A KINETIC AND MECHANISTIC STUDY OF THE BAYLIS-HILLMAN REACTION

Moira L. Bode and Perry T. Kaye^{*} Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, 6140, Republic of South Africa

Abstract: Reactions of acrylate esters with pyridinecarboxaldehydes, in the presence of 3-hydroxyquinuclidine or 1,4-diazabicyclo[2 2.2] octane, have been followed by ¹H NMR spectroscopy, and a mechanism which accommodates the kinetic data has been presented.

The Baylis-Hillman reaction,¹ which involves 1,4-diazabicyclo[2.2.2]octane (DABCO) catalysed coupling of aldehydes and acrylate esters (Scheme 1), has found use in the synthesis of necic acids such as integerrinecic-,² retronecic-³ and senecivernic acid,⁴ and other compounds.⁵ These coupling reactions, which tend to be very slow (typically requiring 4-7 days or longer for completion), may be accelerated by using electrophilic heterocyclic aldehydes or by substituting 3-hydroxyquinuclidine for DABCO.⁶ Such acceleration has made a ¹H NMR kinetic study feasible, and in this communication, we present a mechanistic sequence which accommodates the experimental data.

Various reaction systems were selected in order to explore the effects of varying :- the 3°amine catalyst; the substrate substituents, R^1 and R^2 , and the component concentrations. The reactions⁷ were followed by monitoring the integral ratios of adequately resolved substrate (1) and product (3) ¹H NMR heteroaromatic signals. For given concentrations of 3°amine, the reactions exhibit linear second-order plots⁸ as illustrated in Figure 1.⁹ The experimental data are, in fact, consistent with third-order kinetics overall (Equation 1) or, assuming the concentration of 3°amine to be constant, pseudo second-order kinetics (Equation 2). The third-order rate constants (k_{obs}) are detailed in Table 1

Rate = $k_{obs}[1][2][3^{\circ}amine]$	(1)
Rate = $k_a[1][2]$	(2)
where $k_a = k_{obs}[3^\circ amine]$	
Rate = $k_2 K_1[1][2][3^{\circ}aminc]$	(3)

The proposed mechanism,¹⁰ which is detailed in Scheme 2, is consistent with the experimentally determined rate equations and with earlier suggestions reviewed by Drewes and Roos.¹ This mechanism involves an additionelimination sequence which is initiated by nucleophilic attack of the 3°amine on the acrylate ester substrate 2 to form a transient dipolar enolate species 4, which subsequently attacks the electrophilic aldehyde 1 to afford the intermediate adduct 5

The rate of formation of the adduct 5 may be expressed in terms of Equation (3) which, for $k_{obs} = k_2 K_1$, is identical to the experimentally determined rate Equation (1) and this step is considered to be rate-determining. Proton transfer and elimination of the 3° amine catalyst then affords the coupled product 3. From the rate constants (k_{obs} , Table 1) it is apparent that the reaction rate is sensitive to variation of both the aldehyde substituent (R^1 , entries 1 and 10) and the alkyl substituent (R^2 , entries 1, 2 and 3). Thus, the reduction in rate constant (k_{obs}) with the increasing electron-releasing inductive effect of the alkyl substituent ($R^2 = Me < Et < Pr^1$) may be attributed to relative destabilisation of the dipolar enolate 4 and a consequent decrease in the equilibrium constant, K_1 (Equation 3). The rate-enhancement associated with substitution of 3-hydroxyquinuclidine for DABCO (compare entries 8 and 9) may be rationalised in terms of hydrogen-bonding stabilisation⁶ of the dipolar intermediate 4 (Figure 2) and a consequent increase in the equilibrium constant, K_1 (Equation 3). This hydrogen-bonding model is supported by the small kinetic isotope effect ($k_H/k_D = 1.3$) observed with use of deuteriated 3-hydroxyquinuclidine¹¹ (compare entries 1 and 7, Table The decrease in rate-constant observed on doubling the proportions of non-polar reactants (compare entries 1 and 5 with 4, 6 and 9) is attributed to a decrease in the overall polarity of the concentrated solutions, which were used to ensure convenient reaction times.

FIGURE 2

FIGURE 1. Kinetic plots for the 3-hydroxyquinuclidine catalysed coupling of methyl acrylate with pyridine-4-carboxaldchyde (entry 1, Table) (a) rate of consumption of pyridine-4-carboxaldchyde,

