Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Preparations and de/re-hydrogenation properties of $Li_xNa_{3-x}AlH_6$ (x=0.9–1.3) non-stoichiometric compounds

ALLOYS AND COMPOUNDS

霐

Xiaolu Fan ^a, Yao Zhang ^{a, c, *}, Yunfeng Zhu ^{b, c, **}, Cassandra Phillips ^d, Xinli Guo ^a, Jian Chen ^a, Zengmei Wang ^a, Liquan Li ^{b, c}

^a School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China

^b College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China

^c Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China

^d Department of Physics and Astronomy, Washington State University, Pullman, WA 99163, USA

ARTICLE INFO

Article history: Received 27 June 2017 Received in revised form 18 September 2017 Accepted 19 September 2017 Available online 21 September 2017

Keywords: Mixed alkali metals alanates Hydrogen storage performances Thermal stability Kinetics

ABSTRACT

Mixed alkali alanates Li_xNa_{3-x}AlH₆ have been successfully synthesized by means of grinding mixtures of Li₃AlH₆ and Na₃AlH₆ in specific molar ratios. Non-stoichiometric Li_xNa_{3-x}AlH₆ compounds with single perovskite-type structures (space group Fm-3m) can be formed only within the composition range of x = 0.9-1.3. Li_{1.3}Na_{1.7}AlH₆ exhibits superior hydrogen storage properties over other Li_xNa_{3-x}AlH₆ compounds. Its onset dehydrogenation temperature (~423 K) was lowered by more than 40 K from other samples in temperature programmed dehydrogenation (TPD) curves. Also, the dehydrogenation capacity of Li_{1.3}Na_{1.7}AlH₆ (3.45 wt.%) is the highest among the compounds. The dehydrogenation enthalpy values of Li_xNa_{3-x}AlH₆ decreased as x increased from 0.9 to 1.3 according to the results by isothermal pressure-composition (PCI) curves and van't Hoff plots. It shows that the dehydrogenation Li_{1.3}Na_{1.7}AlH₆ (49.7 kJ mol H $\overline{2}^{-1}$) was greatly destabilized from that of LiNa₂AlH₆ (138.1 kJ mol⁻¹) was remarkably lowered from that of LiNa₂AlH₆. This illustrates that Li_{1.3}Na_{1.7}AlH₆ (axbit genation ki-netics from that of LiNa₂AlH₆.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As well known, hydrogen is very important as a new source of renewable energy [1]. However, the emerged hydrogen storage materials cannot fully meet the standards of utilizations [2]. Some complex hydrides, such as NaAlH₄, potentially reach the target of both gravimetric and volumetric densities [3–11]. It's possible for the de/re-hydrogenation capacity of NaAlH₄ to attain more than 4.5 wt.% H₂ at a temperature below 473 K using Tibased additives [12–16]. In recent years, studies have been expanded to include mixed alkali alanates such as LiNa₂AlH₆,

LiK₂AlH₆, and K₂NaAlH₆ etc. People have already synthesized these materials and investigated their hydrogen storage performances extensively [17-32].

Among these compounds, LiNa₂AlH₆ exhibits a large dehydrogenation capacity. Approximately 6.7 wt.% H₂ can be evolved from the compound through a three-step reaction within the temperature range from 463 K to 753 K [31]. Many methods to synthesize LiNa₂AlH₆ have been developed during the last decades. Wang et al. obtained LiNa₂AlH₆ by solid-state reaction among LiH, NaH, and NaAlH₄ at a ratio of 1:1:1. Nearly 3.35 wt.% H₂ can be released during the first stage of dehydrogenation [31,32]. Claudy et al. [17] combined LiAlH₄ with NaH to achieve LiNa₂AlH₆ via either toluene or a solid-state reaction at high temperatures and under high hydrogen pressures. Huot et al. [20] obtained LiNa₂AlH₆ by means of mechanochemical method without any solvent, which supplied a facile way to yield the product. Since then, the ball milling method has been extensively used in many combinations such as 2NaH-LiAlH₄ [26,27], NaH-LiAlH₄ [23], 2NaAlH₄-LiH [22], and NaAlH₄-NaH-LiH [25] for synthesizing LiNa₂AlH₆.

