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Abstract

Discoveries on involvement of glycan-protein recognition in many (patho)physiological
processes are directing attention to exploring the significance of a fundamental structural
aspect of sugar receptors beyond glycan specificity, i.e. occurrence of distinct types of
modular architecture. In order to trace clues for defining design-functionality relationships in
human lectins, a lectin’s structural unit has been used as source material for engineering
custom-made variants of the wild-type protein. Their availability facilitates comparative
analysis toward the stated aim. With adhesion/growth-regulatory human galectin-1 as
example, the strategy of evaluating how changes of its design (here from the homodimer of
non-covalently associated domains to i) linker-connected di- and tetramers and ii) a galectin-
3-like protein) affect activity is illustrated by using three assay systems of increasing degree
of glycan complexity. Whereas calorimetry with two cognate disaccharides and array testing
with 647 (glyco)compounds disclosed no major changes, galectin histochemical staining
profiles of tissue sections that present natural glycome complexity revealed differences
between wild-type and linker-connected homo-oligomers as well as between the galectin-3-
like variant and wild-type galectin-3 for cell-type positivity, level of intensity at the same site
and susceptibility for inhibition by a bivalent glycocompound. These results underscore the
strength of the documented approach. Moreover, they give direction to proceed to i)
extending its application to other members of this lectin family, especially galectin-3, and ii)
then analyzing impact of architectural alterations on cell surface lattice formation and ensuing

biosignaling systematically, considering the variants’ potential for translational medicine.
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Introduction

What distinguishes carbohydrates from the other alphabets of life (i.e. nucleotides and amino
acids) is their ability to generate oligomers of unsurpassed coding capacity (Laine 1997;
Schnaar 2015; Solis et al. 2015; Gabius and Roth 2017). Indeed, this chemical potential is
turned into glycome complexity (Ginsburg and Neufeld 1969; Roth 1987; Brockhausen and
Schachter 1997; Cummings 2009; Zuber and Roth 2009). As a consequence, proteins and
sphingolipids can present a wide diversity of sugar-encoded signals (Buddecke 2009;
Schengrund 2015; Corfield 2017; Kopitz 2017; Ledeen et al. 2018; Sandhoff et al. 2018). One
route of the flow of this information toward eliciting effects is that these ‘messages’ are ‘read’
and then ‘translated’ by sugar receptors (lectins) (Gabius 2017; Manning et al. 2017a; Kaltner
et al. 2018a). Their target (glycan) specificity and their modular architecture are assumed to
be key factors that determine the profile of the functional outcome of glycan-lectin
recognition. In fact, evolution has used ancestral lectin domains as source material to generate
diversity on the levels of sequence and modular design. Along this line of reasoning, each
type of design to present the common carbohydrate recognition domain (CRD) in a lectin
family can be postulated to have its own characteristic mission. Intriguingly, not all
theoretically possible modes of CRD arrangement are apparently realized in Nature, and,
equally puzzling at present, differences in modular display within a lectin family exist for
example between vertebrates and invertebrates. The fundamental issue on defining design-

functionality relationships and the given open questions prompted us to perform this study.

Looking at adhesion/growth-regulatory galectins (Gals) as test case, the CRD is presented in
three modes in vertebrates (Hirabayashi 1997; Cooper 2002; Kaltner et al. 2017; Manning et

al. 2018a). As illustrated in Figure 1, the typical cross-linking (lattice-forming) activity of
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galectins is made possible via different structural means: bivalency is attained by non-
covalent or covalent (linker-dependent) association. The formation of CRD oligomers can
alternatively involve a second type of module, i.e. an N-terminal tail (NT) with collagen-like
repeats. Obviously, the restriction to the three types of design illustrated in Figure 1 poses the
question as to why this particular set has phylogenetically become a stable trait in vertebrates.
In order to resolve this issue, engineering of protein variants that display a distinct CRD in
other types of design than the natural one enables to characterize the impact of altering CRD

presentation on lectin properties.

Selecting homodimeric (proto-type) galectin-1 (Gal-1) for proof-of-principle work, the
conversion of non-covalent association to covalent connection by short (Gly-Gly), flexible or
rigid (a-helical) linkers (Béttig et al. 2004; Bi et al. 2008; Earl et al. 2011; Tribulatti et al.
2012; Vértesy et al. 2015), by disulfide bonding directed by a leucine zipper (van der Leij et
al. 2007), by fusion of an immunoglobulin G; (IgG;) F. part to the CRD (Tsai et al. 2008;
Cedeno-Laurent et al. 2010) and by site-specific (Cys130-dependent) self-conjugation of the
Cys2Ser/Cys16Ser/Cys88Ser triple mutant using poly(ethylene glycol) diacrylate (Fettis and
Hudalla 2018) led to bioactive homodimers. As predicted by studies using atomic force
microscopy or glycodendrimersomes, the non-covalent association of this CRD appears to be
more suited for cis-crosslinking and transient trans-bridging than for establishing firm
contacts (Dettmann et al. 2000; Zhang et al. 2015). The insertion of a linker opens the route to
generate homo-oligomers with the CRD of human Gal-1 beyond the dimer. Hereby, the
artificial equivalent of the assumedly anti-microbial tandem-repeat-type oyster galectins,
which are tetramers not found in vertebrates (Tasumi and Vasta 2007; Feng et al. 2013;
2015), became available (Kopitz et al. 2017). Equally important, a design switch between

human galectins had recently been accomplished: Gal-1’s CRD had been combined with the
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NT of the chimera-type Gal-3 to turn homodimeric Gal-1 into a Gal-3-like Gal-1 variant
termed Gal-3NT/1 (Ludwig et al. 2019a, b). Thus, rational engineering with the Gal-1 CRD
has reached the status to facilitate comparative analysis of the wild-type protein vs variants of

different design.

The selection of assay systems should consider the documented influence of the mode of
glycan presentation, either free in solution (measured for example by frontal affinity
chromatography or isothermal titration calorimetry, ITC) or on a solid phase/cell surface, on
the extent of binding (Ahmad et al. 2002; Hirabayashi et al. 2002; Stowell et al. 2004, 2008;
Leppanen et al. 2005; Song et al. 2009; Iwaki and Hirabayashi 2018). As consequence,
protein design-ligand binding relationships were systematically determined in three assay
systems: i) calorimetry to characterize the thermodynamics of binding the canonical ligands
lactose (Lac) and N-acetyllactosamine (LacNAC), ii) glycan microarray monitoring and iii)
galectin histochemistry on sections of two organs, i.e. murine epididymis and jejunum, that
present characteristic, physiologically complex glycomes. By applying this experimental
strategy, combining protein engineering with comparing activity profiles of the resulting
proteins all built with the Gal-1 CRD as lectin part, the presented results provide insights into

the effect of changes of modular design on aspects of lectin properties.

