YOSHIKAZU MATSUSHIMA Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812, Japan Received June 22, 1981 (Chem. Pharm. Bull.) 29(8)2387—2391(1981) The Structures of Six Antifungal Oligoglycosides, Stichlorosides A_1 , A_2 , B_1 , B_2 , C_1 , and C_2 , from the Sea Cucumber Stichopus Chloronotus (Brandt) Chemical structures are reported for six antifungal lanostane-type triterpene-oligogly-cosides from the Okinawan sea cucumber *Stichopus chloronotus* (Brandt). The compounds are: stichlorosides A_1 (9), B_1 (15), C_1 (20) [having stichlorogenol (3) as the aglycone] and A_2 (10), B_2 (16), C_2 (21) [dehydrostichlorogenol (4) as the aglycone]. Keywords—sea cucumber; Stichopus chloronotus; stichloroside A_1 ; stichloroside A_2 ; stichloroside B_1 ; stichloroside B_2 ; stichloroside C_1 ; stichloroside C_2 ; lanost-7-ene type triterpene In a recent communication,¹⁾ we reported the isolation of six antifungal triterpeneoligoglycosides, stichlorosides A_1 , A_2 , B_1 , B_2 , C_1 , and C_2 , from the Okinawan sea cucumber Stichopus chloronotus (Brandt) and clarified the structure of their aglycones named stichlorogenol (3) and dehydrostichlorogenol (4), which are respectively the common genuine aglycones of stichlorosides A_1 , B_1 , C_1 , and A_2 , B_2 , C_2 . This is a report on the structure of the parent oligoglycosides, stichlorosides A_1 (9), A_2 (10), B_1 (15), B_2 (16), C_1 (20), and C_2 (21). Stichloroside A_1 (9)¹⁾ is a hexaglycoside having two moles each of xylose (xyl), glucose (glu), and 3-O-methylglucose (3-Me-glu) in its oligosaccharide moiety.²⁾ The ¹³C NMR spectrum of A_1 shows the β -glycosidic nature of these six monosaccharide moieties as judged by the anomeric carbon signals [δ_c 106.4, 105.5, 103.3, and 102.9 (all d)³⁾] and also shows the presence of one acetoxyl group [δ_c 170.7(s)]. On acidic hydrolysis (2N aq. H₂SO₄), A_1 liberated two artifact aglycones 1¹⁾ and 2,¹⁾ showing that the oilgosaccharide moiety of A_1 attaches to 3β -OH and the acetyl group to 23-OH of stichlorogenol (3). Alkaline treatment (1/6 N NaOMe–MeOH) of A_1 (9) gave desacetylstichloroside A_1 (8), $C_{66}H_{108}O_{32}\cdot3H_2O,^{4)}$ mp 211—212°C, $[\alpha]_D^{15}$ —36° (pyr.), which, on enzymic hydrolysis with crude naringinase, 5) yielded stichlorogenol (3) and three partial hydrolysates: A-pro-1 (5), $C_{35}H_{56}O_8$, mp 270—271°C, $[\alpha]_D^{2i}$ —45° (pyr.), (monosaccharide composition²⁾: xyl×1), A-pro-2 (6), $C_{48}H_{78}O_{18}\cdot2H_2O$, mp 253—255°C, $[\alpha]_D^{16}$ —38° (pyr.), (xyl×1, glu×1, 3-Me-glu×1), and A-pro-3 (7), $C_{53}H_{86}O_{22}\cdot2H_2O$, mp 256—257°C, $[\alpha]_D^{2i}$ —44° (pyr.), (xyl×2, glu×1, 3-Me-glu×1). Methylation of these hydrolysates with CH₃I-NaH-tetrahydrofuran⁶⁾ afforded their respective fully methylated derivatives: 5a [anom. H at δ 4.21 (1H, d, J=7 Hz)], 6a [δ 4.26 (2H, d, J=7), 4.63 (1H, d, J=8)], and 7a [δ 4.24 (1H, d, J=8), 4.30 (1H, d, J=6), 4.62 (2H, d, J=6)]. Methanolysis of these methylated derivatives liberated the following methyl glycosides: Me 2,3,4-tri-O-Me-xylopyranoside from 5a, Me 2,3,4,6-tetra-O-Me-glucopyranoside, Me 2,4,6-tri-O-Me-glucopyranoside, and Me 2,3,4-tri-O-Me-xylopyranoside from 6a, and Me 2,3,4-tri-O-Me-xylopyranoside, Me 2,4,6-tri-O-Me-glucopyranoside, and Me 3-O-Me-xylopyranoside from 7a. Based on these findings, the structures of A-pro-1 (5), A-pro-2 (6), and A-pro-3 (7) have been substantiated. Methylation⁶⁾ of desacetylstichloroside A₁ (8) gave an octadeca-O-methyl derivative (8a), 1 2 $$CH_2OR^1$$ OR^1 OR^1 OR^2 OR^1 OR^2 OR^2 OR^2 OR^2 OR^2 OR^3 OR^4 - stichloroside A_2 (10): $R^1=H$, $R^2=Ac$, Δ^{25} Chart 1 stichloroside A_1 (9): $R^1=H$, $R^2=Ac$ desacetylstichloroside A₁ (8): R¹=R²=H $7\mathbf{a}: \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{C}\mathbf{H}_3$ $8a : R^1 = R^2 = CH_3$ which shows six anomeric proton signals [δ 4.22 (2H, d, J=7 Hz), 4.33 (1H, d, J=8), 4.61 (2H, d, J=7), and 4.66 (1H, d, J=7)] in its ¹H NMR spectrum. Methanolysis of **8a** liberated Me 2,3,4,6-tetra-O-Me-glucopyranoside, Me 2,4,6-tri-O-Me-glucopyranoside, Me 2,3-di-O-Me-xylopyranoside, and Me 3-O-Me-xylopyranoside, supporting the monosaccharide sequence of desacetylstichlorodise A_1 as shown in **8**, thus the total structure of stichloroside A_1 was formulated as **9**. OR1 Catalytic hydrogenation over 5% Pd-C of stichloroside A_2 (10), which is a hexaglycoside of dehydrostichlorogenol (4),¹⁾ gave quantitatively stichloroside A_1 (9) as identified by TLC (SiO₂-AgNO₃), HPLC (μ Bondapak C₁₈), and [α]_D comparisons and mixed mp determination. Therefore, the structure 10 for stichloroside A_2 has been evidenced. Stichloroside B_1 (15) is a hexaglycoside (xyl×2, glu×2,3-Me-glu×2)²) of stichlorogenol (3).¹) As in the case of stichloroside A_1 (9), the ¹³C NMR examination and the acidic hydrolysis of B_1 have shown that the sugar moiety and the acetyl group in B_1 attach to 3β -OH and 23-OH of the aglycone. Alkaline treatment of B_1 gave desacetylstichloroside B_1 (14), $C_{66}H_{108}O_{32}$. $2H_2O$, mp 265—266°C, [α]¹⁵ -34° (pyr.), which on acidic hydrolysis (0.5 N aq. HCl-n-BuOH), 7¹ yielded three hydrolysates²): B-pro-1 (11), 8¹ $C_{35}H_{56}O_8$, mp 283—285°C, [α]¹⁵ +0.4° (pyr.), (xyl×1), B-pro-2 (12),8 C₄₈H₇₈O₁₈·3H₂O, mp 265—267°C, $[\alpha]_{\rm b}^{15}$ —21° (pyr.), (xyl×1, glu×1, 3-Me-glu×1), and B-pro-3 (13),8 C₅₄H₈₈O₂₃·2H₂O, mp 285—287°C, $[\alpha]_{\rm b}^{17}$ —23° (DMSO), (xyl×1, glu×2, 3-Me-glu×1). Methylation6 of these hydrolysates furnished their fully methylated derivatives: 11a, 12a, 13a, and 14a. The structures of the oligosaccharide moieties are based on the physical properties of the methyl ethers and their methanolysis as carried out for stichloroside A_1 and its hydrolysates. Final evidence for the total structure of desacetylstichloroside B_1 (14) and stichloroside B_1 (15) comes from the fact that periodate oxidation of desacetylstichloroside B_1 (14) followed by NaBH₄ reduction and methanolysis furnished erythritol.⁹⁾ The structure of stichloroside B_2 (16),¹⁾ which is another hexaglycoside of dehydrostichlorogenol (4), has been elucidated on the same basis as that described for A_2 (10). Catalytic hydrogenation of B_2 over 5% Pd-C quantitatively gave B_1 (15). For the structural elucidation of stichloroside C_1 (20), which is a hexaglycoside [xyl×2, quinovose (qui)×1, glu×1, 3-Me-glu×2]²⁾ of stichlorogenol (3),¹⁾ and stichloroside C_2 (21), a sequence of investigations were carried out similar to those described for B_1 (15) and B_2 (16) with the preparation of the following derivatives: desacetylstichloroside C_1 (19), $C_{66}H_{108}O_{31}$ · 2H₂O, mp 250.5—251.5°C, [α]_b -41° (pyr.); and three acidic hydrolysates of 197°: C-pro-1 (17),⁸⁾ $C_{41}H_{66}O_{12}\cdot 2H_2O$, mp 276—278°C, [α]_b -20° (pyr.), (xyl×1, qui×1), C-pro-2(=B-pro-2) (12),⁸⁾ C-pro-3 (18),⁸⁾ $C_{54}H_{88}O_{22}\cdot 3H_2O$, mp 271.5—273.5°C, [α]_b -34° (DMSO), (xyl×1, qui×1, glu×1, 3-Me-glu×1), and their fully methylated⁶⁾ derivatives: 17a, 18a, and 19a. Finally, catalytic hydrogenation of stichloroside C_2 giving C_1 (20) has corroborated the structure 21 $$\begin{array}{c} \text{CH}_2\text{OR}^1 \\ \text{CH}_2\text{OR}^1 \\ \text{OCH}_3 \\ \text{OR}^1 \text{OR$$ Chart 3 for C₂. The microbial activities of stichlorosides will be reported elsewhere. Acknowledgement The authors are grateful to the Ministry of Education, Science, and Culture (Grant No. 547116) and the Foundation for the Promotion of Research on Medicinal Resources for financial support. ## References