^{*} Corresponding author. School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China.

^{**} Corresponding author. College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China.

E-mail addresses: zhangyao@seu.edu.cn (Y. Zhang), yfzhu@njtech.edu.cn (Y. Zhu).

Some other works were conducted to adjust the atomic ratio of Li to Na of the $LiNa_2AlH_6$ phase in order to optimize its thermal stability and dehydrogenation performances. However, only a few compounds have been achieved up to date [33,34]. The composition range of x in $Li_xNa_{3-x}AlH_6$ compounds is still imprecise. The effects of x on the structures and thermal stabilities of these compounds are also unknown.

In the present work, we explored different values of x for $Li_xNa_{3-x}AlH_6$ and the hydrogen storage performances for each. X-ray diffraction (XRD) measurements were implemented to characterize the structures of these compounds. Differential scanning calorimeter (DSC), temperature programmed dehydrogenation (TPD), and pressure-composition isotherms (PCI) measurements were carried out to study the dehydrogenation properties of these samples. We primarily found that x = 1.3 exhibits the best thermodynamic and kinetic properties from the x values that we studied.

2. Experimental

Chemicals NaH (95%, Sigma–Aldrich), NaAlH₄ (93%, Sigma–Aldrich), LiH (97%, Aladdin), and LiAlH₄ (97%, Alfa Aesar) were all used without pretreatment. Na₃AlH₆ was synthesized by ball milling NaH and NaAlH₄ in the molar ratio of 2:1 for 20 h under high-purity (99.9999%) argon on a planetary ball mill (QM-3SP4, Nanjing) at 500 rpm. Li₃AlH₆ was synthesized by ball milling LiH and LiAlH₄ in the molar ratio of 2:1 for 5 h under high-purity (99.9999%) argon at 450 rpm. The mixtures Li₃AlH₆ and Na₃AlH₆ were milled in specific molar ratios for 10 h to form Li-Na-Al-H compounds at a rotation rate of 500 rpm. The ball-to-powder weight ratio was about 65:1.

Both PCI and TPD measurements were carried out on a homemade Sieverts-type apparatus [35,36]. A sample tested by DSC (TA Q2000) was about 5 mg and used carrier gas of 0.1 MPa Ar with a purge rate of 50 ml min⁻¹. All the measurements were performed at a ramping rate of 5 k min⁻¹.

Structural characteristics of the samples were conducted by powder X-ray diffraction (XRD, X'Pert PRO of PANalytical) with Cu-Ka radiation at 40 kV and 40 mA. The diffraction degree (2θ) was scanned from 10° to 90° with a step width of 0.02. All handlings on the samples were performed in glove box full of high-purity Ar (99.9999%). A cellophane tape was placed on the sample pool to protect the sample from the air and moisture during XRD measurement.

3. Results and discussion

3.1. Structures of mixed alkali metal alanates

The Li_xNa_{3-x}AlH₆ compounds were synthesized by ball milling the mixtures of Li₃AlH₆ and Na₃AlH₆ at different ratios (x = 0.9-1.3). The reaction was expressed by equation (1).

$$xLi_{3}AlH_{6} + (3-x)Na_{3}AlH_{6} \rightarrow 3Li_{x}Na_{3-x}AlH_{6}$$
(1)

Single phase Li-Na-Al-H (S.G. Fm-3m) can be identified only within the composition range of x = 0.9-1.3 as shown in the XRD patterns of Fig. 1a and b. When x is lower than 0.9, Na₃AlH₆ appears in the XRD pattern. When x exceeds 1.4, an unknown phase could be formed. The lattice parameters were evaluated by using Jade software [37] and are summarized in Fig. 1c. It was found that these lattice parameters continuously decrease with the augmentation of x from 0.9 to 1.3. Fig. S1 exhibits the Rietveld refinements results in the XRD patterns of Li_xNa_{(3-x})AlH₆ (x = 0.9-1.3). The refinements

Fig. 1. a) XRD patterns of xLi₃AlH₆–(3-x)Na₃AlH₆ system synthesized by ball milling (x = 0.8–1.5); b) XRD patterns of xLi₃AlH₆–(3-x)Na₃AlH₆ within the Bragg angle ranging from 50° to 80° (x = 0.9–1.3); c) Dependencies of the lattice parameters upon x value by means of Jade and Rietica (Rietveld refinement) software, respectively.

results demonstrated the continuous variation of lattice parameter with increasing x amount, which agrees well with those obtained by Jade as shown in Fig. 1c. However, the atomic coordinates of Li, Na, Al, and H in the perovskite-type structure (Fm-3m) phase are hardly observed in the present work. Further efforts on $Li_xNa_{3-x}AlD_6$ by means of synchrotron X-ray diffraction analyses are ongoing.