Results

The panel of Gal-1-based variants

Natural human Gal-1 is a homodimer non-covalently stabilized by mostly hydrophobic
contacts of the CRD interfaces that appears to undergo monomerization from low-puM
concentrations downward (Giudicelli et al. 1997; Lopez-Lucendo et al. 2004; Stowell et al.

2009). Playing a modular puzzle with the human Gal-1 CRD as building block, five variants
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were engineered by i) covalent conjugation of two or four Gal-1 CRDs using either the 33-
amino-acid linker of human Gal-8 termed 8S (Figure 2, left) or the dipeptide Gly-Gly termed
GG (Figure 2, center) to generate homodi- and tetramers (Figure 2, left and center) and ii)
human Gal-3’s NT as the second module (Figure 2, right). As a consequence, fundamental
design switches originating from the proto-type structure are established (these basic
structures are shown in Figure 1). These five proteins that share presence of the Gal-1 CRD
could all be isolated by affinity chromatography on Lac-presenting beads, ascertaining their
activity for binding the cognate disaccharide. They constitute the toolbox shown in Figure 2

to proceed to the comparative analysis with the wild-type protein, first by ITC.

Binding properties: ITC

Each protein was processed in the same experimental set-up using the common physiological
target of the ga(lactose-binding)lectins, i.e. LacNAc, and also Lac. As exemplarily shown in
Figure 3 for wild-type Gal-1, its GG-linked di- and tetramers as well as its Gal-3-like Gal-
3NT/1 variant, injections of ligand-containing solution led to heat release, whose extent
successively decreased as ligand concentration reached saturation. The calculated number of
binding sites per protein (n) was invariably close to the expected values of 2 (for
homodimers), 4 (for homotetramers) and 1 for the Gal-3-like monomer (Table 1), fully in line
with completely maintained lectin activity. As commonly reported for human galectins (e.g.
by Dam et al. 2005), the binding process was enthalpically driven with a typical entropic
penalty (Table I). This was also the case when using Lac as ligand, albeit at the known lower

level of affinity (Supplementary data, Table SI).

Covalently connecting the two Gal-1 CRDs by bringing in a linker (either GG or 8S) and

increasing the number of CRDs to form the tetramer may affect the avidity of consecutive
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binding processes. As an indicator for cooperativity of binding of a monovalent ligand to a
protein (complex) with at least two binding sites, Hill plots were derived from the ITC data
and presented as log(concentration of free ligand) vs log(fraction of ligand-loaded
galectin)/(fraction of ligand-free galectin). Together with the advantage of covering all
available data by its logarithmic scaling in this type of plot, any (substantial) deviation from
linearity (with a slope of 1.0) in the Hill plot will signal cooperativity of binding processes.
The data obtained for the Gal-3NT/1 variant exemplarily illustrate the linearity of the Hill plot
in the case of binding to a monovalent ligand, here LacNAc (Figure 4A). Fittingly, the
tangent slopes of successively calculated 3-point intervals are around 1.0 throughout the

titration (Figure 4B).

Applying this type of data processing to each case, the tabulated slope values were obtained.
As summarized in Table I, they provide no robust evidence for cooperativity, considering
deviations from normality mostly occurring at minimal changes of fractional occupancy, as
shown in Supplementary data, Figure S1A,B, and the error brought in by Q subtraction. When
running the titrations with this protein and Lac as ligand (independently up to 6 mM and 10
mM), slope values of 1.02 and 1.08, respectively, were obtained (Supplementary data, Figure
S1C-F), as all other titrations with Lac (up to 14 mM for the 8S-linked tetramer) led to slope
values close to 1 (Supplementary data, Table Sl). These results document full loading of the
proteins with ligand and a maintained thermodynamics with enthalpic gain as driving force
for binding in each case. In addition, titrations with the GG-linked trimer and Lac (6 mM, 10
mM, 14 mM)/LacNAc (6 mM) consistently resulted in n-values close to 3, enthalpically
driven thermodynamics and slope values close to 1 (Supplementary data, Tables SII/SIII).
Hill plots therefore indicate no solid evidence for an occurrence of positive cooperativity by

the structural remodeling of the dimer to tri- and tetramers. Moreover, computational
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processing of data with the PEAQ software yielded fitting exclusively for the one-set-of-sites
model.

In order to probe into binding properties of this panel for glycans beyond LacNAc when
presented on a surface, each protein was biotinylated under activity-preserving conditions,
then the proteins’ Lac-inhibitable binding to surface-presented glycoprotein (asialofetuin) and

to cells was ascertained and binding properties on a glycan microarray tested.

Binding properties: printed glycan array

The glycan array comprised a total of 647 printed substances encompassing glycocompounds
(mono- to oligosaccharides and derivatives, glycopeptides, (lipo)polysaccharides and
glycosaminoglycans) and peptides. Its capacity to delineate fine-specificity differences among
closely related family members had previously been documented for chicken galectins
(Garcia Caballero et al. 2016) so that this test system was applied for this panel of proteins.
With the exception of (biotinylated or fluorescent) wild-type Gal-1, all proteins proved active
in this setting and gave graded signal profiles of binding, the intensity values recorded at the
constant (mass) concentration of 50 pug/ml (please see Figure 5 for a side-by-side comparison;
Supplementary data, Figure S2 for a bar graph; for complete listings of signal intensity, please

see Supplementary data, Tables SIV-SIX).

In principle, LacNAc and its oligomers were found to be binding partners for the Gal-1-type
CRD. Few major differences occurred between di- and tetramers, here the particularly strong
signal intensity of LacNAc sulfated at two sites (3-O-SuGal and 6-O-Su-GIcNAc) when
tested with the 8S-linked tetramer (Figure 5; Supplementary data, Figure S2). The broad-
panel testing was also a means to answer the question on an influence of Gal-3’s NT on

ligand binding of the CRD of Gal-1, for example by the tail’s backfolding or tendency for
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aggregation. Affinity to internal (reducing-end) LacNAc units and the low-level recognition
of the histo-blood group B tetrasaccharide clearly separate the proteins with the Gal-1 CRD,
especially Gal-3-like Gal-3NT/1, from wild-type Gal-3 (Supplementary data, Figure S2).
Obviously, these cases of glycans disclose that Gal-1’s CRD rather maintains its binding
pattern irrespective of the tested alterations of the protein architecture when interacting with
surface-immobilized glycans in arrays. In order to take the test system from array-presented
glycocompounds to cellular glycomes, tissue sections are an experimental platform that can
trace differences up to the level of cell types. Of special note, in comparison to array-type
presentation, the surface of tissue sections, by presenting physiologically complex glycomes,
offers the naturally encountered possibility to bridge two structurally different binding

partners for the cross-linking galectins.

