# Whole Cell Catalysed Kinetic Resolution of 6-Azabicyclo[3.2.0]hept-3-en-7one: Synthesis of (-)-Cispentacin (FR 109615) 

Chris Evans, ${ }^{\boldsymbol{a}}$ Ray McCague, ${ }^{\boldsymbol{a}}$ Stanley M. Roberts, ${ }^{\boldsymbol{b}}$ Alan G. Sutherland ${ }^{\boldsymbol{b}}$ and Richard Wisdom ${ }^{\boldsymbol{a}}$<br>${ }^{a}$ Enzymatix Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 4WE, UK<br>${ }^{\text {b }}$ Department of Chemistry, Exeter University, Stocker Road, Exeter EX4 4QD, UK

Enantioselective hydrolysis of the $\beta$-lactam ( $\pm$ )-2 using Rhodococcus equi provided ( $1 R, 5 S$ )-6azabicyclo[3.2.0] hept-3-en-7-one (+)-2, a precursor of the antifungal agent cispentacin.

Our recent work on the biocatalytic resolution of the carbocyclic nucleoside precursor ( $\pm$ )-2-azabicyclo[2.2.1]hept5 -en-3-one $1^{1}$ prompted us to investigate a similar strategy for resolution of the isomeric $\beta$-lactam ( $\pm$ )-6-azabicyclo [3.2.0]-hept-3-en-7-one 2. ${ }^{2}$ Out interest was heightened by the obvious potential of 2 (or the corresponding amino acid $\mathbf{3}$ ) to provide a precursor of the antifungal antibiotic cispentacin ${ }^{3}$ (FR 109615) 4. 4,5 Herein we report the result of these investigations.

The resolution of $( \pm)-2$ with commercially available isolated enzymes proved unsuccessful. Thus porcine kidney aminoacylase catalysed a non-specific hydrolysis of the lactam while Aspergillus sp. aminoacylase, $\beta$-lactamases from Bacillus cereus, Enterobacter cloacae, Escherichia coli or Staphylococcus aureus, bovine pancreatic $\alpha$-chymotrypsin, porcine pancreatic trypsin, proteases from Bacillus subtilis, Bacillus thermoproteolyticus
rokko or Aspergillus oryzae, and porcine pancreatic lipase gave little or no hydrolysis.
Resolution was, however, achieved in a highly selective manner using a whole cell preparation ENZA-1 (Rhodococcus equi NCIB 40213), an organism which had previously been utilized in the resolution of $\mathbf{1}$. Thus, incubation of the cells at $20^{\circ} \mathrm{C}$ in water buffered to pH 7 with the lactam until $\mathrm{ca} .45 \%$ hydrolysis occurred gave amino acid 3 which was converted without purification into the corresponding methyl ester acetamide 5 ( $38 \%$ yield based on racemic lactam) (Scheme 1). This material was shown to have an enantiomeric excess (ee) of $96 \%$ by gas chromatographic analysis on a Lipodex-D column.
The recovered lactam was then reincubated under the same conditions until the ee was $>99 \%$, as assessed by GC analysis, giving a 40\% recovery (based on racemic starting material) of



1


 vi


Scheme 1 Reagents and conditions: i, ENZA-1, pH 7, $20^{\circ} \mathrm{C}[(+)-2$, $53 \%, 75 \%$ ee]; ii, $(\mathrm{MeO})_{2} \mathrm{CMe}_{2}, \mathrm{MeOH}, \mathrm{HCl}$; iii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left[38 \%\right.$, from ( $\pm$ )-2; $96 \%$ ee]; iv, ENZA-1, pH 7, $20^{\circ} \mathrm{C}[40 \%$ from ( $\pm$ ) $-2 ;>99 \%$ ee]; v, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \operatorname{EtOAc}(95 \%) ;$ vi, $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}(95 \%)$
$(+)-2$. The lactam (+)-2 was hydrogenated to give the fully saturated analogue ( - )-6 which was, in turn, hydrolysed to give the corresponding amino acid ( - )-4. This material displayed a similar optical rotation $[\alpha]-8\left(c 1, \mathrm{H}_{2} \mathrm{O}\right) \dagger$ to that reported for natural cispentacin, $[\alpha]_{\mathrm{D}}-10.7^{3}$ and $-8.9^{4,5}\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)$, which is reported to have $1 R, 2 S$ stereochemistry. ${ }^{5}$ On this basis we can assign $1 R, 2 S$-stereochemistry to the lactams ( + )-2 and ( - )-6.

It is interesting to note that ENZA-1 shows poor hydrolytic activity towards ( $\pm$ )-6.

## Experimental

Enantioselective Hydrolysis of the Lactam 2.-Rhodococcus
equi NCIB 40213 ( 700 mg of paste) was suspended in phosphate buffer ( $0.05 \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{pH} 7$ ) and 6-azabicyclo[3.2.0]hept-3-en7 -one 2 ( $340 \mathrm{mg}, 3.12 \mathrm{mmol}$ ) was added. Stirring was continued at room temperature for 142 h after which the cells were removed by centrifugation. The supernatant was extracted with dichloromethane $(4 \times 100 \mathrm{ml})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The recovered lactam ( 197 mg ) was reincubated with Rhodococcus equi ( 280 mg ) in buffer ( 36 ml ) for a further 170 h and then recovered as above. Column chromatography over silica using ethyl acetate as eluent gave ( + )-6-azabicyclo[3.2.0]hept-3-en-7-one ( + )-2 (137 $\mathrm{mg}, 40 \%$ ) as a white solid; m.p. $76-77^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}\left(c 0.4, \mathrm{CHCl}_{3}\right)$ 37; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3414$ and 1754; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.25(1 \mathrm{H}$, br s, NH), 6.12-5.85 ( $2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 4.59-4.42(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 3.85(1 \mathrm{H}$, ddd, $J 9.8,3.5,3.5,1-\mathrm{H})$ and $2.90-2.25(2$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}$ ).

## Acknowledgements

We thank Carol Lee (Enzymatix Ltd) for a supply of microorganisms, Enzymatix for a Lectureship and Enzymatix, the SERC and the DTI for a postdoctoral Fellowship under the aegis of the Biotransformation LINK Scheme (both to A. G. S.).

## References

1 S. J. C. Taylor, A. G. Sutherland, C. Lee, R. Wisdom, S. Thomas, S. M. Roberts and C. Evans, J. Chem. Soc., Chem. Commun., 1990, 1120.
2 J. M. Berge, S. M. Roberts, H. Suschitzky and J. E. G. Kemp, J. Chem. Research, 1978, (S), 255; (M), 3283; D. A. Evans and S. A. Biller, Tetrahedron Lett., 1985, 26, 1907.
3 M. Konishi, M. Nishio, K. Saitoh, T. Miyaki, T. Oki and H. Kawaguchi, J. Antibiotics, 1989, 42, 1749; T. Oki, M. Hirano, K. Tomatsu, K. Numata and H. Kamei, J. Antibiotics, 1989, 42, 1756.
4 T. Iwamoto, E. Tsujii, M. Ezaki, A. Fujie, S. Hashimoto, M. Okuhara, M. Kohsaka, H. Imanaka, K. Kawabata, Y. Inamoto and K. Sakane, J. Antibiotics, 1990, 43, 1.

5 K. Kawabata, Y. Inamoto, K. Sakane, T. Iwamoto and S. Hashimoto, J. Antibiotics, 1990, 43, 513.