Calculation methods by Jade and Rietica are thoroughly different. Rietica method determining results of lattice parameters is mainly based on the Rietveld refinements on XRD patterns. However, the Jade method determined lattice parameters and crystalline sizes mainly on the basis of the Bragg angles and the FWHM of diffraction peaks, respectively. Both methods are thoroughly different. However, dependencies of lattice parameters upon x values are nearly the same for both methods. It suggests that variations of lattice parameters are double checked and demonstrated.

3.2. De/re-hydrogenation properties of Li_xNa_{3-x}AlH₆

The temperature programmed desorption curves of $Li_xNa_{3-x}AlH_6$ (x = 0.9–1.3) exhibited in Fig. 2 indicate that, with the increase of x, the dehydrogenation capacity gradually increases. This phenomenon can be ascribed to the increased amount of lightweight lithium in the compounds. When x amount of Li is gradually increased from 0.9 to 1.3, the onset temperatures of dehydrogenation lowers accordingly. Furthermore, when x reaches 1.3, its onset temperature is reduced to 423 K, which is lower than other samples by at least 40 K. Also, the dehydrogenation capacity of the compound reaches 3.45 wt.% H₂, which is the highest capacity among these single phase Li-Na-Al-H compounds.

Fig. 3 a shows the XRD patterns of $Li_xNa_{3-x}AlH_6$ (x = 0.9–1.3) compounds annealed at 573 K. The identified LiH, NaH, and Al phases imply that these compounds went through the same desorption process, which can be expressed as follows.

$$\text{Li}_{x}\text{Na}_{3-x}\text{AlH}_{6} \rightarrow x\text{LiH} + (3-x)\text{NaH} + \text{Al} + 3/2\text{H}_{2}$$
(2)

Fig. 3b shows the XRD patterns of $Li_{1.3}Na_{1.7}AlH_6$ annealed at temperature 453 K, 483 K, 503 K and 523 K, respectively. Those identified phases suggest that the reaction pathway of

Fig. 2. Temperature programmed desorption (TPD) curves of Li_xNa_{3-x}AlH₆ compounds synthesized by ball milling.

 $Li_{1.3}Na_{1.7}AlH_6$ is the same as the other $Li_xNa_{3-x}AlH_6$ samples as equation (2).

Fig. 4 describes the hydrogenation performances for asdehydrogenated $Li_xNa_{3-x}AlH_6$ compounds. It reveals that the duration time until saturated hydrogenation gradually decreased with an increase of x in $Li_xNa_{3-x}AlH_6$. Among these samples, $Li_{1.3}Na_{1.7}AlH_6$ exhibits the shortest saturation time and the highest isothermal hydrogenation rate. In XRD patterns of Fig. 5, there is still some NaH, LiH, and Al phases and has a perovskite-type structure. It means that the reaction was not completed. Both kinetic and thermodynamic barriers likely hindered its rehydrogenation.

3.3. De/re-hydrogenation kinetics of Li_xNa_{3-x}AlH₆

Fig. 6 (a), (b), and (c) present the DSC curves measured at different ramping rates for $LiNa_2AlH_6$, $Li_{1.2}Na_{1.8}AlH_6$ and $Li_{1.3}Na_{1.7}AlH_6$, respectively. Based on these curves, the activation energy values of desorption from these samples can be determined

Fig. 3. a) XRD patterns of $Li_xNa_{3-x}AlH_6$ samples as annealed at 573 K; b) XRD pattern of $Li_{1.3}Na_{1.7}AlH_6$ sample as annealed at 453 K for 10hr, 483 K, 503 K, and 523 K, respectively.