Binding properties: galectin histochemistry

Glycophenotyping of sections of adult fixed murine epididymis and jejunum by plant, fungal
and invertebrate lectins had indicated the suitability of these two organs for the given purpose
(Lohr et al. 2010; Kaltner et al. 2018b). Sections of fixed tissues were processed first by
controls to exclude signal generation in the absence of labelled galectin (Figure 6A;
Supplementary data, Figure S3A) and to ascertain sensitivity of signal generation to presence
of the cognate sugar (Figure 6B; Supplementary data, Figure S3B), then by titrations to
determine the optimal concentration that avoids significant background staining for
systematic comparisons. The distribution profiles of the galectin-dependent and Lac-

inhibitable staining are summarized in Table 1 for the data on adult murine epididymis.

The overall quantitative differences of staining intensity seen between wild-type Gal-1

(yielding up to very strong (++++) intensity) and its covalently linked di- and tetrameric
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variants (only reaching up to weak-level (+) intensity) in the cases of principal and apical but
not basal cells (in this case, all proteins caused high (+++/++++) signal intensity) are
illustrated in Figure 6B-F. High-magnification microphotographs substantiate the cell-type-
dependent differences for comparisons of wild-type Gal-1 (Figure 61, N, S) vs the GG-linked
dimer (Figure 6J, O, T) or tetramer (Figure 6K, P, U). The similarity of staining profiles in
signal distribution and intensity when testing Gal-1 and the Gal-3NT/1 variant, shown in
Figure 6B, G, is documented in more detail in Figure 61, N, S (Gal-1) and Figure 6L, Q, V
(Gal-3NT/1). Since Gal-3 application led to reduced level of staining of principal and apical
cells relative to the grade of intensity reached by the Gal-3-like Gal-1 variant (Table Il, Figure
6H, M, R, W), the data of the galectin histochemical analysis were in line with the array-
based results. In both cases, the nature of the CRD mattered in the two proteins of identical

(chimera-type) design.

In order to answer the question on the possibility for observing differences by pairwisely
analyzing staining profiles of labelled wild-type Gal-1 vs di- to tetramer and Gal-3NT/1 vs
wild-type Gal-3 in cell types of other functionalities than reproduction, galectin
histochemistry was performed in sections of adult murine jejunum. In principle, this appears
to be the case (Supplementary data, Table SX). Strong intensity of staining of apical and
supranuclear cytoplasm of surface enterocytes was obtained by labelled Gal-1 and its Gal-
3NT/1 variant, whereas covalently linked di- and tetramers (exemplarily shown for the GG-
linked dimer) and also wild-type Gal-3 reached comparatively lower intensity levels (Figure
7A, in clockwise representation; Supplementary data, Figure S3B-G for overviews and Figure
S3I-L for enlarged details). The same congruence was seen for the neck of the epithelial
lining, goblet cell staining revealing disparity among di- and tetramers, whereas the fundus,

here Paneth cells, presents similarly strong intensity (Figure 7B, in clockwise representation;
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Supplementary data, Figure S3B-G for overview and Figure S3N-Q for enlarged details).
Again, the profile of staining by the Gal-3NT/1 variant could be distinguished from that of
Gal-3 (Supplementary data, Figure S3G, H for overviews, Figure S3L, M, Q, R for enlarged

details).

In addition to ascertaining binding by the canonical site of contact for Lac, as shown in the
insets of Figure 6B and Supplementary data, Figure S3B, the inhibition assays were extended
from using the cognate disaccharide to include synthetic neoglycoconjugates. They have the
added value to serve as molecular rulers. The possibility for differential degrees of
susceptibility to the presence of certain types of topological inhibitor presentation was
examined with a pair of bi- and tetravalent compounds (Scheme 1). Bivalency of the Lac-
presenting compound 1 is based on conjugation of sugar to a backbone with a stilbene residue
(the synthetic route to its production shown in Scheme 2), whereas scaffold with a
tetraphenylethylene established tetravalency for compound 2. The types of central bridging
lead to a distance of up to 33 A for the two sugar units in the extended conformation of
compound 1, 18 A, 28.5 A and 32 A separate the sugar headgroup at neighbouring and at
opposing positions in compound 2, as shown in Supplementary data, Figure S4 (all distances
measured between the carbon atoms at the anomeric position of galactose as averages
observed during 10-ns molecular dynamics runs). Crystal structures of substances with
relaxed core point to the possibility either for a coplanar arrangement between phenyl rings
and the alkene in bis(p-methoxy)-trans-stilbene (Theocharis et al. 1984) or for a lack of
planarity between the phenyl ring and alkene in tetraphenylethene (Li et al. 2017).
Conformational flexibility in other parts of the backbone can allow sugar headgroups to adopt

a range of distances beyond those given in Supplementary data, Figure S4.
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Testing sections of both organs systematically by titrations, the bivalent compound was
clearly more effective than free Lac and Lac presented by the tetrameric scaffold. When
concentrations were normalized for sugar content, reductions of staining when applying the
labelled 8S-linked tetramer in a mixture with inhibitor on epididymis sections (Figure 8) and
the GG-linked tetramer on jejunum sections (Supplementary data, Figure S5) back this
statement. Remarkably, covalent association of the CRD caused increased degree of
susceptibility to Lac-dependent inhibition of binding to sites in sections. The conjugation by
insertion of the linker thus not only changes cellular aspects of binding profiles but also
affects inhibitory potency of the cognate sugar, on sections of the tested organs processed by
fixation especially for the bivalent compound. When testing the inhibitory capacity
comparatively on native cell (CHO glycosylation mutant Lec8) surface binding, the signals
were reduced rather similarly by the two synthetic compounds (not shown). Examining the
natural chimera-type protein, valency of the scaffold affected Gal-3-dependent signal
intensity more potently than it did for Gal-1-type proteins, in jejunum up to a 40-fold increase
in inhibitory potency for both glycocompounds (not shown). Again, there is a difference
between the two proteins with chimera-type design depending on the nature of the CRD, Gal-
3 invariably being more sensitive to the presence of the two synthetic substances than Gal-
3NT/1. The nature of origin of the CRD thus appears to matter for more aspects than glycan

specificity.

Discussion

The basic structural unit of a lectin is defined by the folding around its contact site for the
cognate ligand. The cooperation between glycan specificity and modular lectin design is
assumed to ensure the apparently high selectivity for distinct counterreceptors (cellular

glycoconjugates): this functional pairing underlies the accurate and efficient translation of
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glycan-encoded messages (Gabius et al. 2016). Altering protein architecture can thus be an
approach to delineate an influence of defined architecture variations on lectin activities and to
open perspectives for examining translational biomedical applications of such variants of

human lectins.

