$D: A$-Friedooleananes from Elaeodendron glaucum*

Gamini Weeratunga, Vijaya Kumar and M. Uvais S. Sultanbawa
Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka.

Abstract

Two new trioxygenated $D: A$-friedooleananes from the stem bark of Elaeodendron glaucum have been shown to be the angular methyl dioxygenated 25,28 -dihydroxy- $D: A$-friedooleanan- 3 -one (2) and 25-hydroxy-3-oxo-D:A-friedooleanan-28-al (3).

Introduction

Elaeodendron glaucum Pers (Celastraceae) is a tree growing in northern Sri Lanka. Constituents previously reported in extracts of its stem bark include a cardiac glycoside with a doubly linked sugar substituent, ${ }^{1}$ six $D: A$-friedooleananes, two $D: A$-friedonoroleananes, ${ }^{2} D: A$-friedooleanan- 3α-ol, two betulin derivatives, two sitosterol derivatives and octacosan-1-ol. ${ }^{3}$

Discussion

Investigation of the benzene extract of E. glaucum bark led to the isolation of 29 -hydroxy- $D: A$-friedooleanan- 3 -one (1) \dagger^{4} and the highly polar components 25,28 -dihydroxy- $D: A$-friedooleanan-3-one (2) and 25 -hydroxy-3-oxo- $D: A$-friedooleanan-28al (3). In addition, six $D: A$-friedooleananes and the $D: A$-friedo-28-noroleanane, elaeodendrol, previously reported ${ }^{2}$ were found to be present but we were unable to isolate octacosan-1-ol and the betulin and sitosterol derivatives reported. ${ }^{3}$

* Part LXVII, in the series 'Chemical Investigation of Ceylonese Plants' (Part LXVI, Wijeratne, D. B. T., Kumar, V., Sultanbawa, M. U. S., and Balasubramaniam, S., Phytochemistry, 1982, in press). Part of this work was reported in a preliminary communication, Tetrahedron Lett., 1982, 23, 2031.
\dagger The 20α-carbon substituent in this compound has been assigned the number 30 by Betancor et al. ${ }^{4}$ but we have followed the more common convention of using number 29 to indicate this centre.
${ }^{1}$ Kupchan, S. M., Uchida, I., Shimada, K., Yu Fei, B., Stevens, D. M., Sneden, A. T., Miller, R. W., and Bryan, R. F., Chem. Commun., 1977, 255.
${ }^{2}$ Anjaneyulu, A. S. R., and Rao, M. N., Phytochemistry, 1980, 19, 1163.
${ }^{3}$ Joshi, K. C., Bansal, R. K., and Patni, R., J. Indian Chem. Soc., 1980, 57, 1042.
${ }^{4}$ Betancor, C., Freire, R., Gonzalez, A. G., Salazar, J. A., Pascard, C., and Prange, T., Phytochemistry, 1980, 19, 1989.

Spectroscopic evidence suggested that the diol (2) is a $D: A$-friedooleanane containing an oxo and two hydroxymethylene groups. The i.r. spectrum showed hydroxy ($3000-3100 \mathrm{~cm}^{-1}$) and carbonyl ($1700 \mathrm{~cm}^{-1}$) absorptions while the ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed two hydroxymethylene CH_{2} signals ($\delta 3 \cdot 66,3 \cdot 92$). The mass spectrum showed a low intensity molecular ion at $m / z 458$; loss of $\mathrm{CH}_{2} \mathrm{OH}$ gave the base peak at $m / z 429$. The i.r. spectrum of the aldehyde (3) showed hydroxyl ($3500-3240 \mathrm{~cm}^{-1}$), aldehyde ($1710,2660 \mathrm{~cm}^{-1}$) and carbonyl ($1700 \mathrm{~cm}^{-1}$) absorptions. Its ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed a hydroxymethylene CH_{2} signal (δ 3.92) and an aldehyde singlet ($\delta 9.50$) while its mass spectrum showed a low-intensity M peak at $m / z 456$, a base peak at $m / z 427(\mathrm{M}-\mathrm{CHO})$ and an abundant peak at m / z $425\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right)$. The two compounds were shown to be interrelated as sodium borohydride reduction of both gave the same triol (4) with two $\mathrm{CH}_{2} \mathrm{OH}$ groups ($\delta 3.63$ and 3.94) and a CHOH group ($\delta 3.73$). This suggests that the aldehyde group in compound (3) was in the same position as the additional hydroxymethylene group in the diol (2).