Fig. 4. Isothermal hydrogenation curves of the Li-Na-Al-H samples at 507 K and under hydrogen pressure of 5 MPa.

by means of Kissinger's equation (3).

$$\ln\left(\frac{\beta}{T_p^2}\right) = -\frac{E_a}{R} \cdot \frac{1}{T_p} + C \tag{3}$$

In this equation, β is the ramping rate, T_p stands for the peak temperature, and *R* represents the gas constant.

The apparent activation energy E_a for dehydrogenation of LiNa₂AlH₆ is 162 kJ mol⁻¹ which approaches the value of previous work (173 kJ mol⁻¹) [32]. It was found that with an increase of x in Li_xNa_{3-x}AlH₆, the E_a value would be gradually reduced. It means that the dehydrogenation kinetic barrier was weakened with the increase of the Li amount in the compound. Therefore, the dehydrogenation kinetics and reaction rate were enhanced. According to the results summarized in Table 1, Li_{1.3}Na_{1.7}AlH₆ offers the lowest apparent activation energy (138.1 kJ mol⁻¹) among these compounds, which enhances its dehydrogenation kinetics.

Fig. 5. XRD patterns of those $\text{Li}_x\text{Na}_{3\text{-}x}\text{AlH}_6$ (x = 0.9–1.3) samples after isothermal hydrogenation.

Fig. 6. a) DSC curves of LiNa₂AlH₆ measured at rates of 5 k min⁻¹, 10 k min⁻¹ and 15 k min⁻¹, respectively; b) DSC curves of Li_{1.2}Na_{1.8}AlH₆ measured at rates of 5 k min⁻¹, 10 k min⁻¹ and 15 k min⁻¹, respectively; c) DSC curves of Li_{1.3}Na_{1.7}AlH₆ measured at rates of 5 k min⁻¹, 10 k min⁻¹ and 15 k min⁻¹, respectively. Figure's insets present those fitted plots to evaluate their activation energies of dehydrogenations by means of Kissinger's method.

Fig. 7(a), (b), and (c) reflect the isothermal rehydrogenation behaviors of $LiNa_2AlH_6$, $Li_{1.2}Na_{1.8}AlH_6$ and $Li_{1.3}Na_{1.7}AlH_6$ compounds tested at different temperatures. Their absorption activation energies were identified by the Arrhenius formula as equation (4) and the Johnson-Mehl-Avrami (JMA) equation (5) [26].

$$\ln k = -\frac{E_a}{RT} + \ln A \tag{4}$$

$$\alpha = 1 - e^{-(kt)^n} \tag{5}$$

Where k represents the reaction rate constant, E_a stands for the hydrogen absorption activation energy, T is temperature, R belongs to the gas constant, A is assigned as pre-exponential factor, and α is a constant.

According to the results summarized in Table 1, those hydrogenation activation energy values are very close to these compounds, which means that increasing the Li amount in Li-Na-Al-H compounds would slightly improve the kinetics of hydrogenation.

3.4. Thermal stabilities of Li_xNa_{3-x}AlH₆

The dehydrogenation enthalpies ΔH were employed to represent the thermal stabilities of Li_xNa_{3-x}AlH₆. In order to reveal the effects of x on their thermal stabilities, these ΔH values were investigated by means of PCI curves in Fig. 8 and their van't Hoff equation (6) as follows.

$$\ln P = \frac{1}{T} \left(\frac{-\Delta H}{R} \right) + C \tag{6}$$

P is the plateau pressure, T is the temperature, ΔH is the desorption enthalpy, and R is the gas constant.

As shown in Table 2, the enthalpy value of LiNa₂AlH₆ (68.1 kJ mol H_2^{-1}) is close to the value of previous work (63 kJ mol H_2^{-1}) [31,32]. Here, those ΔH values of Li_xNa_{3-x}AlH₆ compounds were remarkably reduced with increasing x in these compounds. Li_{1.3}Na_{1.7}AlH₆ possesses the lowest dehydrogenation enthalpy value (49.7 kJ mol H_2^{-1}) among these Li-Na-Al-H compounds. The enthalpy value of Li_{1.3}Na_{1.7}AlH₆ closes to that of Na₃AlH₆ (47 kJ mol H_2^{-1}) [3] but is higher than that of Li₃AlH₆ (15 kJ mol H_2^{-1}) [38]. Furthermore, all PCI curves possessing one plateau demonstrate again that each sample of Li_xNa_{3-x}AlH₆ only has a single phase.