In this study, we used the CRD of human Gal-1 as a common platform to build a set of five
variants shown in Figure 2. Two different lengths of linker were deliberately included,
because anomalous scaling of diffusion coefficients in measurements on tandem-repeat-type
galectins and a linkerless variant of Gal-4 by fluorescence correlation spectroscopy had taught
the lesson on “counterintuitive consequences when simply considering molecular mass
increase” (Gohler et al. 2010). Since Gal-3’s trimodular design is unique among galectins
(please see Figure 1), its CRD also being involved in homotypic interactions (Kuklinski and
Probstmeier 1998; Yang et al. 1998; Lepur et al. 2012; Halimi et al. 2014; Ippel et al. 2016;
Flores-lbarra et al. 2018; Xiao et al. 2018), examining the Gal-3-like Gal-1 variant is
supposed to probe into consequences of CRD substitution. At the same time, the Gal-1 CRD
will attain monovalency, with potential for aggregation different from that of the wild-type

protein.

Methodologically, we teamed up three types of assay to characterize binding properties. The
first assay, i.e. ITC, informed us about affinity for Lac/LacNAc with enthalpic/entropic
contributions and about the occurrence of cooperativity. Overall, the driving force for
Lac/LacNAc invariably was the enthalpy gain and affinity values were rather similar.
Covalent CRD association did not lead to cooperativity. No indication for cooperativity had
been observed for LacNAc binding to homodimeric Gal-1, -2 and -7 and tandem-repeat-type

Gal-4 (Dam et al. 2005), also seen with thiodigalactoside as ligand for Gal-4 (Martin-

610Z AB\ /| UO Jasn ylewus uiayinog Jo Ausiealun Aq v62687S/7£0ZM0/qooAI6/€601 "0 /I0p/10BISqe-8]011iB-80UBAPE/]OIA|6/W 00 dNo"olWapeoe.//:sdiy Wol) papeojumoq



Santamaria et al. 2011). Absence of deviation from linearity in Scatchard plots of binding of
radiiodinated wild-type Gal-1 and the homo-oligomers to human (SK-N-MC) neuroblastoma
cells adds evidence to a one-set-of-sites binding process (Kopitz et al. 1998, 2017). In
contrast, marked negative cooperativity had been reported based on measurements from the
perspective of loading of a multi(nona)valent ligand, i.e. the branch ends of the three

complex-type N-glycans of asialofetuin, with galectin (Dam et al. 2005).

Proceeding from measurements with disaccharides in solution to monitoring specificity on a
glycan array, rather similar profiles of signals were detected for the homo-oligomers. This
result is in line with respective results obtained with the IgG; F. part-Gal-1 CRD fusion
proteins (Tsai et al. 2008; Cedeno-Laurent et al. 2010). It is thus not surprising that an 8S-
linked Gal-1 homodimer did not acquire a new biological activity, i.e. to become an
eosinophil chemoattractant as tandem-repeat-type Gal-9 is (Sato et al. 2002). Linker insertion
therefore does not necessarily reprogram a galectin, although experience with a
hexa(Gly)peptide in the place of the natural linker in Gal-8, leading to the statement that “it
depends on the hinge” (Levy et al. 2006), advises to be cautious when considering
extrapolation. The same applies to CRD conjugation with the NT of Gal-3. In comparison to
wild-type Gal-3, the Gal-3NT/1 variant maintains the typical target specificity of Gal-1 to the
terminal (non-reducing-end) position of LacNAc oligomers, whereas Gal-3 homes in on

internal disaccharide units in polyLacNAc chains.

In order to take analysis from the glycan array a step closer to cellular relevance and to
examine the physiological glycan complexity, we have added galectin histochemistry of
tissue sections. They present complex glycomes and enable comparative monitoring on the

level of various cell types. Testing revealed marked differences in signal intensities. Also,
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sensitivity toward inhibition with cognate sugar, most effective with a bivalent
glycocompound, was enhanced by linker insertion. The example of intramolecular bridging of
contact sites in wheat germ agglutinin by a bivalent compound has taught the remarkable
lesson that the synthetic scaffolds with conjugated Lac can be molecular rulers (Maierhofer et
al. 2007; Schwefel et al. 2010; André et al. 2016). Indeed, spatial features of interplay
between the Gal-1 CRDs in the wild-type protein and in the linker-connected variants and
contact sites in sections appear to be non-uniform; the same applied to wild-type Gal-3 and
Gal-3-like Gal-3NT/1, here likely also involving the individual characteristics of the interplay
of CRD (Gal-1 or -3) with itself in intermolecular contacts and/or with the NT. Concerning
binding of ligands in sections, similar staining profiles for the wild-type and Gal-3-like Gal-1
proteins were determined, as opposed to wild-type Gal-3. The cases of difference in staining
profiles of epididymal principal/apical vs basal cells as well as subapical vs supranuclear
cytoplasmatic positivity of surface enterocytes when working with wild-type Gal-1 and its
covalently linked variants yet argue against simple extrapolations. Evidently, covalent CRD

conjugation can modulate certain aspects of staining profiles in different manners.

In this sense, our report gives direction to broaden the study of variants and to define their
properties in ligand recognition up to binding to cell surfaces and eliciting post-binding
effects, starting with analyzing the spatial nature of galectin-induced lattices. After all, cross-
linking of counterreceptors is assumed to be at the heart of galectin functionality (Brewer
2002; Boscher et al. 2011; Kasai 2018; Sato 2018). Considering antagonist activity of Gal-3
(and also the Gal-3NT/1 variant) on Gal-1 as negative neuroblastoma growth regulator
(Kopitz et al. 2001; Ludwig et al. 2019a) and formation of cross-linked complexes with
disparate structural organization together with Lac-bearing glycoclusters by these two

proteins (Ahmad et al. 2004), lectin design apparently is a source for variability of functional
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aspects. Further comparative analyses with wild-type and variant proteins, then also with a
Gal-1-like Gal-3 homodimer (Ludwig et al. 2019a), can therefore provide hints to understand
emerging aspects of expression of galectins as network (Manning et al. 2017b, 2018b;
Zivicova et al. 2017) and of their emerging, likely clinically relevant networking (Weinmann
et al. 2018). Such studies have potential to establish an innovative class of specific
antagonist/effector proteins on the platform of human galectin domains with a perspective for

testing clinical applicability.

Materials and methods

Protein production and labeling

The wild-type proteins and five variants were obtained by recombinant production, purified to
homogeneity by affinity chromatography on home-made Lac-presenting resin and
biotinylated under activity-preserving conditions using the N-hydroxysuccinimide ester
derivative of biotin (Sigma, Munich, Germany), followed by routinely ascertaining
maintained lectin activity, as described (Gabius et al. 1991; Kopitz et al. 2017; Ludwig et al.
2019a). In addition, the GG-linked homotrimer was produced, purified and characterized as

described (Kopitz et al. 2017).

