N-Hetaryl-2-cyanoacetamides in the Synthesis of Substituted (\boldsymbol{E})- N -Hetaryl-2-cyanoacrylamides, (\boldsymbol{E}) - N -Alkyl-N-hetaryl-2-cyanoacrylamides, and 6-Amino-2-oxo-4-phenyl-1-(pyridin-2-yl)-1,2-dihydropyridine-3,5-dicarbonitriles

I. V. Dyachenko ${ }^{a}$, V. D. Dyachenko ${ }^{a}$, and E. B. Rusanov ${ }^{b}$
${ }^{a}$ Taras Shevchenko National Pedagogical University, ul. Oboronnaya 2, Lugansk, 91011 Ukraine
e-mail: dvd_lug@online.lg.ua
${ }^{b}$ Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02660 Ukraine

Received September 28, 2005

Abstract

Knoevenagel condensation of N-hetaryl-substituted cyanoacetamides with aldehydes gave the corresponding (E)- N -hetaryl-2-cyanoacrylamides which were converted into (E)- N -alkyl- N -hetaryl-2-cyanoacrylamides and 6 -amino-2-oxo-4-phenyl-1-(pyridin-2-yl)-1,2-dihydropyridine-3,5-dicarbonitriles. The structure of (E)- N -(pyridin-2-yl)-2-cyano-3-phenylprop-2-enamide was determined by X-ray analysis.

DOI: 10.1134/S1070428007010101

2-Cyanoacetanilide derivatives are successfully used in the synthesis of 5-arylcarbamoyl-substituted pyridine-2-chalcogenones [1] and their partially hydrogenated analogs [2]. Only a few examples are available from the literature on the chemistry of N -hetaryl-2cyanoacetamides. In particular, these compounds were used as CH acids in the dimerization of nitriles according to Thorpe [3], C-nucleophiles in nucleophilic vinylic substitutions [4], and CH acids in the condensation with acetylacetone, leading to substituted 2-oxopyridine-3-carbonitriles [5]. Dorokhov et al. [6] reported that N-(pyridyl)-2-cyanoacetamides under usual conditions exist as cyclic isomers, 4 -amino- 2 H pyrido $[1,2-a]$ pyrimidin-2-ones. Comparison of these data with those reported in [3] revealed some discrepancies which stimulated further studies on N-hetarylsubstituted cyanoacetamide derivatives.

In the present work we examined acylation of N-hetaryl-2-cyanoacetamides \mathbf{I}, their condensation with aldehydes II, and reactions with 2-cyano-3-(2-furyl)prop-2-enethioamide (III). The acylation of N-(pyridin-2-yl)cyanoacetamide (Ia) with butyric anhydride occurred regioselectively at the amide nitrogen atom to give the corresponding N-acyl derivative IV. The Knoevenagel condensation of CH acids Ia-Id with aldehydes IIa-IIc in the presence of piperidine
resulted in the formation of (E)- N -hetaryl-2-cyanoacrylamides Va-Vd (Scheme 1, method a). Compound Vd was also synthesized by the Michael reaction following the methylene component exchange pattern [7] (method b). Intermediate Michael adduct \mathbf{A} is unstable, and it decomposes into a new CH acid, cyanothioacetamide (VI), and a new alkene, (E) - N-(5 -chloropyridin-2-yl)-2-cyanoacrylamide (Vd).

The structure of compounds $\mathbf{V a}-\mathbf{V d}$ was unambiguously determined by X-ray analysis of a single crystal of one of these compounds, N-(pyridin-2-yl)-2-cyano-3-phenylprop-2-enamide (Va). Like 3-(2-iodo-phenyl)-2-(4-phenylthiazol-2-yl)acrylonitrile synthesized previously [8] compound $\mathbf{V a}$ is E isomer with respect to the $\mathrm{C}^{7}=\mathrm{C}^{9}$ bond. The structure of molecule

Fig. 1. Structure of the molecule of (2E)-2-cyano-3-phenyl-N-(pyridin-2-yl)prop-2-enamide (Va) according to the X-ray diffraction data with atom numbering.

Scheme 1.

la-Id

A

Scheme 2.

stabilized as enamine tautomer VIII (Scheme 2). We previously reported on the reaction of 3-methylbutanal with cyanothioacetamide, which also involved successive Knoevenagel condensation, Michael addition, intramolecular heterocyclization, and Thorpe-Ziegler reaction ("domino" process) and led to the formation of 5-amino-8-isopropyl-6-thiocarbamoyl-3-thioxo-2-azabicyclo[2.2.2]oct-5-ene-4-carbaldehyde [11].

The reaction of substituted acrylamide Va as Michael acceptor with malononitrile afforded 6-amino-2-oxo-4-phenyl-1-(2-pyridyl)-1,2-dihydropyridine-3,5dicarbonitrile (IXa) (Scheme 1) which is a potential insecticide [12]. Presumably, the reaction path includes formation of primary adduct \mathbf{F} which undergoes chemoselective heterocyclization with elimination of hydrogen to give substituted pyridin-2(1H)-one IXa. Compounds IXa and IXb were also obtained by the reaction of CH acids Ia and Ib with benzylidenemalononitrile according to Michael (method b). Probably, intermediate \mathbf{F} is common for pathways a and b.

