182.8 38.7 –13.3

(6-Dipp)PdCl2-PPh3 (3h) 197.2 192.4 17.5 –9.0
(6-Dipp)PdCl2-P(o-Tol)3 (3i)b 195.0 191.1 15.9 –33.2

(6-Dipp)PdCl2-CyJohnPhos (3j) 197.8 182.7 32.2 –16.8

a NMR were recorded at 298 K. b NMR were recorded at 323 K.

Table 2. Screening of catalytic systems in BHA reaction

H
NBr

NH2

O

Br H
N

N

O

(NHC)PdCl2-PR3
0.5 mol %

t-BuONa
neat, 110 °C, 24h

+

+

4a

5a

Isolated yield (%)
Entry Catalyst

4a 5a
1 (6-Dipp)PdCl2-SPhos (3a) 98 95
2 IPrPdCl2-SPhos (3b) 86 84
3 SIPrPdCl2-SPhos (3c) 90 82
4 IMesPdCl2-SPhos (3d) 0 85
5 SIMesPdCl2-SPhos (3e) 0 92
6 (6-Dipp)PdCl2-RuPhos (3f) 86 93
7 (6-Dipp)PdCl2-DavePhos (3g) 86 84
8 (6-Dipp)PdCl2-PPh3 (3h) 48 15
9 (6-Dipp)PdCl2-P(o-Tol)3 (3i) 98 14

10 (6-Dipp)PdCl2-CyJohnPhos (3j) 98 70
In order to find the most efficient catalyst in arylation reaction 
of both RNH2 and R2NH under solvent-free conditions, 
synthesized complexes were tested in the BHA reaction of 1-
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bromonaphthalene with aniline (primary amine) and 1-bromo-
4-methoxybenzene with diphenylamine (secondary amine) 
(Table 2).
The most efficient complex for both types of solvent-free 
Buchwald-Hartwig amination was (6-Dipp)PdCl2-SPhos. 
Interestingly, that catalytic performance of complexes with (6-
Dipp) carbene ligand (3a, 3f-j) in arylation of N,N-diarylamine 
was in agreement with donor ability as judged from 31P NMR.
Investigation of complex 3a catalytic activity in reactions of 
primary (Table 3) and secondary amines (Table 4) was the next 
stage of our study.

Table 3. Coupling of primary amines with various aryl halides

H
N

4a, 98%,a X=Br

H
N

O

4b, >99%,a X=Br

H
N

4c, >99%,a X=Br

HN

4d, 80%,a X=Br

N

H
N

4e, 68%,a X=Cl

N
SN

H
N

N
H

4f, 89%,b X=Br

S

H
N

4g, 64%,a X=Br

H
N

4j, 41%,c X=Br
93%,d X=Br

H
N

4i, 72%,c X=Br

H
N

4h, 51%,c X=Br

R2
NH2

R1

H
N

R2
R1

X
(6-Dipp)PdCl2-SPhos

t-BuONa
neat, 110 °C, 24h, Ar

X = Br, Cl 4a-j

a Reaction conditions: ArX or (Het)ArX (1.0 mmol, 1 equiv.), primary amine (1.0 
mmol, 1 equiv.), (6-Dipp)PdCl2-SPhos (0.5 mol %), t-BuONa (1.2 equiv.), neat, 110 
°C, 24h. b Primary amine (2.0 mmol, 2 equiv.), (6-Dipp)PdCl2-SPhos (2 mol %), t-
BuONa (2.4 equiv.), c (6-Dipp)PdCl2-SPhos (1 mol %). d PhBr (2 equiv.), (6-
Dipp)PdCl2-SPhos (2 mol %).

Cross-coupling of primary amines resulted in a series of 
diarylamines (4a–d) and arylheteroaryl amines (4e–g) in good 
to quantitative yields (Table 3). The elaborated catalyst system 
allowed amination of sterically loaded aryl bromides (4a, 4b, 
4d, 4i) and heteroaryl chlorides (4e). Amination of 4,7-
dibromobenzol[c][1,2,5]thiadiazole allowed to obtain 4f with 
high (89%) yield; analogues of which are may be used for 
designing of new efficient red thermally activated delayed 
fluorescence emitters (TADF)48 and in synthesis of stable π-
conjugated polymers based on polyanilines demonstrating 
excellent electronic properties.49 Bulky and high-melting 1-
adamantylamine afforded products 4h and 4i in somewhat 
lower yields, whereas arylation in presence of 2 equivalents of 
bromobenzene afforded product 4j in 93%.