Huang Minlon reduction of the aldehyde (3) gave $D: A$-friedooleanan-25-ol (5) identical with that obtained by similar reductions of 25 -hydroxy- $D: A$-friedooleanan3 -one (6), ${ }^{2}$ which was present in the plant extract.

The $D: A$-friedooleanane skeleton is believed to assume a chair-chair-chair-twist boat-boat conformation (7) ${ }^{5}$ in most derivatives and not the all-chair conformation previously proposed. ${ }^{6}$ In either conformation, the 9β-angular methyl group with its 1,3 -diaxial relationship with the 5β - and 14β-methyl groups is sterically hindered.

The report of Courtney et al. ${ }^{7}$ that the 9β-hydroxymethylene group or aldehyde group could not be oxidized to a carboxylic acid is readily explained by the steric environment of these groups as seen in conformation (7). We found however that

[^0]25-hydroxy-D:A-friedooleanan-3-one (6) could be oxidized slowly to 3 -oxo- $D: A$ -friedooleanan-25-oic acid (8) with Jones reagent ${ }^{8}$ in 60% yield, although attempts to reduce a 9β-methoxycarbonyl group proved less successful. The acid (8) was esterified with diazomethane to give the methyl ester (9) which was converted into the cyclic ethylene acetal (10). Heating the acetal (10) under reflux with lithium aluminium hydride in tetrahydrofuran for 24 h gave only starting material. The resistance of a hydroxymethylene group to oxidation or a methoxycarbonyl group to reduction has not been reported for any other ring junction substituent in the $D: A$-friedooleanane series and this suggests that the 9β-position is one of the most hindered positions in the skeleton.

Ethylenediamine/lithium deoxygenation ${ }^{9}$ has been used to remove sterically hindered primary alcohol groups ${ }^{10}$ and the sterically hindered 25 -acetoxy group appears to be eminently suitable for removal by this method. Ethylenediamine/lithium deoxygenation of 3 -oxo- $D: A$-friedooleanan- 25α-yl acetate (11) gave $D: A$-friedo-oleanan- $3 \alpha-$ ol (12) in 65% yield. The aldehyde (3) was acetylated with acetic anhydride/pyridine and the acetate (13) was heated under reflux with lithium and ethylenediamine. Workup gave a mixture of products which on oxidation with chromium trioxide/pyridine gave canophyllal (3-oxo-D: A-friedooleanan-28-al) ${ }^{2}$ (14) in 48% yield; this confirms that the keto group is at the 3-position and the aldehyde

Scheme 1

[^1]group at the 17β-position in the $D: A$-friedooleanane ring system. The aldehyde (3) is therefore 25 -hydroxy-3-oxo- $D: A$-friedooleanan- 28 -al and the diol (2) 25,28 -dihydroxy- $D: A$-friedooleanan-3-one. Scheme 1 summarizes the relations between the various derivatives.

Experimental

Melting points were recorded on a Koffer hot-stage apparatus and are uncorrected. I.r. spectra were determined for KBr discs on a Perkin-Elmer 257 spectrophotometer; ${ }^{1} \mathrm{H}$ n.m.r. spectra were measured on a Varian T 60 spectrophotometer for CDCl_{3} and $\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ solutions, tetramethylsilane being the internal reference. Optical rotations were measured in CHCl_{3} solution at 25°, on a Perkin-Elmer 141 polarimeter, and mass spectral studies were carried out at Ciba-Geigy Ltd., Basel and at Kanazawa University, Japan. Thin-layer chromatography (p.l.c.) was carried out on silica gel (Merck $\mathrm{PF}_{254+366}$).