D

The alkylation of acrylamide Vc with alkyl halides XIa-XIe in DMF at $20^{\circ} \mathrm{C}$ in the presence of KOH was regioselective, and the products were the corresponding N-alkyl derivatives XIIa-XIIe whose structure was confirmed by spectral data.

EXPERIMENTAL

The IR spectra were recorded on an IKS-40 spectrometer from samples dispersed in mineral oil. The ${ }^{1}$ H NMR spectra were measured on Varian Gemini-200 (199.975 MHz ; compounds Va and IXa) and Varian Mercury-400 instruments (400.397 MHz ; IV, Vb-Vd, VIII, IXb, XIIa-XIIe) from solutions in DMSO- d_{6} using tetramethylsilane as internal reference. The mass spectra were obtained on a Hewlett-Packard Chrommas GC-MS system (HP 5890/5972; electron impact, 70 eV ; HP-5MS column; samples were injected as solutions in methylene chloride). The melting points were determined on a Kofler melting point apparatus. The progress of reactions and the purity of products

Fig. 2. Packing of molecules of (2E)-2-cyano-3-phenyl- N -(pyridin-2-yl)prop-2-enamide (Va) in crystal (bc projection).
were monitored by TLC on Silufol UV-254 plates using acetone-hexane (3:5) as eluent; development with iodine vapor or under UV light.

X-Ray analysis of compound Va. The X-ray diffraction data were obtained on an Enraf-Nonius CAD4 automatic four-circle diffractometer $\left(\lambda \mathrm{Cu} K_{\alpha}\right.$ irradiation, graphite monochromator, $\omega / 2 \theta$ scanning, $\theta_{\text {max }}=$ 61.94°, spherical segment $0 \leq h \leq 7,0 \leq k \leq 16,-15 \leq$ $l \leq 14)$ at room temperature from a $0.12 \times 0.16 \times 0.50-$ mm single crystal. The unit cell parameters and crystal orientation matrix were determined from 22 reflections with $25.18<\theta<28.07^{\circ}$. Total of 2167 reflections were measured, 1982 of which were symmetry-independent ($R_{\text {int }}=0.0258$). Monoclinic crystals; $a=6.671(2), b=$ 14.814(3), $c=13.163(2) \AA ; \beta=102.13(2)^{\circ} ; V=$ 1271.8(5) $\AA^{3} ; Z=4 ; d_{\text {calc }}=1.302 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=$ $0.685 \mathrm{~mm}^{-1} ; F(000)=520$; space group $P 2_{1} / c$ (no. 14). The structure was solved by the direct method and was refined by the least-squares procedure in full-matrix anisotropic approximation using SHELXS97 and SHELXL97 software [13, 14]. The refinement was performed using 1529 reflections with $I>2 \sigma(I)\{217$ refined parameters, 7.05 reflections per parameter; weight scheme $\omega=1 /\left[\sigma^{2}\left(F o^{2}\right)+(0.0506 R)^{2}+\right.$ $0.2245 R$], where $R=\left(F o^{2}+2 F c^{2}\right) / 3$; ratio of the maximal (mid) shift to the error in the last cycle 0.002

Bond lengths d and bond angles ω in the molecule of (2E)-2-cyano-3-phenyl- N-(pyridin-2-yl)prop-2-enamide (Va)