Table 4. Coupling of secondary amines with various aryl halides.

Ph
N

5a, 95%,a X=Br

Ph

O

N

N

O

5d, >99%,a X=Br

O

N

NH

5f, 60%,c X=Cl

N

N

O

5e, >99%,a X=Br

N

5b, 97%,b X=Br

N

N
Ph

Ph

5c, 78%,b X=Br

N

N
Ph

Ph

5h, 98%,e X=Br

N
Ph

N

N
PhPh

Ph

Ph

N
Ph

Ph

5i, 82%,e X=Br

N N
PhPh

5g, >99%,d X=Br

R2

H
N

R1
N

R2
R1

X

(6-Dipp)PdCl2-SPhos
t-BuONa

neat, 110 °C, 24h, Ar

X = Br, Cl 5a-i

R3

R3

Ph

Ph

a Reaction conditions: ArX or (Het)ArX (1.0 mmol, 1 equiv.), secondary amine (1.0 
mmol, 1 equiv.), (6-Dipp)PdCl2-SPhos (0.5 mol %), t-BuONa (1.2 equiv.), neat, 110 
°C, 24h. b (6-Dipp)PdCl2-SPhos (1 mol %). c Reaction time 10 min. d Secondary 
amine (2.0 mmol, 2 equiv.), (6-Dipp)PdCl2-SPhos (2 mol %), t-BuONa (2.4 equiv.). e 
Secondary amine (3.0 mmol, 3 equiv.), (6-Dipp)PdCl2-SPhos (3 mol %), t-BuONa 
(3.6 equiv.).

Next, we evaluated performance of developed catalyst 3a in 
arylation of secondary amines with mono- (5a-f), di- (5g) and 
trihalo (hetero)aryls (Table 4, 5h, 5i). All products were 
isolated in high to virtually quantitative yields, demonstrating 
high catalytic efficiency of complex 3a for arylation of 
secondary amines. It is worth mentioning that our catalytic 
system 3a afforded 5i in 82% yield from 1,3,5-
tribromobenzene and diphenylamine, whereas previously 
reported yield was as low as 25%.50 
All the examples described above clearly showed that the 
developed catalyst 3a was efficient in arylation of both primary 
and secondary amines. Thus, it was interesting if our catalyst is 
suitable for one-pot sequential double arylation of primary 
amines (Table 5). We verified this approach to produce 
triarylamines. The commercially available tri-p-tolylamine 
(TTA, 6b), a hole transport molecule51, 52 was obtained in high 
yield, similar to 4-methyl-N,N-diphenylaniline (6a) and 4-
methoxy-N,N-diphenylaniline (5a).
The success of one-pot solvent-free double arylation of 
primary amines prompted us to investigate applicability of our 
conditions to the synthesis of N-aryl carbazole derivatives via 
one-pot solvent-free diarylative cyclization (Scheme 2). 
Carbazoles have earned popularity as structural fragments of 
organic molecules used in electronic and optoelectronic 
devices,51, 53-58 since they demonstrate unique thermal, 
electric, and optic properties,59-63 they also demonstrate wide 
scope of biological activity.64, 65

Br
Br

ArNH2
[Pd]

NH
Br

Ar

[Pd]

N
Ar

Scheme 2. One-pot diarylative cyclization reaction.
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Table 5. Double arylation of arylamines.

N N

OMe
MeO

MeO
OMe

MeO
OMe

MeO
OMe

N
Ph

Ph

6a, 94%a
O

N
Ph

Ph

5a, 90%a

N
p-Tol

p-Tol

6b, 89%a

6i, 79%a

N Ph

6f, 44%a,b

S

N

S

p-Tol

6h, 70%a

N p-Tol

6g, 52%a,b

N

Ph
6c, >99%a

N

p-Tol
6d, >99%a

N
Ph

tBu

tBu

NH2 (6-Dipp)PdCl2-SPhos
t-BuONa Ar

N2ArBr

Ar

N
p-Tol

tBu

tBu

S

N

S

Ph

N N

6m, 76%c,d

NN

6l, 69%b,c6j, 62%a 6k, 54%a

neat, 110 °C 24 h, Ar

N
OMe

OMeMeO

MeO

Ph

6e, 61%a,b

6n, 25%c,d

5a, 6a-n

a Reaction conditions: arylbromide (1.0 mmol, 2 equiv.), arylamine (0.5 mmol, 1 equiv.), 
(6-Dipp)PdCl2-SPhos (2 mol %), t-BuONa (2.4 equiv.), neat, 110 °C, 24h. b 150 °C.c 
aryldiamine (0.5 mmol, 1 equiv.), 2,2'-dibromobiphenyl (1.0 mmol, 2 equiv.), (6-
Dipp)PdCl2-SPhos (4 mol %), t-BuONa (4.8 equiv.). d 170 °C. 