Li_{1.3}Na_{1.7}AlH₆ is the most destabilized sample, which should be beneficial to reducing its onset dehydrogenation temperature as shown in Fig. 2. Therefore, it can be concluded that Li_{1.3}Na_{1.7}AlH₆ is the optimized species among all Li-Na-Al-H compounds due to its superior thermal stability and activation energy.

4. Conclusion

 In the present work, non-stoichiometric Li_xNa_{3-x}AlH₆ compounds were successfully synthesized through ball milling the mixtures of Li₃AlH₆ with Na₃AlH₆ in specific molecular ratios.

Table 1

Desorption and absorption activation energies of ${\rm Li}_x{\rm Na}_{3-x}{\rm AlH}_6$ compounds.

Compound	LiNa2AlH6	Li _{1.2} Na _{1.8} AlH ₆	Li _{1.3} Na _{1.7} AlH ₆
Ea (KJ mol ^{-1}) of dehydrogenation	162.0	150.6	138.1
Ea (KJ mol ^{-1}) of rehydrognation	63.2	53.6	59.8

Fig. 7. a) Isothermal hydrogenation curves of LiNa₂AlH₆ obtained at temperatures of 443 K, 463 K, and 483 K, respectively; b) Isothermal hydrogenation curves of Li_{1.2}Na_{1.8}AlH₆ obtained at temperatures of 443 K, 463 K, and 483 K, respectively; c) Isothermal hydrogenation curves of Li_{1.3}Na_{1.7}AlH₆ obtained at temperatures of 443 K, 463 K, and 483 K, respectively. The background hydrogen pressure was 5 MPa.

Fig. 8. a) PC isotherm curves of $LiNa_2AlH_6$ tested at 493 K, 503 K and 513 K, respectively; b) PC isotherm curves of $Li_{12}Na_{18}AlH_6$ tested at 493 K, 503 K and 513 K, respectively; c) PC isotherm curves of $Li_{13}Na_{17}AlH_6$ tested at 493 K, 503 K and 513 K, respectively. Their van't Hoff plots were exhibited in respective diagrams.

XRD analysis indicated that the formation range of $Li_xNa_{3-x}AlH_6$ compounds was x = 0.9-1.3 in composition.

Table 2

The dehydrogenation enthalpies of Li_xNa_{3-x}AlH₆ compounds.

Compound	LiNa ₂ AlH ₆	Li _{1.2} Na _{1.8} AlH ₆	Li _{1.3} Na _{1.7} AlH ₆
$\Delta H(KJ mol^{-1} H_2^{-1})$	68.1	56.4	49.7

- 2) The Li_{1.3}Na_{1.7}AlH₆ exhibited the best dehydrogenation performance among these Li-Na-Al-H compounds, of which the onset temperature was reduced by more than 40 K from other Li-Na-Al-H compounds.
- 3) The products of Li_{1.3}Na_{1.7}AlH₆ after dehydrogenation exhibit superior hydrogenation kinetics over the other Li-Na-Al-H compounds.
- 4) Li_{1.3}Na_{1.7}AlH₆ possesses the lowest thermal stability and activation energy for dehydrogenation among these Li-Na-Al-H compounds. Both thermodynamic and kinetic properties of Li_{1.3}Na_{1.7}AlH₆ synergistically improve its de/re-hydrogenation performances.

Acknowledgements

We are grateful for support from the National Natural Science Foundation of China (51571112, 51471087, and 11472080); the Natural Science Foundation of Jiangsu Province of China (BK20151405, 13KJA430003); Jiangsu Key Laboratory for Advanced Metallic Materials (BM2007204); The Six Talent Peaks Project in Jiangsu Province (2015-XNY-002); and the Fundamental Research Funds for the Central Universities (3212006402).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jallcom.2017.09.205.