Bond	d, \AA	Bond	$d, ~ \AA{ }^{\text {A }}$	Bond	d, \AA	Bond	d, \AA
$\mathrm{C}^{1}-\mathrm{N}^{1}$	1.326(2)	$\mathrm{C}^{4}-\mathrm{H}^{4}$	1.00(2)	$\mathrm{C}^{8}-\mathrm{N}^{3}$	1.146(3)	$\mathrm{C}^{12}-\mathrm{H}^{12}$	1.01(3)
$\mathrm{C}^{1}-\mathrm{C}^{2}$	1.378(3)	$\mathrm{C}^{5}-\mathrm{N}^{1}$	1.343 (3)	$\mathrm{C}^{9}-\mathrm{C}^{10}$	1.459(3)	$\mathrm{C}^{13}-\mathrm{C}^{14}$	$1.365(3)$
$\mathrm{C}^{1}-\mathrm{N}^{2}$	$1.413(2)$	$\mathrm{C}^{5}-\mathrm{H}^{5}$	0.96(2)	$\mathrm{C}^{9}-\mathrm{H}^{9}$	0.962(18)	$\mathrm{C}^{13}-\mathrm{H}^{13}$	1.00 (2)
$\mathrm{C}^{2}-\mathrm{C}^{3}$	1.386(3)	$\mathrm{C}^{6}-\mathrm{O}^{1}$	1.214(2)	$\mathrm{C}^{10}-\mathrm{C}^{11}$	1.385(3)	$\mathrm{C}^{14}-\mathrm{C}^{15}$	1.384(3)
$\mathrm{C}^{2}-\mathrm{H}^{2}$	0.97(2)	$\mathrm{C}^{6}-\mathrm{N}^{2}$	1.351(2)	$\mathrm{C}^{10}-\mathrm{C}^{15}$	1.391(3)	$\mathrm{C}^{14}-\mathrm{H}^{14}$	0.97(2)
$\mathrm{C}^{3}-\mathrm{C}^{4}$	1.372(3)	$\mathrm{C}^{6}-\mathrm{C}^{7}$	$1.509(3)$	$\mathrm{C}^{11}-\mathrm{C}^{12}$	1.383(3)	$\mathrm{C}^{15}-\mathrm{H}^{15}$	1.00(2)
$\mathrm{C}^{3}-\mathrm{H}^{3}$	0.97(3)	$\mathrm{C}^{7}-\mathrm{C}^{9}$	1.337(3)	$\mathrm{C}^{11}-\mathrm{H}^{11}$	0.95(3)	$\mathrm{N}^{2}-\mathrm{H}^{\mathrm{N} 2}$	0.86(2)
$\mathrm{C}^{4}-\mathrm{C}^{5}$	1.364(3)	$\mathrm{C}^{7}-\mathrm{C}^{8}$	1.425(3)	$\mathrm{C}^{12}-\mathrm{C}^{13}$	1.367(3)		
Angle	ω, deg						
$\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{C}^{2}$	124.34(18)	$\mathrm{N}^{1} \mathrm{C}^{5} \mathrm{C}^{4}$	124.1(2)	$\mathrm{C}^{10} \mathrm{C}^{9} \mathrm{H}^{9}$	114.0(11)	$\mathrm{C}^{12} \mathrm{C}^{13} \mathrm{H}^{13}$	120.2(14)
$\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{~N}^{2}$	111.67(17)	$\mathrm{N}^{1} \mathrm{C}^{5} \mathrm{H}^{5}$	111.2(15)	$\mathrm{C}^{11} \mathrm{C}^{10} \mathrm{C}^{15}$	117.72(18)	$\mathrm{C}^{13} \mathrm{C}^{14} \mathrm{C}^{15}$	120.1(2)
$\mathrm{C}^{2} \mathrm{C}^{1} \mathrm{~N}^{2}$	123.96(18)	$\mathrm{C}^{4} \mathrm{C}^{5} \mathrm{H}^{5}$	124.5(15)	$\mathrm{C}^{11} \mathrm{C}^{10} \mathrm{C}^{9}$	124.88(19)	$\mathrm{C}^{13} \mathrm{C}^{14} \mathrm{H}^{14}$	120.1(13)
$\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}$	117.2(2)	$\mathrm{O}^{1} \mathrm{C}^{6} \mathrm{~N}^{2}$	124.56(17)	$\mathrm{C}^{15} \mathrm{C}^{10} \mathrm{C}^{9}$	117.40(18)	$\mathrm{C}^{15} \mathrm{C}^{14} \mathrm{H}^{14}$	119.8(13)
$\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{H}^{2}$	120.1(12)	$\mathrm{O}^{1} \mathrm{C}^{6} \mathrm{C}^{7}$	121.00(17)	$\mathrm{C}^{12} \mathrm{C}^{11} \mathrm{C}^{10}$	120.8(2)	$\mathrm{C}^{14} \mathrm{C}^{15} \mathrm{C}^{10}$	121.0(2)
$\mathrm{C}^{3} \mathrm{C}^{2} \mathrm{H}^{2}$	122.7(12)	$\mathrm{N}^{2} \mathrm{C}^{6} \mathrm{C}^{7}$	114.44(16)	$\mathrm{C}^{12} \mathrm{C}^{11} \mathrm{H}^{11}$	119.0(15)	$\mathrm{C}^{14} \mathrm{C}^{15} \mathrm{H}^{15}$	118.9(12)
$\mathrm{C}^{4} \mathrm{C}^{3} \mathrm{C}^{2}$	119.8(2)	$\mathrm{C}^{9} \mathrm{C}^{7} \mathrm{C}^{8}$	123.97(17)	$\mathrm{C}^{10} \mathrm{C}^{11} \mathrm{H}^{11}$	120.1(15)	$\mathrm{C}^{10} \mathrm{C}^{15} \mathrm{H}^{15}$	120.1(12)
$\mathrm{C}^{4} \mathrm{C}^{3} \mathrm{H}^{3}$	120.4(15)	$\mathrm{C}^{9} \mathrm{C}^{7} \mathrm{C}^{6}$	118.87(17)	$\mathrm{C}^{13} \mathrm{C}^{12} \mathrm{C}^{11}$	120.4(2)	$\mathrm{C}^{1} \mathrm{~N}^{1} \mathrm{C}^{5}$	116.4(2)
$\mathrm{C}^{2} \mathrm{C}^{3} \mathrm{H}^{3}$	119.7(15)	$\mathrm{C}^{8} \mathrm{C}^{7} \mathrm{C}^{6}$	117.17(17)	$\mathrm{C}^{13} \mathrm{C}^{12} \mathrm{H}^{12}$	123.8(15)	$\mathrm{C}^{6} \mathrm{~N}^{2} \mathrm{C}^{1}$	129.64(18)
$\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{C}^{3}$	118.0(2)	$\mathrm{N}^{3} \mathrm{C}^{8} \mathrm{C}^{7}$	175.0(2)	$\mathrm{C}^{11} \mathrm{C}^{12} \mathrm{H}^{12}$	115.5(16)	$\mathrm{C}^{6} \mathrm{~N}^{2} \mathrm{H}^{\mathrm{N} 2}$	119.3(15)
$\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{H}^{4}$	119.4(13)	$\mathrm{C}^{7} \mathrm{C}^{9} \mathrm{C}^{10}$	131.30(19)	$\mathrm{C}^{14} \mathrm{C}^{13} \mathrm{C}^{12}$	119.9(2)	$\mathrm{C}^{1} \mathrm{~N}^{2} \mathrm{H}^{\mathrm{N} 2}$	111.0(15)
$\mathrm{C}^{3} \mathrm{C}^{4} \mathrm{H}^{4}$	122.6(13)	$\mathrm{C}^{7} \mathrm{C}^{9} \mathrm{H}^{9}$	114.7(11)	$\mathrm{C}^{14} \mathrm{C}^{13} \mathrm{H}^{13}$	119.8(14)		

