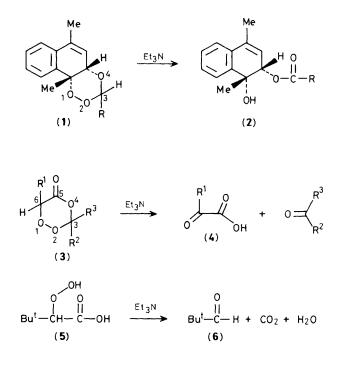
Eliminative Ring Fission of 1,2,4-Trioxan-5-ones. A New Approach to α -Keto Acids

Charles W. Jefford, Jean-Claude Rossier, and John Boukouvalas

Department of Organic Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland


6-Mono-R-substituted 1,2,4-trioxan-5-ones readily undergo base-catalysed O–O bond cleavage to furnish α -keto acids (RCOCOOH) in high yields even when the R-substituents are bulky.

A variety of 1,2,4-trioxanes are now available thanks to new synthetic methods based on the condensation of aldehydes and ketones with β -hydroperoxy cations or their equivalents.¹ Consequently, these oxygen heterocycles are ready for preparative exploitation. A recent and first example is provided by 1,2,4-trioxanes (1) monosubstituted at C-3.² The action of triethylamine on (1) produces the 1,2-diol monoester (2) by deprotonation which ruptures the peroxide link. We now report a counter-polarized variant of this process which enables α -keto acids to be prepared in impressive yields. The molecules selected are 1,2,4-trioxan-5-ones (3) having a hydrogen atom at the C-6 position which are predisposed to undergo oxygen–oxygen bond cleavage, but in the reverse direction. Deprotonation at C-6 breaks the ring with excision of the carbonyl fragment, so liberating the α -keto acid (4).

The reaction is illustrated by some typical 1,2,4-trioxan-5ones (**3a**—**j**) which are conveniently prepared from α -hydroperoxy carboxylic acids.³ The conversion procedure is simple. A solution of the trioxanone (**3**) (1—5 mmol) in 10—50% Et₃N-CH₂Cl₂ (0.5—2 ml) is allowed to stand at room temperature (Table 1). The corresponding α -keto acid (**4**) is obtained pure by evaporation of the volatile components. Less volatile products, such as adamantanone (entries 4, 8, and 10) are removed by extraction with CH₂Cl₂ after treatment with saturated aqueous NaHCO₃. Acidification (2 M HCl) of the aqueous phase followed by extraction with CH₂Cl₂ furnishes the α -keto acid in high purity.

Yields are high even when t-butyl or adamantyl substituents are attached to C-6 (entries 1—6). This behaviour contrasts with that of 1,2,4-trioxanes which react sluggishly with base when bulky groups are present at C-3. Evidently, the electronic effect of the adjacent carbonyl group in (3e) overrides any steric hindrance (entry 5). Even in (3f), where there is a steric bias towards the C-3 hydrogen, cleavage occurs only in the electronically dictated direction (entry 6). Proof that certain positions must be unsubstituted for reaction is revealed by 3,4-dispirocyclohexyl-1,2,4-trioxan-5-one (**3k**), which is fully substituted at C-3 and C-6, and which, after exposure to neat Et_3N for a month, remains unchanged (entry 11). The nature of the substituent at C-6 has no bearing on yields, except that work-up is simpler when the by-product is *not* adamantanone.

Lastly, it is important to note that the α -hydroperoxy acids used for preparing the trioxanones do not themselves produce α -keto acids in the presence of base. Rather, Grob fragmenta-

Table 1. Et₃N-catalysed cleavage of some 1,2,4-trioxan-5-ones (3) to give α -keto acids (4).^a

Entry	1,2,4-Trioxan-5-one ^b	Reaction time/h	% Yield of (4) ^c
1	(3a), $R^1 = 1$ -Ad; $R^2 - R^3 = -[CH_2]_{5^-}$	24	100 ^d
2	(3b), $R^1 = 1$ -Ad; $R^2 = R^3 = Me^{-13}$	16	82
3	(3c), $R^1 = Bu^t$; $R^2 - R^3 = -[CH_2]_5 -$	60	79e
4	(3d), $R^1 = Bu^t$; $R^2 - R^3 = 2 - Ad$	16	73
5	(3e), $R^1 = R^3 = Bu^t; R^2 = H$	16	67
6	(3f), $R^1 = Bu^t$; $R^2 = H$, $R^3 = Me$	3	87
7	(3g), $R^1 = Bu^n$; $R^2 - R^3 = -[CH_2]_5$	16	97f
8	(3h), $R^1 = Bu^n$; $R^2 - R^3 = 2$ -Ad	16	81
9	(3i), $R^1 = n$ -Hexyl; $R^2 - R^3 = -[CH_2]_5$ -	58	95 ^f ,g
10	(3j), $R^1 = n$ -Hexyl; $R^3 - R^3 = 2$ -Ad	62	83
11	$(3k), R^1, C-6-H = -[CH_2]_{5-}; R^2-R^3 = -[CH_2]_{5-}$	30 days	0 ^h