References

- L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353–358.
- [2] https://energy.gov/eere/fuelcells/downloads/doe-targets-onboard-hydrogenstorage-systems-light-duty-vehicles.
- [3] B. Bogdanović, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Compd. 253-254 (1997) 1-9.
- [4] B. Bogdanović, M. Schwickardi, Ti-doped NaAlH₄ as a hydrogen-storage material – preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride, J. Appl. Phys. A 72 (2001) 221–223.
- [5] A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Sodium alanates for reversible hydrogen storage, J. Alloys Compd. 298 (2000) 125–134.
- [6] R.A. Zidan, S. Takara, A.G. Hee, C.M. Jesen, Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride, J. Alloys Compd. 285 (1999) 119–122.
- [7] K.T. Møller, J.B. Grinderslev, T.R. Jensen, A NaAlH₄ -Ca(BH₄)₂, composite system for hydrogen storage, J. Alloys Compd. 720 (2017) 479–501.
- [8] Y. Huang, P. Li, Q. Wan, J. Zhang, Y. Li, R. Li, X. Dong, X. Qu, Improved dehydrogenation performance of NaAlH₄ using NiFe₂O₄ nanoparticles, J. Alloys Compd. 709 (2017) 850–856.
- [9] H. Cheng, Y. Chen, W. Sun, H. Lou, Y. Liu, Q. Qi, J. Zhang, J. Liu, K. Yan, H. Jin, Y. Zhang, S. Yang, The enhanced de/re-hydrogenation performance of 4MgH₂ -NaAlH₄ composite by doping with TiH₂, J. Alloys Compd. 698 (2017) 1002–1008.
- [10] J. Huang, M. Gao, Z. Li, X. Cheng, J. Gu, Y. Liu, H. Pan, Destabilization of combined Ca(BH₄)₂ and Mg(AlH₄)₂ for improved hydrogen storage properties, J. Alloys Compd. 670 (1) (2016) 135–143.
- [11] C.H. Yang, T.T. Chen, W.T. Tsai, B.H. Liu, In situ, synchrotron X-ray diffraction study on the improved dehydrogenation performance of NaAlH₄–Mg(AlH₄)₂ mixture, J. Alloys Compd. 577 (45) (2013) 6–10.
- [12] R. Wu, H. Du, Z. Wang, M. Gao, H. Pan, Y. Liu, Remarkably improved hydrogen storage properties of NaAlH₄, doped with 2D titanium carbide, J. Power Sources 327 (2016) 519–525.
- [13] M. Paskevicius, U. Filsø, F. Karimi, J. Puszkiel, P. Pranzas, C. Pistidda, A. Hoell, E. Welter, A. Schreyer, T. Klassen, M. Dornheim, T.R. Jensen, Cyclic stability and structure of nanoconfined Ti-doped NaAlH₄, Int. J. Hydrogen Energy 41 (7) (2016) 4159–4167.