Implementation of our solvent-free conditions allowed us to 
obtain broad spectrum of N-arylcarbazole derivatives. 
Amination of 2,2’-dibromobiphenyl with aniline and p-
toluidine afforded carbazoles 6c and 6d in virtually 
quantitative yields. In some cases used dibromobiaryles have 
melting points above 150 °C, in such cases reactions were 
performed at 150 or 170 °C as indicated in Table 5. 
Interestingly, such harsh reaction conditions did not diminish 
catalytic activity of the complex 3a. Thus, tetra-
methoxycarbazole derivative 6e was isolated in 61% yield 
when reaction was performed at 150 °C. The same reaction 
conditions were employed for synthesis of 
dibenzo[c,g]carbazole derivatives 6f and 6g, yielding the 
products in 44 and 52%, respectively, whereas the only 
reported yield of 6f synthesis was only 1 %.66 These molecules, 
containing flat bis-naphthelene fragment, can be applied to 
produce materials for excimer emission. 56, 59

Dithieno[3,2-b:2′,3′-d]pyrrole derivatives 6h and 6i, congeners 
of carbazole, were isolated in 70 and 79% yields, respectively. 
These compounds are also interesting from the prospect of 
their unique physical properties.67-71 The main synthesis 
method of this class of compounds has been intramolecular 
palladium-catalyzed (Pd2(dba)3/PtBu3

56, 72 or Pd2(dba)3/BINAP73 

systems) amination of 3,3′-dibromo-2,2′-bithiophene in 
toluene. Our approach allows to produce these compounds 
with comparable yields, but does not require solvents usage.
Analogous diarylative cyclization of 2,2’-dibromo-4,4’di-tert-
butyldiphenylmethane afforded novel N-arylated 
dihydroacridines 6j and 6k in good yields. Derivatives of N-aryl 
dihydroacridine are valuable source for the synthesis of 
acrydinium type photocatalysts74 and useful building blocks in 
supramolecular chemistry for assembly of molecular 
nanomotors.75 Previously, the most popular method of 
dihydroacridines synthesis was a multistep approach: 
reduction of acridinon to dihydroacridine with further N-
arylation of NH-dihydroacridine.76, 77 Our approach allows to 
reduce the synthesis to a single step.
Finally, we tried diarylative cyclization to obtain different 
bis(9H-carbazole-9-yl)arenes, which have a numerous 
applications in a field of organic electronics. 57, 78-80 Because of 
high melting points of both starting materials, syntheses of 6m 
and 6n were performed at 170 °C, whereas 6l was synthesized 
at 150 °C. Our conditions allowed solvent-free synthesis of 
these compounds for the first time. 

Conclusions
In summary, a series of novel mixed er-NHC/phosphine 
palladium(II) complexes was synthesized and tested in solvent-
free Buchwald-Hartwig amination reaction of primary and 
secondary amines. Complex 3a, bearing (6-Dipp) NHC and 
SPhos as ligands, was found to be the most efficient catalyst 
for both types of amination reactions. 
It turned out, that complex 3a was capable to effectively 
catalyze solvent-free diarylative cyclization between 
arylamines and dibromobiaryls / dibromodiphenylmethane/ 
dibromodithiophen affording N-arylated carbazoles, 
dihydroacridines and dithieno[3,2-b:2′,3′-d]pyrroles. These 
types of compounds were synthesized via solvent-free 
approach for the first time.
Hence, our study is a valuable proof of concept for catalytic 
activity synergistic enhancement by NHC/phosphine 
combination on the same palladium centre. 
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6DippPdCl2-SPhos

N N

Pd
SPhos

Cl Cl
DippDipp

One complex to rule them all!

N Ar

N

S S

Ar

R

R

N
Ar

R R

N
R

R

N
H

R

N Ar

R

R

N

R

R

•amination with R-NH2 (10 examples)
•amination with R2-NH (9 examples)
•one-pot two-step amination (12 examples)

Single catalyst for solvent-free Buchwald-Hartwig amination with both primary and secondary amines 
and diarylative cyclizations.
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