^a All reactions were performed at room temperature (20–25 °C). ^b 1-Ad = Admantan-1-yl; 2-Ad = adamantan-2-ylidene. ^c Yields refer to isolated products exhibiting satisfactory spectral properties (¹³C and ¹H n.m.r.; i.r.). ^d 1-Adamantylglyoxylic acid, colourless crystals, m.p. 89–90 °C (from CH₂Cl₂-hexane, 9:1, at -30 °C, lit.⁴ m.p. 102–104 °C; ¹³C n.m.r. (CDCl₃, 50 MHz) δ 27.5 (d), 36.3 (t), 37.1 (t), 45.1 (s), 162.9 (s), and 200.8 (s). Satisfactory elemental analyses were obtained. See also ref. 4. ^c Ref. 5. ^f Ref. 6. ^g Ref. 7. ^h (3k) was totally recovered.

The present method compares favourably with the others⁹ and has merit in being short and easy to perform, enabling any α -substituted acetic acid to be converted into its α -keto acid *via* its α -hydroperoxy derivative.¹⁰

We thank the Swiss National Science Foundation for support of this work.

Received, 30th July 1986; Com. 1091

References

 C. W. Jefford, D. Jaggi, J. Boukouvalas, and S. Kohmoto, J. Am. Chem. Soc., 1983, 105, 6497; C. W. Jefford, J. Boukouvalas, and S. Kohmoto, Helv. Chim. Acta, 1983, 66, 2615; C. W. Jefford, S. Kohmoto, J. Boukouvalas, and U. Burger, J. Am. Chem. Soc., 1983, 105, 6498; C. W. Jefford, D. Jaggi, J. Boukouvalas, S. Kohmoto, and G. Bernardinelli, Helv. Chim. Acta, 1984, 67, 1104; C. W. Jefford, J. Boukouvalas, and S. Kohmoto, J. Photochem., 1984, 25, 537; C. W. Jefford, J. Boukouvalas, and S. Kohmoto, J. Chem. Soc., Chem. Commun., 1984, 523; C. W. Jefford, D. Jaggi, S. Kohmoto, J. Boukouvalas, and G. Bernardinelli, *Helv. Chim. Acta*, 1984, **67**, 2254.

- 2 C. W. Jefford, S. Kohmoto, J. C. Rossier, and J. Boukouvalas, J. Chem. Soc., Chem. Commun., 1985, 1783.
- 3 C. W. Jefford, J. C. Rossier, and G. D. Richardson, J. Chem. Soc., Chem. Commun., 1983, 1064.
- 4 E. C. Hermann and J. A. Snyder, U.S. Pat. 3,325,478 (Cl. 260-239.1), June 13, 1967, Appl. November 17, 1964, and August 9, 1966; *Chem. Abstr.*, 1967, **67**, 90798b.
- 5 A. Richard, Ann. Chim. (Paris), 1910, 21, 360; J. S. Nimitz and H. S. Mosher, J. Org. Chem., 1981, 46, 211.
- 6 M. Igarashi and H. Midorikawa, J. Org. Chem., 1964, 29, 2080.
- 7 J. Anatol and A. Medète, Synthesis, 1971, 538.
- 8 C. A. Grob and P. W. Schiess, Angew. Chem., Int. Ed. Engl., 1967, 6, 1.
- 9 Reviews: J. M. Brown, in 'Comprehensive Organic Chemistry,' eds. D. Barton and W. D. Ollis, Pergamon Press, Oxford, 1979, vol. 2, p. 779; A. J. L. Cooper, J. Z. Ginos, and A. Meister, *Chem. Rev.*, 1983, **83**, 321.
- 10 W. Adam and O. Cueto, J. Org. Chem., 1977, 42, 38; W. Adam, A. Alzérreca, J.-C. Liu, and F. Yany, J. Am. Chem. Soc., 1977, 99, 5768.