and Notes - 1) I. Kitagawa, M. Kobayashi, T. Inamoto, T. Yasuzawa, Y. Kyogoku, and M. Kido, Chem. Pharm. Bull., 29, 1189 (1981). - 2) The monosaccharide compositions were examined by methanolysis and subsequent GLC analysis (as TMS derivatives) and were determined on the basis of these analyses carried out for the parent oligoglycosides and their partial hydrolysates. - 3) Due to overlap, only four signals were observed. - 4) All compounds given with the chemical formulae gave satisfactory analytical values. - 5) I. Kitagawa and M. Kobayashi, Chem. Pharm. Bull., 26, 1684 (1978). - 6) H. Okabe, Y. Miyahara, T. Yamauchi, K. Miyahara, and T. Kawasaki, Chem. Pharm. Bull., 28, 2753 (1980). - 7) Desacetylstichlorosides B₁ and C₁ were unaffected under enzymic hydrolysis using various kinds of glycosidase. - 8) Since no olefinic proton signal was observed in the ¹H NMR spectra of the fully methylated derivatives, the C-7 (8) double bond in the parent oligoglycoside (14 or 19) is presumed to be shifted to C-8 (9) in the hydrolysates during the acidic hydrolysis.¹⁾ 9) Based on this finding, another possible sugar sequence (3-Me-glu—xyl—3-Me-glu—xyl—aglycone) for B₁ has been ruled out. If this alternate sequence is correct, glycerol should be obtained instead of erythritol. Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan Institute for Protein Research, Osaka University, 3-2, Yamada-oka, Suita, Osaka 565, Japan Received June 22, 1981 Isao Kitagawa* Motomasa Kobayashi Tatsuya Inamoto Tohru Yasuzawa Yoshimasa Kyogoku Chem. Pharm. Bull. 29(8)2391—2393(1981) ## Anti-Platelet Aggregation Principles from the Bark of Fraxinus japonica Blume1) The methanol extract of the bark of *Fraxinus japonica* Blume was fractionated with the guidance of inhibitory activity on rabbit platelet aggregation induced by arachidonic acid. The following active principles were identified: 3-methoxy-4-hydroxyphenylethanol (I) (which also exists in the animal body as a dopamine metabolite), p-hydroxyphenylethanol (II), 2,6-dimethoxy-p-benzoquinone (III), compounds (IV), (V), and esculetin. **Keywords**—the bark of *Fraxinus japonica* Blume; anti-aggregatory activity on platelet; 3-methoxy-4-hydroxyphenylethanol; p-hydroxyphenylethanol; 2,6-dimethoxy-p-benzoquinone; esculetin; 3,4-dihydroxyphenylethanol; dopamine metabolites The bark of *Fraxinus japonica* Blume (the Oriental medicine "Shinpi"), which is widely distributed in Japan, has been used as a home remedy diuretic, antifebrile analysis and so on. The methanol extract of the bark is reported to have an anti-inflammatory action and to promote the excretion of uric acid.^{2,3)} Esculin, a coumarin glycoside which is a main constituent of the extract, is an active principle having these physiological activities.⁴⁾ Until now no other biologically active compound has been found in the bark. The methanol extract of the bark was bioassayed for inhibitory activity on rabbit platelet aggregation induced by arachidonic acid (AA) and found to be active. We report here the isolation of the active principles guided by this bioassay⁵⁾ and their potencies. The methanol extract of the bark was partitioned between ethyl acetate and water. The acidic portion, which was fractionated from the ethyl acetate layer in the usual manner and had a significant inhibitory activity, was separated into eight fractions by Sephadex-LH 20 column chromatography. Two of the fractions, which showed a potent inhibitory activity, were further purified by the combination of high performance liquid chromatography (μ Bondapak C_{18}) and preparative thin-layer chromatography (silica gel). Finally, the compounds I, II, III, IV, V, and esculetin were isolated as the active principles. All except esculetin gave very low yields.