ITC measurements

Titrations were performed in 20 mM phosphate buffer (pH 7.2) containing 5 mM or 150 mM
NaCl and 10 mM B-mercaptoethanol at constant temperature for the six proteins using a
PEAQ-ITC (Malvern, Westborough, MA, USA) calorimeter, as described (Ludwig et al.
2019a). In brief, adding ligand stepwisely in 150 s intervals at 25 °C and 750 rpm in 2 pl
aliquots of a 36.4 ul solution of 6 mM LacNAc/Lac (and 10 mM or 14 mM) to 200 pl

galectin-containing solution (details on protein concentrations listed in Table | and
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Supplementary data Table SI) in the calorimetric cell yielded measurements of heat release,
respective data were processed by the MicroCal PEAQ-ITC Analysis software using a one-
site model, and a fitted off-set parameter was applied to each titration to account for
background. In the cases of Lac titrations, fixing the n-value at or near theoretical
stoichiometry was applied, using lectin concentration of LacNAc titrations for parameter
settings. Hill plot data analysis was performed, as applied for human galectins and a

nonavalent ligand (asialofetuin) as described (Dam et al. 2005).

Array measurements

Biotinylated galectins were comparatively tested at the constant concentration of 50 pug/ml in
phosphate buffered saline (PBS) containing 0.1% Tween-20, 1% bovine serum albumin and
0.01% NaNj3 for 1 h at 37 °C in a humidified chamber with the array slide presenting the
panel of 647 (glyco)compounds, as described for chicken galectins (Garcia Caballero et al.
2016). Glass surface had been pretreated with PBS containing 0.1% Tween-20 for 15 min to
reduce background by non-specific protein adsorption. After thorough washing to remove
unbound labelled protein, probing with fluorescent streptavidin (labelled with AlexaFluor®-
555 dye; Molecular Probe, Eugene, USA) followed for 45 min at 20 °C. After thoroughly
washing with PBS-0.001% Tween-20 and then with deionized water to remove the
fluorescent sensor protein, slides were scanned on an InnoScan 1100 AL scanner (Innopsys,
Carbonne, France) using an excitation wavelength of 543 nm at 10 pum resolution. The
obtained data were processed using ScanArray Express 4.0 software and the fixed 70 pum-
diameter circle method as well as Microsoft Excel. Six spots represented each compound on
the array (details on nature of the 647 compounds given in Tables SIV-1X), and binding data

are reported as median RFU (relative fluorescence units) of replicates. Median deviation was
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measured as interquartile range. A signal, whose fluorescence intensity exceeded the

background value by a factor of five, was considered to be significant.

Galectin histochemistry

Fresh tissue specimen of four six-week-old C57 BL/6 mice we fixed in Bouin’s solution for
24 h, dehydrated by passing them through a series of solutions of increasing contents of
ethanol, then isopropanol and finally xylene prior to embedding in paraffin wax at 61 °C.
Sections mounted on Superfrost® plus glass slides (Menzel, Braunschweig, Germany) were
processed by an optimized protocol ensuring minimal background with Vectastain® ABC Kit
and Vector® Red reagents (Biozol, Eching, Germany) for staining, as described (Kaltner et
al. 2018b). In the case of each protein, systematic titrations including blocking by cognate
sugar were carried out to compare profiles and identify a concentration for comparative
analysis in three to five independent series that covered the following ranges: 0.0625-4 pg/ml
for wild-type Gal-1 and the pair of homodimeric variants, up to 1 pg/ml for the pair of
homotetrameric variants, up to 0.5 pg/ml for the Gal-3NT/1 protein and 16 pg/ml for wild-
type Gal-3. Of note, titrations covered equal mass and molar concentration for the wild-type
vs variant pairs. Data acquisition and recording followed a routine protocol (Kaltner et al.
2018b), and semiquantitative grading of intensity of staining is given in the footnote of Table

Glycocompound synthesis

NMR spectra were recorded with 500 MHz & 600 MHz Varian spectrometers. Chemical
shifts are reported relative to internal Me,Si in CDCl3 (6 0.0), HOD for D,O (& 4.84) or
CD,HOD (8 3.31) for *H and CDCl; (77.16) or CDsOD (49.05) for *C. NMR spectra were

processed and analysed using MestReNova software. *H NMR signals were assigned with the
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aid of gCOSY. °C NMR signals were assigned with the aid of APT, gHSQCAD and/or
gHMBCAD. Coupling constants are reported in Hertz. Low- and high-resolution mass spectra
were measured on a Waters LCT Premier XE Spectrometer, measuring in both positive and/or
negative mode as, using MeCN, H,O and/or MeOH as solvent. Thin layer chromatography
(TLC) was performed on aluminium sheets precoated with silica gel 60 (HF254, E. Merck)
and spots visualized by UV and charring with H,SO4-EtOH (1:20), cerium molybdate, or
phosphomolybdic acid stains. Flash chromatography was carried out with silica gel 60 (0.040-
0.630 mm; E. Merck or Aldrich) and using a stepwise solvent polarity gradient (starting with
the conditions indicated in each case and increasing the polarity as required) correlated with
TLC mobility. Chromatography solvents, cyclohexane, EtOAc, CH,Cl, and MeOH were used
as obtained from suppliers (Fisher Scientific and Sigma-Aldrich). Solvents for reactions under
anhydrous conditions were directly used as obtained from a Pure Solv™ Solvent Purification

System.

To obtain (E)-1,2-bis(4-(prop-2-yn-1-yloxy)phenyl)ethane (4), compound 3 was prepared
(Andrus et al. 2002). To 3 (2.50 g, 10.4 mmol) dissolved in CH,Cl, (40 ml), which had been
cooled in an ice-salt bath, was added, dropwise, a solution of boron tribromide in CH,Cl, (39
ml of 1.0 M, 39 mmol). The solution was allowed to attain room temperature and was then
stirred for 15 h. Water (35 ml) was added slowly, dropwise, with stirring. The organic solvent
was removed under reduced pressure, the aqueous phase was extracted with EtOAc (3 x 30
ml), the combined organic phases were dried over Na,SO, and the solvent removed under
reduced pressure. Column chromatography (7:3, cyclohexane-EtOAc) gave the demethylated
intermediate (2.1 g, 97%); 'H NMR (500 MHz, DMSO-dg) & 7.33 (d, J = 8.7 Hz, 4H,
aromatic H), 6.88 (s, 2H, alkene H), 6.72 (d, J = 8.6 Hz, 4H, aromatic H);**C NMR (126
MHz, DMSO-dg) & = 157.2 (C), 129.0 (C), 127.8 (CH aromatic), 125.6 (CH, alkene), 115.9