Isolation of the Terpenoids

The stem bark of Elaeodendron glaucum ($11 \cdot 4 \mathrm{~kg}$) collected in Mankulam in the Jaffna district of Sri Lanka* was dried, ground and extracted with benzene; 16 g of extract were obtained. The material was crystallized from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ and the crude crystalline mixture (10.0 g) was chromatographed over silica gel (250 g) in light petroleum ($40-60^{\circ}$). The column was eluted successively with light petroleum, light petroleum $/ \mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}$ and $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. The compounds eluted were $D: A$-friedooleanan-3-one $(0.73 \mathrm{~g})$, m.p. $262-264^{\circ},[\alpha]_{\mathrm{D}}-22^{\circ}, 3$-oxo- $D: A$-friedo-oleanan-28-al (0.85 g), m.p. $262-263^{\circ}$, $[x]_{\mathrm{D}}-16^{\circ}, 3$-oxo- $D: A$-friedooleanan- 25 -al (0.57 g), m.p. $298-300^{\circ},[\alpha]_{\mathrm{D}}-59^{\circ}, D: A$-friedooleanan- 3β-ol (0.60 g), m.p. $283-284^{\circ}$, $[\alpha]_{\mathrm{D}}+15^{\circ}, 17 \beta$-hydroxy- $D: A-$ friedooleanan-3-one (elaeodendrol) (0.03 g), m.p. $228-229^{\circ}$, $[\alpha]_{\mathrm{D}}-26^{\circ}$, 28 -hydroxy- $D: A$-friedo-oleanan-3-one, m.p. $280-282^{\circ}$, [$\left.\alpha\right]_{\mathrm{D}}-21^{\circ}, \quad 25$-hydroxy-D:A-friedooleanan-3-one ($2 \cdot 0 \mathrm{~g}$), m.p. $295-296^{\circ},[\alpha]_{\mathrm{D}}-19^{\circ}$, previously isolated from E. glatcum ${ }^{2}$ and 29 -hydroxy-D:A-friedooleanan-3-one (1) $(1 \cdot 6 \mathrm{~g})$, m.p. $270-273^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}-22^{\circ}(c, 2 \cdot 0)\left(\mathrm{lit} .^{5} 270-272^{\circ},[\alpha]_{\mathrm{D}}-24^{\circ}\right)$.

25,28-Dihydroxy-D:A-friedooleanan-3-one (2) (0.8 g), m.p. $238-240^{\circ}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right),[x]_{\mathrm{D}}-31^{\circ}$ $(c, 0 \cdot 5)$ (Found: $\mathrm{M}^{+}, 458 \cdot 3779 . \mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$ requires $\mathrm{M}^{+}, 458 \cdot 3760$). I.r. $v_{\text {max }} 3600-3100$, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ n.m.r. $\delta\left(\mathrm{CDCl}_{3}, \mathrm{MeOD}\right) 0.70,0.93,0.95,1 \cdot 01,1 \cdot 10$, each s, $5 \mathrm{Me} ; 0.88$, d, $J 7 \mathrm{~Hz}, 4 \beta-\mathrm{Me} ; 3 \cdot 6 \mathrm{~s}, 17 \beta-\mathrm{CH}_{2} \mathrm{OH} ; 3 \cdot 93, \mathrm{~m}, W_{h / 2} 2 \mathrm{~Hz}, 9 \beta-\mathrm{CH}_{2} \mathrm{OH} ; m / z 458$ (M, 46%), 440 (25), 427 (100), 409 (50), 289 (38) and 25-hydroxy-3-oxo-D:A-friedooleanan-28-al (3) ($0 \cdot 1 \mathrm{~g}$), m.p. 293-295 ${ }^{\circ}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$, $[\alpha]_{\mathrm{D}}-6.7^{\circ}(c, 0.5)$ (Found: C, 77.3; H, 10.7. $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 77 \cdot 4 ; \mathrm{H}, 10 \cdot 5 \%$). I.r. $v_{\max } 3500,2660,1710,1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ n.m.r. $\delta\left(\mathrm{CDCl}_{3}\right) 0 \cdot 66$, $0 \cdot 96 \times 2,1 \cdot 01,1 \cdot 1$, each s, $5 \mathrm{Me} ; 3 \cdot 92, \mathrm{~m}, W_{h / 2} 2 \mathrm{~Hz}, 9 \beta-\mathrm{CH}_{2} \mathrm{OH} ; 9 \cdot 5, \mathrm{~s}, 17 \beta-\mathrm{CHO} ; m / z 456$ (M, 4\%), 427 (100), 425 (32), 409 (12), 289 (33), 259 (15).

