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Abstract

in,out-Tricyclo[7.4.1.01,5]tetradecan-14-one was synthesized from-butyrolactone in 12 steps using ring-closing
olefin metathesis as the key step. © 2000 Elsevier Science Ltd. All rights reserved.

Ingenol (1) is a diterpenoid isolated fromEuphorbia ingens, possessing a bicyclo[4.4.1]undecane
skeleton with a highly strainedinside-outsideintrabridgehead stereochemistry.1 Many derivatives have
also been isolated.1 Ingenol and its derivatives interest organic chemists not only because of their
unique framework but also their biological activities, such as protein kinase C (PKC)-activating and
anti-HIV activities.2,3 Despite many synthetic studies,4 ingenol has not been synthesized and only a few
strategies for the construction of the uniquein,out-bicyclo[4.4.1]undecane skeleton have been disclosed
by Winkler,5 Funk,6 Rigby,7 and Kuwajima.8

The strategies for theinside-outsideintrabridgehead stereochemistry, such as the de Mayo reaction and
fragmentation,5 the Ireland–Claisen rearrangement for ring contraction,6 the 1,5-H sigmatropy to change
the intrabridgehead stereochemistry fromout–out to in–out,7 and the tandem cyclization–rearrangement
reaction,8 have appeared, however, the direct cyclization to thein,out-bicyclo[4.4.1]undecane system has
not been reported. We describe herein the synthesis ofin,out-tricyclo[7.4.1.01,5]tetradecan-14-one (2) by
direct cyclization using olefin metathesis.
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The key reaction of this synthesis was the ring-closing olefin metathesis with a Grubbs’ ruthenium
catalyst, RuCl2(_CHPh)(PCy3)2, which provides a new strategy for the synthesis of cyclic natural
products.9 In the ring-closing olefin metathesis, it is important that the two olefins being connected
to each other should be closely arranged. In the preliminary study, we found that ring-closing olefin
metathesis oftrans-2,7-diallylcycloheptanone did not affordin,out-bicyclo[4.4.1]undecene but dimeric
compounds (Scheme 1). Thus, we chose olefin3 as a key intermediate, in which the distance between
the two terminal olefins is closer, about 3.6 Å based on a molecular mechanics calculation,10 than that of
trans-2,7-diallylcycloheptanone.

Scheme 1. Ring-closing olefin metathesis oftrans-2,7-diallylcycloheptanone

The synthesis of2 is illustrated in Scheme 2.11 -Butyrolactone was reduced with DIBAL to give a
hemiacetal, the Wittig reaction of which afforded the unsaturated ester4 (61%, two steps). Iodination
of the hydroxy group in4 and subsequent reduction with DIBAL afforded the allylic alcohol6. The
hydroxy group in6 was protected to provide the THP ether7 (71%, three steps). The alkylation reaction12

of cycloheptanoneN,N-dimethylhydrazone with7 (n-BuLi) followed by hydrolysis with silica gel13

gave the alkylated ketone8 in 92% yield. Treatment of8 with concentrated hydrochloric acid in 1,4-
dioxane readily afforded the allylic chloride914 (94%), which was treated witht-BuOK in t-BuOH to
give the spiroketones10a (28%) and10b (43%).15,16 Allylation of 10a with KHMDS and allyl iodide
provided a 7:1 mixture of the allyl ketones3 and11 in 81% yield, which were separated by silica gel
column chromatography. We could not determine the stereochemistry of3 and11 by the spectroscopic
analysis, however, we predicted that the allylation of10ashould occur from the less hindered side of the
corresponding enolate, and the allyl ketone3 should be predominantly obtained.

The ring-closing olefin metathesis of the allyl ketones3 and11 was investigated, respectively, and it
was proved that this reaction required a relatively higher temperature. The allyl ketone3 reacted with
Grubbs’ ruthenium catalyst in boiling toluene to give the tricycloketone12 in 20% yield, whereas the
ring-closing olefin metathesis of11 gave the tricycloketone13 in 76% yield. The tricycloketones12
and13 were catalytically hydrogenated to afford the previously reported compound25c,17 (55%) and
compound1418 (68%), respectively. Thus, the structures of3 and12were confirmed.

In summary, we have synthesizedin,out-tricyclo[7.4.1.01,5]tetradecan-14-one (2), the framework of
ingenol, in 12 steps from-butyrolactone using a Grubbs’ ring-closing metathesis. Application of this
strategy to the total synthesis of ingenols is currently underway in our laboratory.
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Scheme 2. Reagents and conditions. (a) DIBAL, toluene,�78°C, 1 h, 95%; (b) Ph3P_CHCOOMe, benzene, 23°C, 1 h, 64%;
(c) I2, Ph3P, imidazole, toluene, 23°C, 1 h, 79%; (d) DIBAL, toluene,�78°C, 1 h; (e) DHP,p-TsOH, CH2Cl2, 23°C, 1 h, 90% in
two steps; (f) cycloheptanoneN,N-dimethylhydrazone,n-BuLi, THF, 23°C, 2 h; (g) silica gel, CH2Cl2, 23°C, 19 h, 92% in two
steps; (h) conc. HCl, dioxane, 23°C, 5 h, 94%; (i)t-BuOK, t-BuOH, reflux, 3.5 h, 28% for10a, 43% for10b; (j) allyl iodide,
KHMDS, THF, 0°C, 3 h, 81% (3:11=7:1); (k) RuCl2(_CHPh)(PCy3)2, toluene, reflux, 20% for12, 76% for13; (l) H2, Pd/C,
EtOH, 23°C, 1 h, 55% for2, 68% for14
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