(0.000) \}. A correction for anomalous scattering was applied. In order to obtain more valid data, a semiempirical correction was applied via PSI scanning ($T_{\min }=$ $0.8122, T_{\max }=0.8837$). All hydrogen atoms were visualized objectively, and their positions were refined in isotropic approximation. A correction for isotropic extinction was introduced in the final calculation step. The final divergence factors were $R_{1}(F)=0.0417$, $R_{W}\left(F^{2}\right)=0.1006$; GOF 1.029. The residual electron density from the Fourier difference series after the last iteration was 0.14 and $-0.12 e / \AA^{3}$.

N -Butanoyl- N -(pyridin-2-yl)-2-cyanoacetamide (IV). A suspension of $1.61 \mathrm{~g}(10 \mathrm{mmol})$ of compound Ia in 15 ml of butyric anhydride was heated for 4 h under reflux. The mixture was cooled, and the precipitate was filtered off and washed with diethyl ether. Yield $1.08 \mathrm{~g}(47 \%)$, red powder, $\mathrm{mp} 238-240^{\circ} \mathrm{C}$ (decomp.). IR spectrum, $v, \mathrm{~cm}^{-1}: 2248(\mathrm{C} \equiv \mathrm{N}), 1696$ (C=O). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.89 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}$, $J=6.11 \mathrm{~Hz}), 1.52 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $6.25 \mathrm{~Hz}), 3.88 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 7.03 \mathrm{~m}(1 \mathrm{H}, 4-\mathrm{H})$, $7.78 \mathrm{~m}(1 \mathrm{H}, 5-\mathrm{H}), 8.13 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=3.12 \mathrm{~Hz})$, $8.24 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}, J=0.92 \mathrm{~Hz})$. Mass spectrum, m / z ($I_{\mathrm{rel}}, \%$): 232 (10) $[M+1]^{+}, 165$ (100), 166 (29), 147 (15), 95 (91), 99 (16). Found, \%: C 62.19; H 5.48; N 17.96. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$. Calculated, \%: C 62.33; H 5.67; N 18.17. M 231.26.