D:A-Friedooleanane-3 β,25,28-triol (4)

(A) The diol (2) (20 mg) in methanol (5 ml) was treated with sodium borohydride (10 mg) at 27° for 0.25 h with stirring. Dilution with water and extraction with ether gave a crude product which was subjected to preparative t.I.c. $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 47 / 3\right)$. Recrystallization of this product from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ gave D:A-friedooleanane- $3 \beta, 25,28$-triol (4) $(15 \mathrm{mg}$) as colourless needles, m.p. $308-310^{\circ},[\alpha]_{\mathrm{D}}+23 \cdot 2^{\circ}(c, 0 \cdot 5)$ (Found: $442 \cdot 3795\left(\mathrm{M}^{+\cdot}-\mathrm{H}_{2} \mathrm{O}, 2 \cdot 5 \%\right) . \quad \mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{3}$ requires $\mathrm{M}^{+\cdot}-\mathrm{H}_{2} \mathrm{O}, 442 \cdot 3811$). I.r. $v_{\text {max }} 3600-3150 ;{ }^{1} \mathrm{H}$ n.m.r. $\delta\left(\mathrm{CDCl}_{3}+\mathrm{MeOD}\right) 0 \cdot 9,0 \cdot 98 \times 2,1 \cdot 06$, $1 \cdot 11$, each $\mathrm{s}, 5 \mathrm{Me} ; 0 \cdot 88, \mathrm{~d}, J 7 \mathrm{~Hz}, 4 \beta-\mathrm{Me} ; 3 \cdot 63$, s, $17 \beta-\mathrm{CH}_{2} \mathrm{OH} ; 3 \cdot 73, \mathrm{~m}, W_{n / 2} 3 \mathrm{~Hz}, 3-\mathrm{CHOH}$; $3.91, \mathrm{~m}, W_{h / 2} 2 \mathrm{~Hz}, 9 \beta-\mathrm{CH}_{2} \mathrm{OH} ; m / z 460(\mathrm{M}, 4 \%), 442(\mathrm{M}-18,0.5), 429$ (100), 411 (37), 291 (25).
(B) 25 -Hydroxy-3-oxo-D:A-friedooleanan- 28 -al (3) (25 mg) was reduced with sodium borohydride for 0.25 h as described above. Purification of the product by preparative t.l.c. gave the triol (20 mg) as colourless needles, m.p. $309-310^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$, $[\alpha]_{\mathrm{D}}+23 \cdot 3^{\circ}(c, 0 \cdot 5)$ identical with the above triol (4) (mixed m.p. and i.r.).

[^2]
D:A-Friedooleanan-25-ol (5)

(A) 25-Hydroxy-3-oxo-D:A-friedooleanan-28-al (3) (40 mg) was reduced under Huang Minlon conditions by heating, under reflux with diethylene glycol (5 ml), hydrazine hydrate (1 g) and potassium hydroxide (80 mg) for 3 h , distilling to 200° and then refluxing for a further 3 h . Workup followed by preparative t.l.c. $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 49 / 1\right)$ gave $D: A$-friedooleanan- $25-\mathrm{ol}$ (5) (21 mg) as colourless needles, m.p. $219-221^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}+23^{\circ}(c, 0 \cdot 5)$ (lit. ${ }^{11}$ m.p. 223-226${ }^{\circ},[x]_{\mathrm{D}}$ $+23^{\circ}$) (Found: $\mathrm{M}^{+} \cdot 428 \cdot 3987$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}: \mathrm{M}^{+}, 428 \cdot 4018$).
(в) 25 -Hydroxy- $D: A$-friedooleanan-3-one (6) (50 mg) was reduced as above with diethylene glycol (5 ml), hydrazine hydrate (1 g) and potassium hydroxide (100 mg). Workup gave an alcohol (27 mg), m.p. $218-221^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}+23 \cdot 1^{\circ}(c, 0 \cdot 5)$ identical with the alcohol (5) (mixed m.p. and i.r.).