(CH aromatic); ESI-HRMS calcd for C14H110, 211.0759, found m/z 211.0702 [M-H] " To this
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intermediate (2.1 g, 9.9 mmol) dissolved in dry DMF (300 ml) was added anhydrous
potassium carbonate (11.0 g, 79.3 mmol). Propargyl bromide (80% in toluene, 4.8 ml, 55
mmol) was then added and the mixture was stirred for 14 h at 70 °C under a nitrogen
atmosphere. The reaction was then cooled to room temperature and was diluted with CH,Cl,
(300 ml). This solution was washed with saturated NH,4CI, with the aqueous layer being re-
extracted with a further portion of CH,Cl, (3 x 150 ml). The combined organic layers were
then washed with water and dried over Na,SO,, solvent was removed at reduced pressure.
Column chromatography (7:3, cyclohexane-EtOAc) gave the title compound (2.43 g, 85%);
'H NMR (500 MHz, CDCl3) § 7.44 (d, J = 8.7 Hz, 4H, aromatic H), 6.97 (d, J = 8.7 Hz, 4H,
aromatic H), 6.94 (s, 2H, alkene H), 4.71 (s, 4H, CH,), 2.53 (s, 2H, alkyne H);**C NMR (126
MHz, chloroform-d) 6 = 157.4 (C), 131.3 (C), 127.4 (aromatic CH), 126.5 (alkene CH), 115.1
(aromatic CH), 75.6 (alkyne CH), 55.9 (CH,); ES-HRMS calcd for CyHisNaO, 311.1048,

found m/z 311.1052 [M+Na]".

To obtain glycocompound 1, compound 5 was prepared as described (Leyden et al. 2009). To
4 (108 mg, 0.42 mmol) dissolved in degassed THF-H,O (1:1, 6 ml) were added 5 (561 mg,
0.92 mmol), sodium ascorbate (49 mg, 0.25 mmol) and Cu,SO,4-5H,0 (62 mg, 0.25 mmol).
The reaction mixture was stirred under inert atmosphere in a microwave reactor at 50 °C (120
W) for 30 min. Tetrahydrofuran was then removed under reduced pressure followed by the
dilution of the solution with CH,Cl,. This mixture was washed with water. The aqueous layer
was re-extracted with a further portion of CH,Cl,. The combined organic layers were dried
over Na,SO, and the solvent was removed at reduced pressure. Chromatography (95:5,
CH.Cl,-MeOH) gave the protected intermediate (600 mg, 89 %) as a colourless solid; *H
NMR (500 MHz, chloroform-d) 6 7.78 (s, 2H, triazole H), 7.40 (d, J = 8.8 Hz, 4H, aromatic
H), 6.94 (d, J = 8.8 Hz, 4H, aromatic H), 6.91 (s, 2H, alkene H), 5.83 (d, J = 9.1 Hz, 2H, H-1),

5.39 (overlapping signals, 4H), 5.35 (d, J = 3.4 Hz, 2H), 5.20 (s, 4H, CH>), 5.12 (dd, J = 10.4,
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7.9 Hz, 2H, H-2"), 4.96 (dd, 10.4, 3.4 Hz, 2H, H-3"), 4.52 (d, ] = 7.9 Hz, 2H, H-1"), 4.47 (d, J
= 11.0 Hz, 2H, H-6), 4.18 — 4.06 (overlapping signals, 6H, H-6 and H-6" protons), 3.98 — 3.83
(overlapping signals, 6H, H-4,H-5, H-57), 2.15 (s, 6H, OAc), 2.09 (s, 6H, OAc), 2.06 (s, 6H,
OAC), 2.05 (s, 6H, OAC), 2.04 (s, 6H, OAC), 1.96 (s, 6H, OAc), 1.82 (s, 6H, OAC); *C NMR
(126 MHz, chloroform-d) 6 = 170.3, 170.2, 170.1, 170.0, 169.4, 169.1, 169.0 (each C, each
OAC), 157.5 (aromatic C), 144.8 (triazole C), 131.0 (aromatic C), 127.5 (aromatic CH), 126.3
(alkene CH), 121.1 (triazole CH), 115.0 (aromatic CH), 101.1 (CH, C-1°), 85.5(CH, C-1),
75.9 (CH, C-4), 75.6 (CH,C-5), 72.6 (CH,C-3), 70.9 (CH,C-3), 70.8 (CH,C-2), 70.5 (CH,C-
2%), 69.0, 66.6 (CH,C-4"), 61.9 (CH,), 61.7(CH,,C-6), 60.8 (CH,,C-6"), 20.8 (CHs, OAC),
20.7(CHs, OAc), 20.6 (CHs, OAc), 20.6 (CHs, OAc), 20.6 (CHs, OAc), 20.5(CHs, OAC),
20.1(CH3, OAc), ES-HRMS calcd for C7,HgsNgNaO3s 1633.4981, found m/z 1633.4985
[M+Na]*. To a suspension of this intermediate (400 mg, 0,25 mmol) in dry MeOH (10 ml,
cooled 0 °C), freshly prepared 1M NaOMe in MeOH was added until the solution reached pH
10. The reaction mixture was allowed to attain room temperature and stirred for 15 h. Glacial
acetic acid was added to neutralise (pH = 7) the solution. [NOTE: it is possible to use
Amberlite IR- 120 H+ instead of AcOH, but filtration is difficult due to the low solubility of
1]. The solvent was removed under reduced pressure. Reverse phase column (three volumes
of water were flushed through the column, to ensure salt removal, followed by a MeCN-H,0
mixture of 3:2 ratio) gave the title compound 1 as white solid (250 mg, 96%) [NOTE: the
compound dissolves in a minimal volume of water with few drops of MeCN added. If the
product precipitates, one drop of AcOH can be added and the mixture heated slightly to
redissolve solid compound]; *H NMR (500 MHz, DMSO-d6) & 8.46 (s, 2H, triazole H), 7.52
(d, J = 8.8 Hz, 4H, aromatic H), 7.11 — 7.00 (overlapping signals, 6H, aromatic H, alkene H),
5.67 (d, J = 9.3 Hz, 2H, H-1), 5.17 (s, 4H, CH,), 4.26 (d, J = 7.9 Hz, 2H, H-1°), 3.87 (t, ] =

9.3 Hz, 2H, H-2), 3.78 (d, J = 10.6 Hz, 2H ,H-6), 3.70 — 3.44 (overlapping signals, 16H), 3.42
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— 3.29 (overlapping signals, 4H); **C NMR (126 MHz, DMSO-d6) & 157.9 (C), 143.1 (C),
130.8 (C), 127.9 (CH, aromatic), 126.4 (CH, aromatic), 124.4 (CH, triazole), 115.3 (CH,
aromatic), 104.2 (CH, C-1), 87.4 (CH, C-1), 80.2 (CH), 78.2 (CH), 76.0 (CH), 75.6 (CH),
73.7 (CH), 72.2 (CH), 71.0 (CH), 68.6 (CH), 61.4 (CH,), 60.9 (CH,), 60.5 (CH,); ES-HRMS

calcd for C44Hs7NgO2, 1021.3526, found m/z 1021.3566 [M-H]