- [14] Y. Liu, X. Zhang, K. Wang, Y. Yang, M. Gao, H. Pan, Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO₂@C-doped NaAlH₄, J. Mater. Chem. A 4 (2015) 1087–1095.
- [15] C.M. Jensen, K.J. Gross, Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material, J. Appl. Phys. A 72 (2001) 213–219.
- [16] C.M. Jensen, R. Zidan, N. Mariels, A. Hee, C. Hagen, Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material, Int. J. Hydrogen Energy 24 (1999) 461–465.
- [17] P. Claudy, B. Bonnetot, J.P. Bastide, J.M. Létoffé, Reactions of lithium and sodium aluminium hydride with sodium or lithium hydride. Preparation of a new alumino-hydride of lithium and sodium LiNa₂AlH₆, Mater. Res. Bull. 17 (1982) 1499–1504.
- [18] O.M. Løvvik, O. Swang, Structure and stability of possible new alanates, J. Epl. 67 (2004) 607.
- [19] O.M. Løvvik, O. Swang, S.M. Opalka, Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations, J. Mater. Res. 20 (2005) 3199–3213.
- [20] J. Huot, S. Boily, V. Güther, et al., Synthesis of Na₃AlH₆, and Na₂LiAlH₆, by mechanical alloying, J. Alloys Compd. 283 (1999) 304–306.
- [21] Y. Liu, F. Wang, Y. Cao, M. Gao, H. Pan, Reversible hydrogenation/dehydrogenation performances of the Na₂LiAlH₆-Mg(NH₂)₂ system, Int. J. Hydrogen Energy 35 (2010) 8343-8349.
- [22] A. Fossdal, H.W. Brinks, J.E. Fonneløp, B.C. Hauback, Pressure–composition isotherms and thermodynamic properties of TiF₃-enhanced Na₂LiAlH₆, J. Alloys Compd. 397 (2005) 135–139.
- [23] R. Genma, N. Okada, T. Sobue, H.H. Uchida, Mechanically milled alanates as hydrogen storage materials, Int. J. Hydrogen Energy 31 (2006) 309–311.
- [24] S.M. Opalka, O.M. Loevvik, H.W. Brinks, P.W. Saxe, B.C. Haoback, Integrated experimental—theoretical investigation of the Na—Li—Al—H system, Inorg. Chem. 46 (2007) 1401.
- [25] J. Graetz, Y. Lee, J.J. Reilly, S. Park, T. Vogt, Structures and thermodynamics of the mixed alkali alanates, J. Phys. Rev. B 71 (2005), 184115.
- [26] N. Okada, R. Genma, Y. Nishi, H.H. Uchida, RE-oxide doped alkaline hydrogen storage materials prepared by mechanical activation, J. Mater. Sci. 39 (2004) 5503–5506.

- [27] R. Genma, H.H. Uchida, N. Okada, Y. Nishi, Hydrogen reactivity of Licontaining hydrogen storage materials, J. Alloys Compd. 356–357 (2003) 358–362.
- [28] X.Z. Ma, E. Martinez-Franco, M. Dornheim, T. Klassen, R. Bormann, Catalyzed Na₂LiAlH₆ for hydrogen storage, J. Alloys Compd. 404 (2005) 771–774.
- [29] Y. Nakamura, A. Fossdal, H.W. Brinks, B.C. Hauback, Characterization of Al–Ti phases in cycled TiF₃-enhanced Na₂LiAlH₆, J. Alloys Compd. 416 (2006) 274–278.
- [30] X. Fan, X. Xiao, L. Chen, S. Li, H. Ge, Q. Wang, Direct synthesis and hydrogen storage behaviors of nanocrystalline Na₂LiAlH₆, J. Mater. Sci. 46 (2011) 3314–3318.
- [31] F. Wang, Y. Liu, M. Gao, K. Luo, H. Pan, Q. Wang, Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na₂LiAlH₆, J. Phys. Chem. C 113 (2009) 7978–7984.
- [32] Y. Liu, F. Wang, Y. Cao, M. Gao, H. Pan, Q. Wang, Mechanisms for the enhanced hydrogen desorption performance of the TiF₄-catalyzed Na₂LiAlH₆ used for hydrogen storage, J. Energy Environ. Sci. 3 (2010) 645–653.
- [33] L. Zaluski, A. Zaluska, J.O. Ström-Olsen, Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis, J. Alloys Compd. 290 (1999) 71–78.
- [34] R. Santhanam, G.S. Mcgrady, Synthesis of alkali metal hexahydroaluminate complexes using dimethyl ether as a reaction medium, Inorg. Chim. Acta 361 (2008) 473–478.
- [35] H.H. Cheng, W.B. Li, W. Chen, D.M. Chen, M.T. Wang, K. Yang, Development of hydrogen absorption-desorption experimental test bench for hydrogen storage material, Int. J. Hydrogen Energy 39 (2014) 13596–13602.
- [36] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, ChemInform abstract: structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Appl. Phys. A 32 (2001) 157–165.
- [37] M.Y. Song, S.N. Kwon, H.R. Park, D.R. Mumm, Characterization of a magnesium-based alloy after hydriding-dehydriding cycling (n=1-150), Met. Mater. Int. 19 (2013) 1139–1144.
- [38] J.R. Ares, K.F. Aguey-Zinsou, M. Porcu, J.M. Sykes, M. Dornheim, T. Klassen, R. Bormann, Thermal and mechanically activated decomposition of LiAlH₄, Mater. Res. Bull. 43 (5) (2008) 1263–1275.