3-Oxo-D:A-friedooleanan-25-yl Acetate (11)

The alcohol (6) (80 mg) gave with pyridine/acetic anhydride ($2: 1,3 \mathrm{ml}$ at 27° for 18 h), after workup, 3-oxo- $D: A$-friedooleanan- 25 -yl acetate (11) (75 mg) as colourless needles, m.p. $170-172^{\circ}$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}-23^{\circ}(c, 1)\left(\right.$ lit. 2 m.p. $\left.171-173^{\circ},[\alpha]_{\mathrm{D}}-23^{\circ}\right)$.

D:A-Friedooleanan-3x-ol (12)

3-Oxo-D:A-friedooleanan-25-yl acetate (11) (70 mg), dry ethylenediamine (10 ml) and lithium (100 mg) were refluxed under anhydrous conditions till a blue colour appeared and the reaction mixture was kept at this temperature for 0.3 h . It was then cooled and excess lithium was destroyed by the addition of t-butyl alcohol. Workup gave a mixture of two products. Preparative t.l.c. $\left(\mathrm{CHCl}_{3}\right)$ gave the less polar major product $D: A$-friedooleanan- 3α-ol (12) as colourless needles, m.p. $293-295^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}+16 \cdot 1^{\circ}$ (lit. ${ }^{12}$ m.p. $\left.292-301^{\circ},[\alpha]_{\mathrm{D}}+18 \cdot 0^{\circ}\right)$ identical with an authentic sample (mixed m.p. and i.r.).

3,28-Dioxo-D:A-friedooleanan-25-yl Acetate (13)

25-Hydroxy-3-oxo- $D: A$-friedooleanan- 28 -al (3) (40 mg) gave with pyridine/acetic anhydride ($2: 1$, 1.5 ml at 27° for 18 h) after workup and purification by preparative t.l.c. $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 99: 1\right)$ 3,28-dioxo-D:A-friedooleanan-25-yl acetate (13) (35 mg) as colourless needles, m.p. $150-153^{\circ}$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}-17^{\circ}(c, 1 \cdot 0)$ (Found: $\mathrm{M}^{+\cdot} \cdot 498 \cdot 3724 . \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ requires $\left.\mathrm{M}^{+}, 498 \cdot 3709\right)$. I.r. $v_{\max } 2700,1740,1710,1700,1240 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ n.m.r. $\delta\left(\mathrm{CDCl}_{3}\right) 0 \cdot 71,0 \cdot 80,0 \cdot 97 \times 2,1 \cdot 10$, each s , $5 \mathrm{Me} ; 0 \cdot 86, \mathrm{~d}, J 7 \mathrm{~Hz}, 4 \beta-\mathrm{Me} ; 4 \cdot 37, \mathrm{AB}$ dd, $J 13 \mathrm{~Hz}, 9 \beta-\mathrm{CH}_{2} \mathrm{OAc} ; 2 \cdot 03, \mathrm{~s}, 25-\mathrm{OAc} ; 9 \cdot 5$, s, 17β-CHO; $m / z 498$ (M, 1%), 469 (33), 331 (10), 259 (5), 137 (100).

3-Oxo-D:A-friedooleanan-28-al (14)

The acetate (13) (35 mg), dry ethylenediamine and lithium (70 mg) were refluxed under anhydrous conditions as described earlier. Workup gave a mixture of two products (30 mg) which was taken up in pyridine (2 ml) and stirred with $\mathrm{CrO}_{3}(20 \mathrm{mg})$ for 12 h at 27°. Workup and purification by preparative t.l.c. yielded a major product (14) (15 mg) as colourless needles, m.p. $262-264^{\circ},[x]_{\mathrm{D}}$ $-15 \cdot 5^{\circ}(c, 1 \cdot 0)$ (lit. ${ }^{2}$ m.p. 263-265,$[\alpha]_{\mathrm{D}}-16^{\circ}$) which was found to be identical with an authentic sample of 3 -oxo-D: A-friedooleanan-28-al (canophyllal) (mixed m.p. and i.r.).

