April 1976 Communications 261

A New Synthesis of 4-Hydroxythiazoles

Maryvonne Ferrey, Albert Robert, André Foucaud*

Groupe de Chimie Structurale, Equipe de Recherche associée au CNRS, Université de Rennes, B.P. 25 A, 35031 Rennes Cédex, France

The reaction of thiourea with oxiranes is a general method for preparing thiiranes 1. However, oxiranes substitued in the ring with functional groups often demonstrate varying reactivity depending on the nature of these substituents $^{2-5}$. α -Chloroglycidic esters have been shown recently to react with thiourea to give 2-aminothiazoles 6,7 . In this case, the course of the reaction is linked with the presence of a leaving group at the α position of the ring. We have shown that oxiranes possessing two geminal cyanide leaving groups react with thiourea to give 2-aminothiazolinones 8 .

These results suggested that the reaction of thioamides 2 with oxiranes 1 might constitute a new synthetic route to 2-alkyl-4-

thiazolinones or the tautomeric 2-alkyl-4-hydroxythiazoles 3. However, at the moment these compounds are difficultly accessible and only a few examples have been synthesized 9,11.

We now report our studies on this new reaction which proved to be a convenient method of synthesizing 4-hydroxy-thiazoles 3. Thioamides 2 ($R = H, CH_3, C_6H_5$) react at room temperature with oxiranes 1 and give 4-hydroxythiazoles 3 in a yield of about 50%.

$$\begin{array}{c}
X \\
H \\
O \\
CN \\
CN \\
+ R - C - NH_2
\end{array}$$

$$\begin{array}{c}
S \\
II \\
-2 HCN
\end{array}$$

$$X \\
OH \\
S \\
R \\
3$$

We assign the structure 4-hydroxythiazole 3 (in tri- and tetrachloromethane solution) rather than the tautomeric 4-thiazolinone form on the basis of the spectral data in shown Table 1. The I.R. spectra of these compounds show especially a band at around 3570 cm⁻¹ (CCl₄) for $v_{\rm OH}$, but no band in the regions 1715 and 1680 cm⁻¹ characteristic of heterocyclic >C=O¹⁰. The N.M.R. spectra are in agreement with the 4-hydroxythiazole 3 formula. The 4-hydroxythiazole 3 (R=CH₃, X=H) has been recently obtained using another method by Reeve and Barron¹² (yield 18%). These authors have shown too that this compound is found to exist in the 4-hydroxythiazole form. It should be mentioned that when carbon 5 is not substituted, ketoenol equilibrium

Table 1. Preparation of 4-Hydroxythiazoles 3

3:R	X	m.p. (C ₂ H ₅ OH)	Yield (%)	I.R. (CCl ₄) v _{OH} cm ⁻¹	1 H-N.M.R. a δ_{R}	UV (C ₂ H ₅ OH)		Empirical
						λ nm	ε·10 ⁻²	formula ^b
C_6H_5	Н	215°	43	3572		363	192	C ₁₅ H ₁₁ NOS
						267	75	(253.2)
C ₆ H ₅	Cl	255°	50	3561		364	194	C ₁₅ H ₁₀ NOSCI
						275	82	(287.8)
C_6H_5	H_3CO	215°	45	3567		270	148	$C_{16}H_{13}NO_2S$
						268	89	(283.2)
C ₆ H ₅	NO_2	285°	55	c		403	225	$C_{15}H_{10}N_2O_3S$
						491	39	(298.3)
						260	97.5	•
CH ₃	Н	212° d	38	3573	2.82	303	124	C ₁₀ H ₉ NOS (191.2)
CH ₃	Cl	232°	49	3568	2.81	306	115	C ₁₀ H ₈ NOSCI (225.5)
CH ₃	H ₃ CO	185°	50	3574	2.88	306	126	$C_{11}H_{11}NO_2S$ (221.3)
CH ₃	NO_2	250°	36	e	2.97	305	126	$C_{10}H_8N_7O_3S$
	-					471	330	(236.2)
						374	143	()
ŀ	Н	168°	41	3566	9.15	250	49	C ₀ H ₇ NOS
						307	93	(177.2)
Н	Cl	234°	46	3565	9.26	224	21.3	C ₂ H ₆ NOSCl
						247	19.5	(211.7)
						307	41	N 112
Н	H_3CO	204°	36	3572	9.00	249	36	C ₁₀ H ₉ NO ₂ S
						303	62.3	(207.2)
Н	NO_2	230° e	41	c	9.38	255	22.4	C ₉ H ₆ N ₂ O ₃ S
						360		(223.1)

^a In CDCl₃+F₃C--COOH.

^b All products gave satisfactory elemental analyses (C $\pm 0.4\%$, H $\pm 0.2\%$, N $\pm 0.5\%$).

^c Not soluble in CCl₄.

^d Lit.¹²: m.p. 210-212°, yield: 18%.

