Synthesis of Drimanic Sesquiterpenes, (+)-Valdiviolide, (+)-12 α-Hydroxyisodrimenin and (+)-Winterin \dagger

Tatsuhiko Nakano,* José Villamizar and María Aracelis Maillo

Centro de Química, Instituto Venezolano de Investigaciones Cientificas (I.V.I.C.),
Apartado 21827, Caracas 1020-A, Venezuela

The synthesis of (+)-valdiviolide 6a, (+)-12 α-hydroxyisodrimenin $\mathbf{7}$ and (+)-winterin 8, from manool $\mathbf{1}$ is described.

The biologically active drimane-type sesquiterpenes have been a target for organic synthesis in various laboratories over the past ten years. In recent years we have developed a new highly efficient method for the synthesis of optically active, drimane-related natural products. The key reaction consists of the oxidation of commercially available manool 1 and the Norrish type II cleavage of the resulting ketone 2 to the diene 3 (52% overall yield), which can be utilised as a common precursor. The sesquiterpenes which have been synthesized so far by employing the diene 3 as a building block include (+)-confertifolin, (+)isodrimenin, (+)-euryfuran, (-)-warburganal, ${ }^{1}(+)$-albicanol and (+)-bicyclofarnesol. ${ }^{2}$ This paper aims to demonstrate further utility of the diene $\mathbf{3}$ for the synthesis of (+)validiviolide 6a, (+)-12 α-hydroxyisodrimenin 7 and (+)winterin 8 . ${ }^{3}$

The olefinic 1,4 -diol 4, ${ }^{4}$ prepared from manool $\mathbf{1}$, was oxidised with pyridinium chlorochromate to $(+)$-euryfuran 5 (89%) according to the method reported earlier. ${ }^{5}$ Photooxygenation of the furan $\mathbf{5}$ in tert-butyl alcohol-2,6-lutidine in the presence of eosin ${ }^{6}$ afforded a $2: 1$ mixture of two isomeric products. The one which formed in larger amounts

[^0](50%) was found to be identical with (+)-valdiviolide $\mathbf{6 a}$ according to reported spectroscopic data. ${ }^{6,7}$ The α stereochemistry of the $11-\mathrm{OH}$ group of this compound was confirmed by the NOE experiment. irradiation at the signal ($\delta 1.23$) of the $\mathrm{C}-13$ methyl group resulted in enhancement (20%) of the signal of the proton ($\delta 6.04$) at $\mathrm{C}-11$. This indicates that the 11-proton possesses the β configuration and hence the $11-\mathrm{OH}$ group is α-oriented.
Previously Ley and Mahon ${ }^{6}$ reported that photooxygenation of the furan 5 under the same conditions afforded two products. The major product was identical with valdiviolide 6a, but they assigned the other minor product the structure $\mathbf{6 b}$ (11-epivaldiviolide) without reporting spectroscopic evidence.

We have analysed carefully the structure of this minor product, obtained in 25% yield, by means of $2 \mathrm{D}-\mathrm{NMR}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ single bond and multiple bond correlation studies. The carbonyl carbon resonance appeared at $\delta 170.35$. The two olefinic carbons resonated at $\delta 138.48$ and 168.18. The resonance (δ 168.19) at lower field correlated through two bonds to the proton ($\delta 5.83$) bearing the hydroxy group. The resonance ($\delta 138.48$) at higher field was assignable to the carbon located α to the carbonyl group and this olefinic carbon showed three-bond correlation to the protons ($\delta 1.10$) of the $\mathrm{C}-13$ methyl group. This verified that the carbonyl group should be situated at $\mathrm{C}-11$. Therefore, we formulated this compound as 7. The formation of compound 7 and the stereochemistry of its $12-\mathrm{OH}$ group was deduced from the reaction mechanism of the photooxygenation. As illustrated in Scheme 1, the attack of the oxygen from the less sterically hindered α side would afford the intermediate α-endo-peroxide 9. Subsequent breakdown of the peroxide would form the biradical species 10, which would then terminate by disproportion in two ways. Transfer of the C-12 hydrogen to the C-11 oxygen radical (see arrow a) would lead to compound 6a, while transfer of the $\mathrm{C}-11$ hydrogen to the $\mathrm{C}-12$ oxygen radical (see arrow b) would afford compound 7.

It should be noted that compound 7, that is 12α-hydroxyisodrimenin has recently been isolated as a mixture of epimers at the hemiacetal carbon from sponge Dysidea fusca. ${ }^{8}$ Oxidation of compound 7 with the Jones reagent ${ }^{9}$ afforded compound $8(60 \%)$ identical with $(+)$-winterin. ${ }^{7}$

Experimental

Mps were measured with a Kofler hot-stage apparatus and are uncorrected. NMR spectra were recorded with a Bruker AM-300 spectrometer for solutions in CDCl_{3}, mass spectra with a Kratos MS25RFA at 70 eV using a direct inlet system. Rotations were measured at $23^{\circ} \mathrm{C}$ with a Zeiss ' 0.01° ' polarimeter. Merck silica gel (70-230 mesh ASTM) was used for column chromatography. TLC was performed on Merck silica gel $60 \mathrm{G}_{254}$ and the spots were observed either by exposure to iodine vapour or by UV light. All organic extracts were dried over anhydrous sodium sulfate and evaporated under reduced pressure below $60^{\circ} \mathrm{C}$.