(b) pseudo second-order plot

Entry		3 R ²	Catalyst	Molal conc./mol.kg ⁻¹ (1):(2):catalyst	k _{obs} a/mo1-2kg ² s-1
1	pyr-4	Me	Hqb	1.82 : 1.82 : 0.10	$(1.42 \pm 0.04) \times 10^{-3}$
2	pyr-4	Et	Hq	1.82 : 1.82 : 0.10	$(9.03 \pm 0.01) \times 10^{-4}$
3	pyr-4	Pr ⁱ	Hq	1.82 : 1.82 : 0.10	$(4.60 \pm 0.14) \times 10^{-4}$
4	pyr-4	Me	Hq	3.63 : 1.82 : 0.10	$(1.32 \pm 0.02) \times 10^{-3}$
5	pyr-4	Me	Hg	1.82 : 1.82 : 0.19	$(1.42 \pm 0.06) \times 10^{-3}$
6	pyr-4	Me	Hq	1.82 : 3.63 : 0.10	$(9.77 \pm 0.10) \times 10^{-4}$
7	pyr-4	Me	D-Hq ^C	1.82 : 1.82 : 0.10	$(1.09 \pm 0.06) \times 10^{-3}$
8	pyr-4	Me	DABCOd	3.63 : 3.63 : 0.18	$(1.51 \pm 0.02) \times 10^{-4}$
9	pyr-4	Me	Hq	3.63 : 3.63 : 0.19	$(1.11 \pm 0.09) \times 10^{-3}$
10	pyr-2	Me	Hq	1.82 : 1.82 : 0.10	$(2.89 \pm 0.04) \times 10^{-4}$

 TABLE 1. Kinetic data for the synthesis of the adducts (3) from acrylate esters (2) and pyridine-2- or pyridine-4-carboxaldehydes (1) in CDCl₃.

^aMean of duplicate determinations. ^bHq is 3-hydroxyquinuclidine. ^cD-Hq is monodeuteriated 3-hydroxyquinuclidine. ^dDABCO is 1.4-diazabicyclo[2.2.2]octane.

ACKNOWLEDGEMENTS

The authors thank AECI Ltd for a Post-graduate Fellowship (M L.B.), Rhodes University and the Foundation for Research Development for generous financial support, and Dr C McClelland (University of Port Elizabeth) for assistance with EPR spectroscopy

REFERENCES AND NOTES

- 1 Applications of this reaction, which was first reported by Baylis, A D; Hillman, M E D [German Patent 2155113 (1972)] have been recently reviewed by Drewes, S E; Roos, G H P Tetrahedron, 1988, 44, 4053
- 2 Drewes, SE, Emslie, ND. J. Chem. Soc., Perkin Trans. 1, 1982, 2079
- 3 Amcer, F., Drewes, S.E., Hoole, R.F.A., Kaye, P.T., Putchford, A.T. J. Chem. Soc., Perkin Trans. 1, 1985, 2713
- 4 Ameer, F; Drewes, SE, Houston-McMillan, MS, Kaye, P.T. S. Afr. J. Chem, 1986, 39, 57
- 5 Hoffmann, H.M R.; Rabe, J. *Helv. Chim. Acta*, 1984, 67, 413 and Hoffmann, H M R, Rabe, J J. Org. Chem., 1985, 50, 3849
- 6 Ameer, F, Drewes, SE, Freese, S., Kaye, PT Synth. Commun., 1988, 18, 495
- 7 The aldehydes 1 and acrylate esters 2 were distilled prior to use All reactants were thermostatted, prior to mixing, at the probe temperature (37°C) of the Perkin Elmer R12A 60 MHz NMR spectrometer used to follow the reactions. In a typical procedure, pyridine-4-carboxaldehyde (0 107 g, 1 0 mmol), 3-hydroxyquinuclidine (0 007 g, 0 06 mmol) and CDCl₃ (0 550 g) were weighed into a 1 ml flask and heated to probe temperature. After equilibration, methyl acrylate (0 086 g, 1 0 mmol) was added (t = t_o) and the reaction mixture transferred to an NMR tube. The measured rate constants (Table 3) represent, in each case, the mean of two determinations which agreed within acceptable limits.
- 8 Plots of 1/(a-x) versus t (for a = b) or ln (a-x)/(b-x) versus t (for $a \neq b$) (where a and b correspond to the initial concentrations of aldehyde 1 and acrylate ester 2 respectively, and x corresponds to the concentration of product 3 at time t) gave essentially straight lines over the initial 50-70% of each reaction, with slopes equal to k_a or $k_a(a-b)$ respectively
- 9 In some instances, data-point scatter and curvature was more pronounced, but linear regression analysis of points corresponding to at least 50% completion still afforded acceptable correlation coefficients (≥ 0.99)
- 10 The possibility of an electron transfer process, involving the 3°amine, was explored by conducting a reaction (comparable to entry 1, Table 1) in the probe of a Varian E-Line Century EPR spectrometer operating at 9.5 GHz (magnetic field - 3360 G, field scan - 1000 G) Three scans, using various gain, modulation amplitude and microwave power settings tailed to provide any evidence for the presence of radical species
- 11 Deuteriation of 3-hydroxyquinuclidine was effected by stirring 3-hydroxyquinuclidine (1 g) in CD₃OD (1 ml) for 20 min, evaporating the solvent and repeating the process until no hydroxyl signal was visible in the ¹H NMR spectrum of the deuteriated product.

(Received in UK 23 July 1991)