The tetraphenylene-based glycocompound 2 was prepared, as described and applied to lectin
testing previously (Hu et al. 2011; André et al. 2015). Analytical data: *H NMR (500 MHz,
DMSO-d6) 6 8.43 (s, 4H, triazole H), 6.90 (d, J = 8.5 Hz, 8H, aromatic H), 6.84 (d, J = 8.6
Hz, 8H, aromatic H), 5.66 (d, J = 9.3 Hz, 4H, H-1), 5.65 — 5.61 (overlapping signals, 4H,
OH), 5.20 (br s, 4H, OH), 5.07 (s, 8H, CH,), 4.95 (br s, 4H, OH), 4.92 (br s, 2H, OH), 4.75 —
4.65 (overlapping signals, 8H, OH), 4.59 (br s, 4H, OH), 4.26 (d, J = 7.1 Hz, 4H, H-1"), 3.87
(g, J = 8.9 Hz, 4H, H-2), 3.78 (t, J = 10.8, 4.9 Hz, 4H), 3.70 — 3.45 (overlapping signals,
34H), 3.40 — 3.33 (overlapping signals, 8H); *C NMR (126 MHz, DMSO0-d6) 5 171.1 (C),
156.9 (C), 143.0 (C), 137.0 (C), 132.5 (CH, aromatic), 124.4 (CH, triazole), 114.3 (CH,
aromatic), 104.2 (CH, C-1°) , 87.4 (CH, C-1), 80.2 (CH), 78.2 (CH), 76.1(CH), 75.6 (CH),
73.7 (CH), 72.2 (CH, C-2), 71.0 (CH), 68.6 (CH,), 60.9 (CH,), 60.5 (CH,); ES-HRMS calcd

for C85H111N12044 2015.6817, found m/z 2015.6818 [M-H]

Low-energy conformers of both glycocompounds were generated by molecular modeling
applying structure building using Maestro version 6.0 (Schrodinger Inc., LLC, New York,
USA) and energy minimization (OPLS-AA force field, GB/SA continuum solvation model
for water (Still et al. 1990)) using Macromodel version 6.0.107 (Schrodinger Inc.), in part as
described (Wang et al. 2012). Distances reported are averages obtained from 1000 structures
sampled during 10-ns molecular dynamics simulations. The stochastic dynamics method was

employed at a simulation temperature of 300 K, a time step of 1.5 fs and an equilibration time
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of 1.0 ps. No constraints were imposed during the simulation in the case of compound 2. In
the case of substance 1, the phenyl rings and alkene were constrained to match a coplanar

arrangement.

Inhibitory capacity of glycocompounds

Systematic titrations with solutions containing free or glycocompound-presented Lac (all
concentrations normalized to Lac) were performed in 2-fold serial dilutions in the range of 25
UM to 200 mM (Lac) or to 10 mM Lac (glycocompound). Solutions with biotinylated galectin
and inhibitor were mixed and incubated for 1 h at room temperature, and pre-treated sections
were exposed to aliquots of the mixture in parallel overnight at 4 °C together with mock-
treated controls (=100%). All concentrations used for experiments of documented data are
given in the legends of respective figures. Cytofluorometric analysis with fluorescent
galectins and cells of the Chinese hamster ovary (CHO) glycosylation mutant Lec8 were

carried out as described (André et al. 2016; Kopitz et al. 2017).
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Legends to Figures

Fig. 1. lllustration of the three types of modular design of vertebrate galectins, i.e. proto-type
(non-covalent association of two identical CRDs as in Gal-1), tandem-repeat-type (two
different covalently connected CRDs, in human Gal-8 either by the short (S) 33-amino-acid
linker (or by) its longer version (L; 74 amino acids)) and chimera-type (a CRD conjugated to
an N-terminal tail (NT) composed of a peptide with two (Ser) sites for phosphorylation and

non-triple helical collagen-like repeats, nine in human Gal-3) proteins (from top to bottom).

Fig. 2. Hlustration of the routes of modular engineering to turn the CRD of Gal-1 into
covalently associated homodi- and tetramers by linker insertion (left: 33-amino-acid linker of
human Gal-8 shown in Figure 1; center: Gly-Gly) and into a Gal-3-like variant by bringing it

together with Gal-3’s NT thus termed Gal-3NT/1 (right). Color coding is used as in Figure 1.
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Fig. 3. lllustration of the pair of thermogram (top) and isotherm (bottom) for the titration of
galectin-containing solution in phosphate buffer (pH 7.2) containing 5 mM or 150 mM NaCl
and 10 mM B-mercaptoethanol with 2 pl aliquots of a 6 mM LacNAc-containing solution in
150 s intervals at 25 °C in the cases of wild-type Gal-1 (A), the GG-linked homodimer (B),

the GG-linked homotetramer (C) and the Gal-3NT/1 variant (D).

Fig. 4. lllustration of the Hill plot of the ITC data for LacNAc (6 mM) binding to Gal-3NT/1
(please see Figure 3D) at functional valency of 1 (A) and the corresponding bar graph of 3-

point tangent slope data in the course of the titration (B).

Fig. 5. lllustration of side-by-side comparisons of relative signal intensity of galectin binding

to selected glycans within the 647-compound-based array.

Fig. 6. Staining profiles obtained with the six biotinylated galectin proteins in cross sections
through the initial segment of fixed murine epididymis. (A-H) Microphotographs present
overviews with higher-level magnifications of distinct regions (inserted circle above the
respective area including principal (p), apical (arrow) and basal cells (arrowhead)). (1-W)
Moreover, enlarged views on these distinct cell types (i.e. principal cells (p), 1-M; apical cells
(arrows), N-R; basal cells (arrowheads), S-W) are given. (A) Negative control by omission of
the incubation step with first-step reagent (labelled galectin) to exclude lectin-independent
signal generation. (B) Strong binding of Gal-1 in the epithelial lining and comparatively
weaker positivity in stereocilia (asterisk). Inset to B shows extent of reduction of galectin
binding by co-incubation of labelled Gal-1 with Lac (200 mM). (C-F) Variants stained
cytoplasm of epithelial cells, particularly strong in basal cells. In principal and apical cells,