Compounds Va-Vd (general procedure). a. Piperidine, $0.10 \mathrm{ml}(1 \mathrm{mmol})$, was added at $20^{\circ} \mathrm{C}$ to a mixture of 10 mmol of CH acid Ia-Id and 10 mmol of aldehyde IIa-IIc in 25 ml of ethanol. The mixture was stirred for 10 min and was left to stand for 24 h . The precipitate was filtered off, washed with ethanol and hexane, and recrystallized from glacial acetic acid.
(2E)-2-Cyano-3-phenyl- N-(pyridin-2-yl)prop-2enamide (Va). Yield $3.39 \mathrm{~g}(90 \%)$, yellow crystals, $\mathrm{mp} 139-140^{\circ} \mathrm{C}$; fluoresces upon UV irradiation. IR spectrum, $v, \mathrm{~cm}^{-1}: 2206(\mathrm{C} \equiv \mathrm{N}), 1697(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 7.10 d.d $(1 \mathrm{H}$, pyridine, $J=6.18 \mathrm{~Hz})$, $7.41-7.62 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.76 \mathrm{t}(1 \mathrm{H}$, pyridine, $J=$ $8.10 \mathrm{~Hz}), 7.98 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}), 8.13 \mathrm{~d}(1 \mathrm{H}$, pyridine, $J=$ $8.46 \mathrm{~Hz}), 8.33 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}=$, pyridine $), 10.58$ br.s $(1 \mathrm{H}$, NH). Found, \%: C 72.02; H 4.21; N 16.68. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$. Calculated, \%: C 72.28; H 4.45; N 16.86. M 249.27.
(2E)-2-Cyano-3-(cyclohex-3-en-1-yl)-N-(4-methylpyridin-2-yl)prop-2-enamide (Vb). Yield $2.35 \mathrm{~g}(88 \%)$, yellow powder, $\mathrm{mp} 153-155^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2162(\mathrm{C} \equiv \mathrm{N}), 1698(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.61 \mathrm{~m}(1 \mathrm{H}$, cyclohexene), $1.82 \mathrm{~m}(1 \mathrm{H}$, cyclohexene), $2.03-2.24 \mathrm{~m}\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.39 \mathrm{~s}(3 \mathrm{H}$,
$\mathrm{Me}), 2.88 \mathrm{~m}(1 \mathrm{H}, 1-\mathrm{H}$, cyclohexene $), 5.71 \mathrm{~m}(2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}), 6.89 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}$, pyridine, $J=1.12 \mathrm{~Hz})$, $7.53 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=, J=4.25 \mathrm{~Hz}), 7.91 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}$, pyridine), $8.14 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine, $J=1.10 \mathrm{~Hz}$), 10.29 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 71.70; H 6.28; N 15.60. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$. Calculated, \%: C 71.89; H 6.41; N 15.72. M 267.33.
(2E)-2-Cyano-3-phenyl- N-(1,3-thiazol-2-yl)prop-2-enamide (Vc). Yield $1.84 \mathrm{~g}(72 \%)$, yellow powder, $\mathrm{mp} 189-190^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2218(\mathrm{C} \equiv \mathrm{N})$, $1672(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 6.99 \mathrm{~d}(1 \mathrm{H}$, $4-\mathrm{H}, J=2.84 \mathrm{~Hz}), 7.38 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}), 7.46-7.58 \mathrm{~m}$ $(3 \mathrm{H}, \mathrm{Ph}), 7.92-8.04 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}), 8.36 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=)$, 12.98 br.s $(1 \mathrm{H}, \mathrm{NH})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 257$ (8) $[M+2]^{+}, 256$ (19) $[M+1]^{+}, 255$ (46) $[M]^{+}, 226$ (13), 178 (10), 156 (100), 128 (96), 101 (52), 77 (97) $[\mathrm{Ph}]^{+}, 55$ (49), 39 (16). Found, \%: C 61.02; H 3.22; N 16.30. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 61.16; H 3.55; N 16.46. M 255.30.
(2E)- N-(5-Chloropyridin-2-yl)-2-cyano-3-(2-fur-yl)prop-2-enamide (Vd). Yield 1.75 g (64%), white "wool," $\mathrm{mp} 173-174^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2210$ $(\mathrm{C} \equiv \mathrm{N}), 1698(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 6.85 d.d $(1 \mathrm{H}, 4-\mathrm{H}$, furan, $J=2.18 \mathrm{~Hz}), 7.41 \mathrm{~d}(1 \mathrm{H}$, $3-\mathrm{H}$, furan, $J=2.95 \mathrm{~Hz}), 7.96 \mathrm{~m}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine), $8.08 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}$, pyridine, $J=4.12 \mathrm{~Hz}), 8.18 \mathrm{~s}(1 \mathrm{H}$, $6-\mathrm{H}$, pyridine $), 8.23 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 8.44 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}$, furan, $J=1.13 \mathrm{~Hz}), 10.89 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 274$ (100) $[M+1]^{+}$. Found, \%: C 56.89; H 2.87; N 15.20. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{2}$. Calculated, \%: C 57.05; H 2.95; N 15.35. M 273.68.
b. N-Methylmorpholine, $1.10 \mathrm{ml}(10 \mathrm{mmol})$, was added under stirring at $20^{\circ} \mathrm{C}$ to a suspension of 1.96 g (10 mmol) of compound $\mathbf{I d}$ and $1.78 \mathrm{~g}(10 \mathrm{mmol})$ of 2-cyano-3-(2-furyl)prop-2-enethioamide (III) in 20 ml of ethanol, the mixture was stirred for 10 min and left to stand for 24 h , and the precipitate was filtered off and washed with ethanol and hexane. Yield 1.94 g (71%). The product was identical in the melting point, chromatographic data, and IR spectrum to a sample prepared as described above in a.