3-Oxo-D:A-friedooleanan-25-oic Acid (8)

The alcohol (6) (100 mg) in acetone was stirred with Jones reagent ${ }^{8}$ at 0° for 0.5 h and then kept at 27° for 18 h . The reaction mixture was decanted into water and extracted with chloroform. Workup yielded 3-oxo-D:A-friedooleanan-25-oic acid (8) as needles (60 mg), m.p. $338-339^{\circ}$ $\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}-22^{\circ}(c, 1 \cdot 0)$ (lit. $\left.{ }^{7} \mathrm{~m} . \mathrm{p} .340^{\circ}\right)$. I.r. $v_{\text {max }} 3500-2500,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ n.m.r. $\delta\left(\mathrm{CDCl}_{3}\right) 0 \cdot 67,0 \cdot 76,0 \cdot 96 \times 2,1 \cdot 06,1 \cdot 18$, each s, $6 \mathrm{Me} ; 0 \cdot 83$, d, $J 7 \mathrm{~Hz}, 4 \beta-\mathrm{Me} ; m / z 456(\mathrm{M}, 2 \%)$, 440 (12), 411 (16), 260 (100), 205 (72).

[^3]
Methyl 3-Oxo-D:A-friedooleanan-25-oate (9)

The acid (8) (50 mg) in methanol (3 ml) was stirred with an excess of ethereal diazomethane at 27°. The product was recrystallized from $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ to yield methyl 3-oxo- $D: A$-friedooleanan25 -oate (9) (35 mg) as silky needles, m.p. $173-175^{\circ},[\alpha]_{\mathrm{D}}-38 \cdot 5^{\circ}(c, 0.5)$ (lit. ${ }^{7}$ m.p. $173-174^{\circ}$).

Methyl 3,3-Ethylenedioxy-D:A-friedooleanan-25-oate (10)
The methyl ester (9) (30 mg) was refluxed with toluene-p-sulfonic acid (5 mg) and ethylene glycol $(0.5 \mathrm{ml})$ in dry benzene (30 ml) for 2 h , a Dean-Stark water separator being used. Workup followed by purification with preparative t.l.c. gave methyl 3,3-ethylenedioxy- $D: A$-friedooleanan-25-oate (10) (22 mg) as colourless needles, m.p. 197-199 ${ }^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right),[\alpha]_{\mathrm{D}}+2 \cdot 5^{\circ}(c, 0 \cdot 8)$ (lit. ${ }^{7}$ m.p. $\left.196-198^{\circ}\right)$.

Attempted Reduction of Methyl 3,3-Ethylenedioxy-D:A-friedooleanan-25-oate (10)

The acetal (10) (20 mg) was stirred with $\mathrm{LiAlH}_{4}(40 \mathrm{mg})$ in tetrahydrofuran (2 ml) for 2 h and then refluxed on a water bath for 24 h . The product was separated and found to be identical with starting material (10) (mixed m.p. and i.r.).

Acknowledgments

We thank Ciba-Geigy Ltd. for financial support and Drs Hp. Fischer and J. P. Pachlatko for mass spectral data, Professor Yoshisuke Tsuda of Kanazawa University, Japan, for high resolution mass spectra, Professor S. Balasubramaniam for collection and identification of plants material and Mrs S. C. Weerasekera for technical assistance.

[^0]: ${ }^{5}$ Laing, M., Burke-Laing, M. E., Bartho, R., and Weeks, C. M., Tetrahedron Lett., 1977, 3839.
 ${ }^{6}$ Corey, E. J., and Ursprung, J. J., J. Am. Chem. Soc., 1956, 78, 5041.
 ${ }^{7}$ Shannon, J. S., Macdonald, C. G., and Courtney, J. L., Tetrahedron Lett., 1963, 173.

[^1]: ${ }^{8}$ Bowden, K., Heilbron, I. M., Jones, E. R. H., and Weedon, B. C. L., J. Chem. Soc., 1946, 39. ${ }^{9}$ Boar, R. B., Joukhadar, L., McGhie, J. F., Misra, S. C., Barrett, A. G. M., Barton, D. H. R., and Prokopiou, P. A., Chem. Commun., 1978, 68.
 ${ }^{10}$ Gunatilaka, A. A, L., Nanayakkara, N. P. D., and Sultanbawa, M. U. S., Tetrahedron Lett., 1981, 22, 1425.

[^2]: * A voucher specimen of the plant has been deposited with the University herbarium.

[^3]: ${ }^{11}$ Courtney, J. L., and Stern, W., Tetrahedron Lett., 1965, 1607.
 ${ }^{12}$ Shoppee, C. W., Howden, M. E. H., and Johnston, G. A. R., J. Chem. Soc., 1962, 498.