Photo-oxygenation of the Furan 5.-A solution of the furan 5 ($80 \mathrm{mg}, 0.36 \mathrm{mmol}$) in tert-butyl alcohol-2,6-lutidine ($27 \mathrm{ml}, 2: 1$) containing eosin (2.6 mg) was irradiated at $15^{\circ} \mathrm{C}$ with an external 150 W tungsten lamp for 6 h during which time oxygen was bubbled through the reaction mixture. The solvent was evaporated under reduced pressure and the residue chromatographed over silica gel. Elution with 30% diethyl ether in hexane afforded a $2: 1$ mixture of compounds 6a and 7, as an oil, as evidenced by the ${ }^{1} \mathrm{H}$ NMR spectrum. Crystallisation from hexane gave pure compound 6a, mp $172-175^{\circ} \mathrm{C}$ ($44 \mathrm{mg}, 50 \%$ yield); $[\alpha]_{\mathrm{D}}+107^{\circ}$ (c 1.7, CHCl_{3}); m/z 250 $\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{s}, 15-\mathrm{Me})$, $1.23(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 4.00(1 \mathrm{H}, \mathrm{OH}-11)$ and $6.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11)$; $\delta_{\mathrm{C}}(75.45 \mathrm{MHz}) 35.27(\mathrm{C}-1), 17.89(\mathrm{C}-2), 41.69(\mathrm{C}-3), 33.44$ (C-4), 51.51 (C-5), 18.28 (C-6), 21.19 (C-7), 127.63 (C-8), 168.49 (C-9), 36.82 (C-10), 97.51 (C-11), 172.18 (C-12), 19.60 (C-13), 21.59 (C-14) and 33.35 (C-15).

Chromatography of the mother-liquor of compound 6a over silica gel with hexane-ether afforded pure compound 7 as an oil; $[\alpha]_{\mathrm{D}}+32^{\circ}\left(c 1.8, \mathrm{CHCl}_{3}\right) ; m / z 250\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.85(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me})$ and $5.83(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-12) ; \delta_{\mathrm{C}}(75.45 \mathrm{MHz}) 34.90(\mathrm{C}-1), 17.81$ (C-2), 41.68 (C-3), 34.18 (C-4), 52.08 (C-5), 18.33 (C-6), 24.13 (C-7), 168.18 (C-8), 138.48 (C-9), 34.66 (C-10), 170.35 (C-11), 96.84 (C-12), 20.15 (C-13), 21.47 $(\mathrm{C}-14)$ and 33.43 (C-15) (Found: $\mathrm{C}, 71.63 ; \mathrm{H}, 8.55 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.97$; $\mathrm{H}, 8.86 \%$).

Oxidation of Compound 7.-The Jones's reagent was added dropwise to a solution of compound $7(38 \mathrm{mg})$ in acetone (3 ml) at room temperature during 15 min . After decomposing the excess of reagent
with methanol, water was added and the product extracted with ether. Evaporation of the ether yielded a residue (34 mg) which was chromatographed over silica gel. Elution with 1% ether in hexane afforded compound 8, $\mathrm{mp} 152-153{ }^{\circ} \mathrm{C}(11 \mathrm{mg}, 60 \%) ;[\alpha]_{\mathrm{D}}+100^{\circ}$ (c $\left.0.3, \mathrm{CHCl}_{3}\right) ; m / z 248\left(\mathrm{M}^{+}\right)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $2.3-2.6(2 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H})$; $\delta_{\mathrm{C}}(75.45 \mathrm{MHz}) 17.62,18.11,20.39,21.36,22.42,33.27,33.29$, $34.47,38.48,41.39,51.56,143.22$ (C-8 or C-9), 153.49 (C-9 or C-8), 163.24 (C-11 or C-12) and 164.84 (C-12 or C-11). Further elution with 20% ether in hexane afforded starting material (15 mg).

We thank Dr. Bernardo Méndez for the measurement of the $2-\mathrm{D}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Received, 27th April 1998; Accepted, 13th May 1998
Paper E/8/03123A

References

1 T. Nakano, in Studies in Natural Products Chemistry, ed. Atta-urRahman, Elsevier, Amsterdam, 1989, vol. 4, p. 403 and refs. therein.
2 T. Nakano, J. Villamizar and M. A. Maillo, J. Chem. Res. (S), 1995, 330.
3 T. Nakano, J. Villamizar and M. A. Maillo, 20th IUPAC Symposium on the Chemistry of Natural Products, Chicago, IL, September 15-20, 1996.
4 T. Nakano and A. Martín, J. Chem. Res. (S), 1989, 52.
5 T. Nakano, M. A. Maillo and A. Rojas, J. Chem. Soc., Perkin Trans. 1, 1987, 2137.
6 S. V. Ley and M. Mahon, J. Chem. Soc., Perkin Trans. 1, 1983, 1379.

7 H. H. Appel, R. P. M. Bond and K. H. Overton, Tetrahedron, 1963, 19, 635.
8 A. Montagnac, M-T. Martin, C. Debitus and M. Pais, J. Nat. Prod., 1996, 59, 866.
9 K. Bowden, I. M. Heibron, E. R. H. Jones and B. C. Weedon, J. Chem. Soc., 1946, 39.

[^0]: *To receive any correspondence.
 \dagger This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1998, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