5-(4-Amino-2-oxo-2H-pyrido[1,2-a]pyrimidin-3-yl)-2-cyano-4-isopropyl-7-methyl- N-(pyridin-2-yl)-oct-2-enamide (VIII) was synthesized as described above for compounds \mathbf{V} (method a) from 1.61 g (10 mmol) of acrylamide $\mathbf{I a}$ and $1.08 \mathrm{ml}(10 \mathrm{mmol})$ of 3-methylbutanal (VII). Yield 1.92 g (48%), colorless plates, mp 224-226 ${ }^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, v, $\mathrm{cm}^{-1}: 3345,3266,3162\left(\mathrm{NH}_{2}\right) ; 2212(\mathrm{C} \equiv \mathrm{N}) ; 1696$ (C=O); $1648\left(\delta \mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm :
$0.71 \mathrm{~d}(3 \mathrm{H}, \mathrm{Me}, J=5.01 \mathrm{~Hz}), 0.92-1.01 \mathrm{~m}(9 \mathrm{H}, 3 \mathrm{Me})$, $1.26 \mathrm{~m}(1 \mathrm{H}, 7-\mathrm{H}), 1.46-1.58 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}, 4-\mathrm{H}, 5-\mathrm{H}\right)$, $1.95 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 6.02 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=, J=0.85 \mathrm{~Hz})$, 7.06 d.d ($1 \mathrm{H}, 4^{\prime}-\mathrm{H}, J=4.11 \mathrm{~Hz}$), 7.32 d.d $\left(1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}\right.$, $J=3.08 \mathrm{~Hz}), 7.51 \mathrm{br} . \mathrm{s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.76 \mathrm{t}(1 \mathrm{H}$, pyridopyrimidine), $7.88 \mathrm{~d}\left(1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.96 \mathrm{~d}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}, J=\right.$ $3.98 \mathrm{~Hz}), 8.04 \mathrm{~d}(1 \mathrm{H}$, pyridopyrimidine, $J=4.04 \mathrm{~Hz})$, $8.34 \mathrm{~d}(1 \mathrm{H}$, pyridopyrimidine, $J=2.14 \mathrm{~Hz}), 8.57 \mathrm{~d}$ (1 H , pyridopyrimidine, $J=1.99 \mathrm{~Hz}$), 9.92 br.s $(1 \mathrm{H}$, NH). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 459$ (100) $[M+1]^{+}$, 338 (28), 262 (10), 95 (11). Found, \%: C 67.95; H 6.42; N 18.14. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2}$. Calculated, \%: C 68.10; H 6.59; N 18.33. M 458.57.

6-Amino-2-oxo-4-phenyl-1-(pyridin-2-yl)-1,2-di-hydropyridine-3,5-dicarbonitrile (IXa). a. Piperidine, $0.10 \mathrm{ml}(10 \mathrm{mmol})$, was added under stirring at $20^{\circ} \mathrm{C}$ to a mixture of $1.61 \mathrm{~g}(10 \mathrm{mmol})$ of compound Ia and 0.66 g (10 mmol) of malononitrile in 20 ml of ethanol, and the mixture was stirred for 30 min and was left to stand for 24 h . The precipitate was filtered off, washed with ethanol and hexane, and recrystallized from glacial acetic acid. Yield 2.13 g (68%), pink needles, $\mathrm{mp} 300^{\circ} \mathrm{C}$ (decomp.; sublimes at $250^{\circ} \mathrm{C}$). IR spectrum, $v, \mathrm{~cm}^{-1}: 3354,3294,3186\left(\mathrm{NH}_{2}\right) ; 2218$ $(\mathrm{C} \equiv \mathrm{N}) ; 1682(\mathrm{C}=\mathrm{O}) ; 1634\left(\delta \mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 7.28-7.72 m (7H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{NH}_{2}\right) ; 7.85-8.16 \mathrm{~m}$ $\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.63 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=1.14 \mathrm{~Hz}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 314$ (100) $[M+1]^{+}$. Found, \%: C 68.84; H 3.42; N 22.19. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$. Calculated, \%: C 69.00; H 3.54; N 22.35. M 313.32.
b. Piperidine, $0.10 \mathrm{ml}(10 \mathrm{mmol})$, was added at $20^{\circ} \mathrm{C}$ to a mixture of $1.61 \mathrm{~g}(10 \mathrm{mmol})$ of compound Ia and $1.54 \mathrm{~g}(10 \mathrm{mmol})$ of benzylidenemalononitrile (\mathbf{X}) in 20 ml of ethanol, and the mixture was stirred for 1 h and left to stand for 24 h . The precipitate was filtered off and washed with ethanol and hexane. Yield $2.25 \mathrm{~g}(72 \%)$. The product was identical in the melting point, chromatographic data, and IR spectrum to a sample prepared as described above in a.

6-Amino-1-(4-methylpyridin-2-yl)-2-oxo-4-phen-yl-1,2-dihydropyridine-3,5-dicarbonitrile (IXb) was synthesized as described above for compound IXa (method b) from $1.75 \mathrm{~g}(10 \mathrm{mmol})$ of N-(4-methyl-pyridin-2-yl)cyanoacetamide (Ib). Yield $2.19 \mathrm{~g}(67 \%)$, colorless plates, $\mathrm{mp} 310-314^{\circ} \mathrm{C}$ (from AcOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 3444,3295,3156\left(\mathrm{NH}_{2}\right) ; 2212$ $(\mathrm{C} \equiv \mathrm{N}) ; 1696(\mathrm{C}=\mathrm{O}) ; 1650\left(\delta \mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 2.44 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.31 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=$ $2.02 \mathrm{~Hz}), 7.54-7.61 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 7.82 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}, J=$ $1.19 \mathrm{~Hz}), 7.64$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.46 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H})$. Mass
spectrum, $m / z\left(I_{\text {rel }}, \%\right): 328$ (95) $[M+1]^{+}, 265$ (14), 264 (100), 109 (11). Found, \%: C 69.58; H 3.82; N 21.14. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$. Calculated, \%: C 69.72; H 4.00; N 21.39. M 327.35.