^e Sublimation point.

262 Communications SYNTHESIS

Table 2. Preparation of Acetates 4

4: R	X	m.p.	I.R. (Nujol)	¹ H-	Empirical	
		(C_2H_5OH)	$v_{\rm C=O}~{ m cm}^{-1}$	δ_{COCH_3}	$\delta_{ extsf{R}}$	formula*
C ₆ H ₅	Cl	143°	1770	2.26	A STEEL	C ₁₇ H ₁₂ NO ₂ SCI (329.8)
C ₆ H ₅	H ₃ CO	126°	1764	2.31	3.80 ^b	$C_{18}H_{15}NO_3S$ (325.4)
CH ₃	Н	80°	1778	2.25	2.64	$C_{11}H_{11}NO_2S$ (221.3)
CH ₃	NO_2	120°	1778	2.33	2.69	$C_{12}H_{10}N_2O_4S$ (278.3)
Н	Cl	74°	1769	2.30	8.62	C ₁₁ H ₈ NO ₂ SCl (253.7)

^a All compounds gave satisfactory elemental analyses (C $\pm 0.14\%$, H $\pm 0.43\%$, N $\pm 0.17\%$).

between 4-oxo and 4-hydroxy forms was noticed ¹⁰. In accordance with all expectations, the 4-hydroxythiazoles 3 easily react with acetic anhydride and give quantitatively the acetates 4 (Table 2).

The oxiranes 1 are prepared in good yields by the action of sodium hypochlorite on corresponding α -cyanoacrylonitriles 13 . Thioacetamide (2, $R=CH_3$) and thiobenzamide (2, $R=C_6H_5$) are commercial products. Thioformamide (2, R=H) is prepared according to reference 14 .

Preparation of 2-Substituted 4-Hydroxythiazoles (3, $R = CH_3$, C_6H_5):

The oxirane 1 (0.01 mol) and the thioamide 2 (0.01 mol) are dissolved in a mixture of water (5 ml) and dioxan (15 ml or 30 ml when $X = NO_2$). After 3-4 h at room temperature, the 4-hydroxythiazole 3 starts to precipitate. Precipitation is complete after 10 h.

Preparation of 4-Hydroxythiazoles (3, R = H):

The oxirane 1 and hydrated thioformamide (1 g) are dissolved in dioxan (10 ml, 20 ml when $X = NO_2$). A first quantity of 4-hydroxythiazole is filtered off after 2-3 h at room temperature. The remaining solution slowly deposits a further amount of product.

Preparation of Acetates 4:

The 4-hydroxythiazole (0.01 mol) is dissolved in acetic anhydride (20 ml) and heated under reflux for 24 h under nitrogen. The excess acetic anhydride is distilled off and the thiazole acetate 4 crystallizes; yield: quantitative.

Received: December 1, 1975

- ¹ M. Sander, Chem. Rev. 66, 297 (1966).
- ² C. C. J. Culvenor et al., J. Chem. Soc. 1949, 2573.
- ³ J. A. Durden et al., J. Am. Chem. Soc. 81, 1943 (1959).
- ⁴ W. J. Middleton, J. Org. Chem. 31, 3731 (1966).
- ⁵ W. J. Linn, E. Ciganek, J. Org. Chem. 34, 2146 (1969).
- ⁶ A. Takeda, S. Wada, M. Fuju, H. Tanaka, *Bull. Chem. Soc. Jpn.* 43, 2997 (1970).
- A. Takeda, S. Isuboi, S. Wada, H. Kato, Bull. Chem. Soc. Jpn. 45, 1217 (1972).
- 8 M. Ferrey, A. Robert, A. Foucaud, C.R. Acad. Sci. 277 C, 1153 (1973).

- ⁹ J. M. Sprague, A. H. Land in *Heterocyclic Compounds* R. Elderfield, Ed., John Wiley & Sons, New York, Vol 5, (1957) 547.
- ¹⁰ S. Gronowitz et al., Acta Chem. Scand. 19, 13 (1965).
- ¹¹ N. Suzuki, T. Goto, Agr. Biol. Chem. Japan 36, 2913 (1972).
- W. Reeve, E. R. Barron, J. Org. Chem. 40, 1917 (1975). These authors prepared an 4-hydroxy thiazole 3 (X=H, R=CH₃) from thioacetamide and phenyl-(trichloromethyl)-carbinol. They postulate the formation (in basic conditions) of an intermediate gem-dichloro epoxide. This hypothesis is in perfect agreement with our results concerning the action of thioamides on gem-dicyano epoxides 1.
- ¹³ J. J. Pommeret, A. Robert, Tetrahedron 27, 2977 (1971).
- ¹⁴ W. R. Schmitz, U.S. Patent 2682558, 29. 6. 1954; C.A. 49, 9029 (1955).

^b δ for OCH₃.