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Abstract: (+)-Dehydroiridodiol and (-)-isodehydroiridodiol were synthesized 
stereoselectively using the diastereo- and enantioselective Michael addition 
of chiral amide enolates to d,P-unsaturated esters. 

The stereocontrolled construction of the adjacent tertiary carbons using the 

Michael type reaction is a useful method for the synthesis of various natural 

products. We have previously reported the diastereoselective Michael addition of 

ester enolates to ti,f3-unsaturated esters. 1, 2 In this communication, we wish to 

describe a diastereo- and enantioselective Michael addition of chiral amide 

enolates to tl-:t? unsaturated esters and its successful application to the stereo- 

selective synthesis of (+)-dehydroiridodiol (1) and (-)-isodehydroiridodiol (2).3 

At first, the stereochemistry of the reaction of various lithiated propion- 

amides and crotonates was examined (Scheme 1). The results are summarized in 

Table 1. As N-propionylpyrrolidine gave three-adduct highly stereoselectively 

(entry l), the asymmetric synthesis was performed using (S)-N-propionylprolinol 

(q4 Optically active threo-2,3_dimethylglutaric acid (2) was obtained in 79% 

d.e. (entry 2). Erythro-selective Michael addition was achieved by employing 

(S)-N-methyl-N-propionylvalinol (2) or trans-2,5-bis(methoxymethoxymethyl)- 

pyrrolidine amide5 (entries 8 and 9). In general, bulky amides show erythro- 

selectivity (entries 1,2 vs 9; entry 4 vs 7; entry 6 vs 8). As amide enolates 

are known to prefer (Z)-form, 6 we presume the transition state as shown in the 

Figure 1. This model also seems to account for the relatively small effect of 

the P-substituents of unsaturated esters on the stereoselectivity; For example, 
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Table 1. The Michael Addition of Lithiated Tertiary Amides to Crotonates.a 

entry -N: yield (%) threo : erythro b d.e. (%) 

9 

-NJ 86 
-OH 92 

-Nzl I 84 h 

-N3 85 

720 : 1' 
20 : 1 
7:l d 

3:l 

- 
- 

7ge 

-- 

-NMe2 92 2:l - 

-N3 88 
Me 
-NCH2CH20H 67f 

1 : 1 

1 : 1 

- 

- 

-N(i-Pr)2 85 1:2 - 
Me -N fi 76f, g, h 1 : 10 74e 

s 
H"-OMOM I 

76 1 : 15 L80i 
OMOM 

a The reaction was carried out with ethyl crotonate in THF at -78 'C using LDA 

b 
as the base, unless otherwiselqJk& 
The ratio was determined by The chemical shift of C-3 methyl group 

' 
of threo-isomer: 8 15.7 + 0.3; erythro-isomer: 5 18.5 f 0.5. 
The reaction was carried out in ether. The adduct was converted to lactone 

according to the following procedures without epimerization. 

LiAlH 

I 

1N HCI 

THF,-4O.C HO 
63 *I. 76 ‘I. 

d The adduct was hydrolized (2N Ij$l, refl., 2h) to give threo-2,3-dimethyl- 
eglutaric acid ip368% yield, [d] 7 Determined by 

-19 ' (~2.4, CHC13). 
C-NMR of bis((g)-phenethylamide), prepared by using WSC. The 

absolute configuration is shown below. 
f The adduct was hydrolized (2N HC1,2gefl., 2h), and the yield of erythro-2,3- 
dimethylglutaric acid is shown, [o(J -11 '(~1.0, CHC13) for entry 8. 

g The reaction was carried out in eti?er-THF (2:l). 
z Methyl crotona& was used. 

Determined by C-NMR of the adduct. 

Figure 1. 
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the reaction of 2 and ethyl 2-decenoate afforded the corresponding glutaric acid 

in 10 : 1 ratio (threo : erythro) and in 80% d.e.8 

In order to determine the absolute configuration of the optically active 

glutarates, and show the utility of the present asymmetric synthesis, a total 

synthesis of (+)-1 and (-)-2 was performed (Scheme 2 and 3). Our synthetic 

strategy is based on the Michael induced intramolecular acylation: 9 Diethyl 

2-hexendioate (g)lU was used as the starting material. Erythro-selective 

addition cyclization process using 6 and lithiated 2 in THF at -78 OC in the 

presence of potassium t-butoxide' gave cyclopentanone 7. In order to avoid 

decarboxylation 2 was reduced (NaBH4, EtOH, 0 'C, 30 min), hydrolyzed (2N HCl, 

refl., 2h), and esterificated (CH2N2, ether, 0 'C, 30 min). The resulted 

diastereomeric mixture of hydroxyester 8 was converted to ketoester 2 (pyridine- 

Cr03, CH2C12, r.t., 30 min). Introduction of methyl group was achieved by a two- 

steps procedure (i. t-BuCOCl, Et3N, HMPA, 0 *C to r.t., 2h; ii. Me2CuLi, ether, 

-78 to -25 OC, lh). 11 The diastereoselectivity of the initial Michael addition 

was determined at the stage of en01 ester 10 (erythro : threo = 10 : 1). Finally, - 
diester 11 was reduced (LiA1H4, ether, r.t., 30 

obtained, -t4 ;" +15 * (~2.2, CHC13); 85% e.e. by 

absolute configuration of erythro-glutaric acid 

(2R, 3R). 

tBuOH 
6 

0 

scheme 2. 

min) and (+)-(3S, 8R)-1 was 

MTPA-method.3'12 Thus, the 

12 (Table 1, - entry 8) should be 

Starting from 2 and 2 - threo-selective addition, enol ester 13 was - 
obtained in 7:l selectivity. By a similar procedures as above, (-)-(35, 8S)-2 - 

CO,Et 

Ii- 
, CO,Et 

a ether-THF(?:l),-78.C 

Scheme 3. i9v.e.e. 
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was synthesized (79% e.e.) [d]g4 -13' (cO.9, CHC13).3' l2 Thus, 2 should have 

(2R, 3S)-configuration (Table 1, entry 2). 
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