Compounds XIIa-XIIe (general procedure). Acrylamide Vc, 10 mmol , was dissolved in 15 ml of DMF, $5.6 \mathrm{ml}(10 \mathrm{mmol})$ of 10% aqueous potassium hydroxide and 10 mmol of alkyl halide XIa-XIe were added in succession under stirring at $20^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h , left to stand for 24 h , and diluted with an equal volume of water. The precipitate was filtered off, washed in succession with water, ethanol, and hexane, and recrystallized from butyl alcohol.
(2E)-2-Cyano- N-ethyl-3-phenyl- N-(1,3-thiazol-2-yl)prop-2-enamide (XIIa). Yield $2.26 \mathrm{~g}(80 \%)$, yellow powder, $\mathrm{mp} 95-97^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2214$ $(\mathrm{C} \equiv \mathrm{N}), 1682(\mathrm{C}=\mathrm{O}) .{ }^{\mathrm{l}} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.37 \mathrm{t}$ $(3 \mathrm{H}, \mathrm{Me}, J=6.14 \mathrm{~Hz}), 4.31 \mathrm{q}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20 \mathrm{~d}(1 \mathrm{H}$, $4-\mathrm{H}, J=2.22 \mathrm{~Hz}), 7.54-7.61 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.71 \mathrm{~d}(1 \mathrm{H}$, $5-\mathrm{H}), 8.02-8.09 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}), 8.38 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 284(100)[M+1]^{+}$. Found, \%: C 63.40; H 4.38; N 14.69. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 63.58; H 4.62; N 14.83. M 283.35.
(2E)-2-Cyano- N-methyl-3-phenyl- N -(1,3-thiazol-2-yl)prop-2-enamide (XIIb). Yield 2.15 g (80%), yellow crystals, $\mathrm{mp} 142-143^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}$: $2214(\mathrm{C} \equiv \mathrm{N}), 1680(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $3.55 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.18 \mathrm{~d}(1 \mathrm{H}, 4-\mathrm{H}, J=2.25 \mathrm{~Hz}), 7.54-$ $7.61 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.68 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}), 8.02-8.06 \mathrm{~m}(2 \mathrm{H}$, $\mathrm{Ph}), 8.41 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=)$. Mass spectrum, $\mathrm{m} / \mathrm{z}\left(I_{\mathrm{rel}}, \%\right)$: 270 (100) $[M+1]^{+}$. Found, \%: C 62.25; H 4.00; N 15.42. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 62.44; H 4.12; N 15.60. M 269.33.
(2E)-2-Cyano-3-phenyl- N-(phenylcarbamoyl-methyl)- N -(1,3-thiazol-2-yl)prop-2-enamide (XIIc). Yield 3.18 g (80%), yellow powder, mp 276-278 ${ }^{\circ} \mathrm{C}$ (sublimes at $205^{\circ} \mathrm{C}$). IR spectrum, $v, \mathrm{~cm}^{-1}: 3302(\mathrm{NH})$, $2218(\mathrm{C} \equiv \mathrm{N}), 1678(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $5.18 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.07 \mathrm{t}(1 \mathrm{H}, \mathrm{Ph}, J=6.96 \mathrm{~Hz}), 7.19 \mathrm{~d}$ $(1 \mathrm{H}, 4-\mathrm{H}, J=1.94 \mathrm{~Hz}), 7.32 \mathrm{t}(2 \mathrm{H}, \mathrm{Ph}, J=6.95 \mathrm{~Hz})$, $7.51-7.59 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 7.62 \mathrm{~d}(1 \mathrm{H}, \mathrm{Ph}, J=7.12 \mathrm{~Hz})$, $7.68 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}), 7.89 \mathrm{~d}(1 \mathrm{H}, \mathrm{Ph}, J=7.09 \mathrm{~Hz}), 8.39 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{CH}=), 10.52 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH})$. Mass spectrum, m / z ($I_{\mathrm{rel}}, \%$): 389 (100) $[M+1]^{+}$. Found, \%: C 64.80; H 4.01; $\mathrm{N} 14.35 . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$. Calculated, \%: C 64.93; H 4.15; N 14.42. M 388.45.
(2E)- N-Benzyl-2-cyano-3-phenyl- N-(1,3-thiazol-2-yl)prop-2-enamide (XIId). Yield 3.00 g (87%), yellow powder, mp $103-104^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}$:
$2212(\mathrm{C} \equiv \mathrm{N}), 1698(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $5.48 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.21 \mathrm{~d}(1 \mathrm{H}, 4-\mathrm{H}, J=1.99 \mathrm{~Hz}), 7.28-$ $7.42 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.53-7.62 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 7.83 \mathrm{~d}(1 \mathrm{H}$, $5-\mathrm{H}), 8.04 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}), 8.39 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 346$ (100) $[M+1]^{+}, 91$ (12) $\left[\mathrm{PhCH}_{2}\right]^{+}$. Found, \%: C 69.42; H 4.28; N 11.99. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 69.54; H 4.38; N 12.16. M 345.43.
(2E)-N-Allyl-2-cyano-3-phenyl- N -(1,3-thiazol-2-yl)prop-2-enamide (XIIe). Yield $2.32 \mathrm{~g}(78 \%)$, yellow powder, $\mathrm{mp} 107-108^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 2222$ ($\mathrm{C} \equiv \mathrm{N}$), 1682 ($\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm : $4.91 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{NCH}_{2}, J=6.65 \mathrm{~Hz}\right), 5.24 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}=\right.$, $\left.J_{\text {trans }}=17.11 \mathrm{~Hz}\right), 5.30 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}=, J_{\text {cis }}=8.99 \mathrm{~Hz}\right)$, $6.00-6.14 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 7.22 \mathrm{~d}(1 \mathrm{H}, 4-\mathrm{H}, J=$ $1.98 \mathrm{~Hz}), 7.55 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.69 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}), 8.09 \mathrm{~m}$ $(2 \mathrm{H}, \mathrm{Ph}), 8.40 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{CC} \equiv \mathrm{N})$. Mass spectrum, m / z $\left(I_{\text {rel }}, \%\right): 296$ (100) $[M+1]^{+}$. Found, \%: C 64.88; H 4.21; N 14.05. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 65.06; H 4.44; N 14.23. M 295.36.