intensity was moderate for (Gal-1),-GG (C) and for (Gal-1),-8S (D) or weak ((Gal-1)4-GG
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(E). No staining was detected in the case of (Gal-1)4-8S (F). Presence of 10 mM Lac
completely inhibited binding of (Gal-1),-8S (inset to F; please see also Figure 8A, B). (G)
Labelled Gal-3NT/1 generated a staining profile and degree of intensity comparable to Gal-1
(B), whereas binding sites for Gal-3 were detected at moderate intensity of staining
supranuclearly (asterisk) in principal cells and at very strong intensity in basal cells (H).
Enlarged views of the three main cell types (please see corresponding encircled areas in B-H)
document nearly identical staining profiles for principal (p, I-M) and apical cells (arrows, N-
R), except for a slightly stronger staining in the supranuclear cytoplasm of apical cells
(asterisks). Incubations with labelled Gal-1 or Gal-3NT/1 led to strong and rather
homogeneous staining of cytoplasm of principal (I, L) and of apical cells (N, Q). Weak
staining intensity of principal and apical cells by the two variants (Gal-1),-GG (J, O) and
(Gal-1),-8S (insets to J and O) as well as at best very weak staining by (Gal-1),-GG (K, P)
and (Gal-1)4-8S (insets to K and P) was recorded. Gal-3 binding was detected in apical and
basal cytoplasm of both cell types (M, R) and, with moderate intensity, supranuclearly in
principal cells (M, asterisk). (S-W) Basal cells were positive after processing of sections with
labelled (Gal-1),-GG (T), (Gal-1),-8S (inset to T), (Gal-1),-GG (U), (Gal-1)4-8S (inset to U)
and Gal-3 (W). Processing with labelled Gal-1 (S) or Gal-3NT/1 (V) resulted in staining
intensity of basal cells, which was not different from that of principal and apical cells. The
following concentrations were applied: Gal-1, (Gal-1),-GG, (Gal-1),-8S, (Gal-1),-GG, (Gal-
1)4-8S, Gal-3NT/1: 0.5 pg/ml; Gal-3: 8.0 pg/ml. Scale bars are 50 um (A-H, bottom right

insets in B, F) or 5 um (circles in B-H, I-W).

Fig. 7. Enlarged views of discriminatory aspects of the staining patterns of Gal-1, (Gal-1),-
GG and Gal-3NT/1 in villi enterocytes (A) and of Gal-1, (Gal-1),-8S and Gal-3NT/1 in the

fundus of epithelial lining of crypts (B) in sections of fixed murine jejunum.
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Microphotographs are presented in a clockwise manner. (A) Strong cytoplasmatic staining of
surface enterocytes by Gal-1 and moderate supranuclear (arrowhead) staining by (Gal-1),-
GG. The staining profile by Gal-3NT/1 was nearly identical to that of Gal-1. The brush border
(bb) was moderately positive with Gal-1 and Gal-3NT/1, weakly with (Gal-1),-GG. Contents
of goblet cells (arrows) was invariably negative. (B) Strong positivity cytoplasmatically in
precursors of enterocytes (asterisks), of goblet cells (arrowheads, contents was negative) and
of crypt-associated cells (arrows) such as enteroendocrine cells and Paneth cells was obtained
with Gal-1, very strong with (Gal-1),-8S in crypt-associated cells only. Profile of Gal-3NT/1
staining was similar to that of Gal-1. The concentration of probe was constant at 0.25 pg/ml.

Scale bars are 5 um (A) and 10 um (B).

Fig. 8. Effect of increasing concentrations of cognate sugar (Lac) added free in solution or as
part of the two glycocompounds on the staining profile obtained with biotinylated (Gal-1),-8S
in cross sections through the initial segment of fixed murine epididymis. The signal remained
at near to 100% level in the presence of 0.025 mM Lac tested as free sugar (A) or presented
either by tetravalent compound 2 (inset to A) or bivalent compound 1 (C). Increasing the
sugar concentration to 0.5 mM free Lac (B; please also see complete inhibition by 10 mM Lac
in Fig. 6 inset to F) and scaffold-presented Lac by tetravalent compound 2 (inset to B)
reduced staining intensity by 1-2 categories in the semiquantitative ranking (from ++++ to
++/+++) and number of positive basal cells by approximately 20%. In stark contrast, presence
of compound 1 at this concentration precluded any binding of galectin (D). Symbols for
semiquantitative grading of staining intensity are given in the rectangular box in the top-right
area of each microphotograph and inset (for correlation of symbols to staining intensity,
please see footnote in Table II). Scale bars are 50 pum. (Gal-1);-8S was applied at a

concentration of 0.5 pg/ml.
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Legends to Schemes

Scheme 1. Structural illustrations of the stilbene-based bivalent compound 1 and the

tetraphenylethylene-based tetravalent compound 2.

Scheme 2. Route of  synthesis of  the bivalent compound 1.
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Table I. Thermodynamic parameters and Hill coefficients of binding of LacNAc (6 mM) to human
galectins at 25 °C

el [Cell K. . 4G -AH TAS o0 K, il
(MM) (x10 M) (kcal/mol)  (kcal/mol) (kcal/mol) (sites/protein) (M) coefficient

Gal-1 10 117 555 |, %‘_%ég)) 4.26 2.0 ( ff"szz) 1.10
(Ga-1),-GG 95 1.99 5.88 (190'_12520) 3.27 1.96 (153"916) 1.09
(Gal-1),8S 95 1.10 551, (1)%22) 5.29 1.98 ( igf_';’g) 1.069
(Gak1),+-GG 50 1.99 587 |, %‘_71888) 2.91 3.97 ( 155_'725) 1.15
(Gal-1),-8S 34 1.12 552, %)(_)2'%57) 458 4.06 ( isa?_'f ) 1.09
Gal-3NT/L 70 0.74 521, %).16881) 6.53 0.98 ( 1113723) 0.980

% obtained from successive 3-point tangent slope at y=0.
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Table II. Distribution and cellular localization of galectin-dependent and Lac-inhibitable staining in sections of
fixed adult murine epididymis®

type of protein Gal-1 (Gal-1),-GG (Gal-1),-8S (Gal-1),-GG  (Gal-1),-8S Gal-3NT/1  Gal-3
site of staining

principal cells

stereocilia ++ -/+ -+ - - (+) -+
apicalb ++++ +/++ +/++ (+) -+ ++++ +
supranuclear” FHH+ +H++ +H++ ) I+ I —
basal’ ++++ (+) (+) (+) -+ e+ +
apical cells ++++ +H++° +H++° -I(+)° -I(+)° 4+ +/++C
basal cells +4+++ +++ ++++ ++++ ++++ ++++ ++++
smooth muscle cells - - - - - - -
connective tissue - - - + + - -

% intensity of staining in sections is grouped into the following categories: -, no staining; (+), very weak but above back-
ground; +, weak; ++, medium; +++, strong; ++++, very strong.

b positivity of given regions of cytoplasm.

¢ staining intensity of supranuclear cytoplasm of apical cells consistently in higher category.
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1. 1M BBry o AQ _opc  PAc
room temperature AcO O 0 0%
CH,Cl,, 16 h ¢ AcO 2N3
g + AcO 5 OAE
2. DMF, K,CO4 =2
O %Qgg%br:omlde _ 1. qu804 SH%CQB;e
sodium ascor
74%, two steps THF-H,O 1:1 &
OMe 120 W, 50 °C, 1nb‘min
3 o) 2. NaOMe, Me(SH
W 85%, two stepsO
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