Preliminary Note

Addition of 1,2-dihaloperfluoroalkanes to alkenes initiated by dichlorobis(π -cyclopentadienyl)titanium and iron

Chang-Ming Hu* and Yao-Ling Qiu

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 LingLing Lu, Shanghai 200032 (China)

(Received July 2, 1991; accepted August 12, 1991)

Abstract

Addition of 1,2-dihaloperfluoroalkanes to various alkenes promoted by catalytic amounts of dichlorobis(π -cyclopentadienyl)titanium(IV) Cp₂TiCl₂ and iron powder gives 1:1 adducts in excellent yields. The reaction is performed in protic solvent (EtOH) without dehalogenation. A radical chain mechanism initiated by chlorobis(π -cyclopentadienyl)-titanium(III) Cp₂Ti(III)Cl is proposed.

Recent exploration of radicals generated by the reaction of $Cp_2Ti(III)Cl$ with epoxides has proved promising [1]. Kitazume and Ishikawa studied the ultra-sound promoted perfluoroalkylation of enamines in the presence of zinc powder and a catalytic amount of Cp_2TiCl_2 , assuming $Cp_2Ti(II)$ to be the actual catalyst [2]. However, zinc is unsuitable for 1,2-dihaloperfluoroalkanes (1) because dehalogenation occurs prior to polyfluoroalkylation. Fuchikami and Ojima used air- and moisture-sensitive transition metal carbonyls to initiate the polyfluoroalkylation of alkenes [3]. We now report that iron can reduce Cp_2TiCl_2 to the greenish $Cp_2Ti(III)Cl$ and that such a new redox couple is capable of mediating the polyfluoroalkylation of alkenes (2) with (1).

In the presence of 30 mol% iron powder and 2 mol% Cp_2TiCl_2 , (1) and (2) reacted in EtOH under nitrogen. Usual workup gave adducts (3) in excellent yields. Representative results are shown in Table 1.

 $CF_2BrCF_2X + R_1CH = CHR_2 \longrightarrow CF_2BrCF_2CHR_1CHXR_2$ (1)(a) X = I
(2)
(3)
(b) X = Br
(3)

In the present system, neither the dehalogenation nor the hydrodehalogenation product ($CF_2=CF_2$ nor CF_2BrCF_2H , respectively) was detected

^{*}Author to whom correspondence should be addressed.

Run No.	(1)	Alkene (2)	Temp. (°C)	Time (h)	Adduct (3)	Yield ^ь (%)
1	(1a)	1-octene	55	10	CF ₂ BrCF ₂ CH ₂ CHIC ₆ H ₁₃	96
2		1-octene	55	15	CF ₂ BrCF ₂ CH ₂ CHIC ₆ H ₁₃	91°
3		allyl alcohol	65	13	CF ₂ BrCF ₂ CH ₂ CHICH ₂ OH	96
4		diallyl ether	55	7	CF_2BrCF_2	94
5		cyclohexene	65	24	CF ₂ CF ₂ Br	92
6	(1b)	1-octene	55	15	CF2BrCF2CH2CHBrC6H13	95
7		1-octene	55	24	CF ₂ BrCF ₂ CH ₂ CHBrC ₆ H ₁₃	0^{c}
8		1-hexene	60	15	CF ₂ BrCF ₂ CH ₂ CHBrC ₄ H ₉	93
9		1,5-hexadiene	60	26	$CF_2BrCF_2CH_2CHBrC_2H_4CH=CH_2$	78
10		diallyl ether	60	8	CF_2BrCF_2 \longrightarrow Br	95
11		cyclohexene	70	36	Br O CF ₂ CF ₂ Br	92

Addition of (1) to alkenes (2) initiated by Cp_2TiCl_2 and Fe^*

^aMolar ratio: (1):(2):Fe:Cp₂TiCl₂ = 1:1:0.3:0.02.

^bIsolated yield based on (1). Satisfactory analytical and spectral data were obtained for all adducts.

^cAbsence of Cp₂TiCl₂.

even in a protic solvent (EtOH). It was not necessary to use excess (1) for obtaining 1:1 adducts, the adducts (3) (still containing a reactive center $-CF_2Br$) once formed being stable enough to further reaction. Exclusively high regioselectivity was observed in the reaction of (1a) with (2). Cyclic tetrahydrofuran derivatives were formed with diallyl ether as the substrate (runs 4 and 10).

Iron alone was similarly capable of initiating the addition of (1a) to (2) (run 2), but Cp₂TiCl₂ was indispensable in the case of (1b) (run 7). Cp₂TiCl₂ itself could not initiate the reaction, but we have found that low-valent titanium, *i.e.* TiCl₃, can initiate a similar reaction [4]. The above addition was assumed to proceed through a radical chain mechanism (Scheme 1). In the case of (1a), a simple SET process may also explain the formation of the 2-bromotetrafluoroethyl radical (1') [5] as shown in Scheme 2. Further study on this system is in progress.

TABLE 1

$$\begin{array}{cccc} \mathrm{Ti}^{\mathrm{IV}} + \mathrm{Fe} & \longrightarrow & \mathrm{Ti}^{\mathrm{III}} + \mathrm{Fe}^{\mathrm{I}} \\ \mathrm{Ti}^{\mathrm{III}} + \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{X} & \longrightarrow & \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{X}^{*-} + \mathrm{Ti}^{\mathrm{IV}} \\ & & & \downarrow \\ & & & \downarrow \\ & & & \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}^{*} + \mathrm{X}^{-} \\ & & & \mathrm{(1')} \end{array}$$

$$(\mathbf{1'}) + \mathrm{R}_{1}\mathrm{CH} = \mathrm{CHR}_{2} & \longrightarrow & \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{CHR}_{1}^{*}\mathrm{CHR}_{2} \\ & & & & \mathrm{(2)} & & \mathrm{(3')} \end{array}$$

$$(\mathbf{3'}) + \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{X} & \longrightarrow & \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{CHR}_{1}\mathrm{CHXR}_{2} + (\mathbf{1'}) \\ & & & & \mathrm{(3)} \end{array}$$
Scheme 1.
$$\mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{I} + \mathrm{Fe} & \longrightarrow & \mathrm{CF}_{2}\mathrm{Br}\mathrm{CF}_{2}\mathrm{I}^{*-} + \mathrm{Fe}^{\mathrm{I}} \end{array}$$

(1a)
$$\int CF_2 Br CF_2 \cdot + I^-$$
(1')

Scheme 2.

References

- (a) W. A. Nugent and T. V. RajanBabu, J. Am. Chem. Soc., 110 (1988) 8561; (b) T. V. RajanBabu and W. A. Nugent, *ibid.*, 111 (1989) 4525; (c) T. V. RajanBabu, W. A. Nugent and M. S. Beattie, *ibid.*, 112 (1990) 6408.
- 2 T. Kitazume and N. Ishikawa, J. Am. Chem. Soc., 107 (1985) 5186.
- 3 T. Fuchikami and I. Ojima, Tetrahedron Lett., 25 (1984) 303, 307.
- 4 C.-M. Hu and Y.-L. Qiu, unpublished results.
- 5 Q.-Y. Chen, Y.-B. He and Z.-Y. Yang, J. Fluorine Chem., 34 (1986) 255.