REFERENCES

1. Dyachenko, V.D., Tkachov, R.P., and Dyachenko, O.D., Ukr. Khim. Zh., 2004, vol. 70, p. 49; Dyachenko, V.D. and Tkachev, R.P., Khim. Geterotsikl. Soedin., 2005, p. 589; Metwally, N.H. and Abdelrazek, F.M., J. Prakt. Chem., 1998, vol. 340, p. 676; Ismail, A.H. and Hwatta, M., Kogaku to Kogyo (Osaka), 1997, vol. 71, p. 102; Chem. Abstr., 1997, vol. 126, no. 330573 g .
2. Khalifa, M.A.E., Tammam, G.H., and Elbanany, A.A.A., Arch. Pharm., 1983, vol. 316, p. 822; Krasnikov, D.O. and Dyachenko, V.D., Abstracts of Papers, Ukrains'ka konferentsiya z organichnii khimii (Ukrainian Conf. on Organic Chemistry), Odessa: Astroprint, 2004, part II, p. 510; Abed, N.M., Hafez, E.A.A., Elsakka, I., and Elnagdi, M.N., J. Heterocycl. Chem., 1984, vol. 21, p. 1261; Hamed, A.A., Hashem, A.I., Salem, M.A., and Madkour, H.F., Egypt. J. Chem., 1986, vol. 29, p. 89.
3. Abdel-Latif, F.F. and Mahgoub, S.A., Egypt. J. Chem., 1990, vol. 33, p. 83; Abdel-Latif, F.F., Rev. Roum. Chim., 1990, vol. 35, p. 679.
4. Peseke, K., Bartroli, R.M., and Quincoces, S.J., Naturwissenschaften (R.), 1988, vol. 37, p. 46; Ref. Zh., Khim., 1991, no. 7Zh 198.
5. Peseke, K., Suarez, J.Q., and Bartroli, R.M., Naturwissenschaften (R.), 1987, vol. 36, p. 70; Ref. Zh., Khim., 1990, no. 24Zh217.
6. Dorokhov, V.A., Baranin, S.V., Stashina, G.A., and Zhulin, V.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, p. 211.
7. Borisov, V.N., Sovremennye problemy organicheskoi khimii (Current Problems in Organic Chemistry), Ogloblin, K.A., Ed., Leningrad: Leningr. Gos. Univ., 1975, p. 89.
8. Krivokolysko, S.G., Dyachenko, V.D., Nesterov, V.N., and Litvinov, V.P., Khim. Geterotsikl. Soedin., 2001, p. 929.
9. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., J. Chem. Soc., Perkin Trans. 2, 1987, p. S1.
10. Tietze, L.F., Chem. Rev., 1996, vol. 96, p. 115; Gorobets, E.V., Miftakhov, M.S., and Valeev, F.A., Usp. Khim., 2000, vol. 69, p. 1091.
11. Dyachenko, V.D. and Rusanov, E.B., Khim. Geterotsikl. Soedin., 2003, p. 745.
12. Yano, T., Isivatari, T., Torisu, I., Matsuo, N., and Tikho, S., JPN Patent no. 232804, 1991; Ref. Zh., Khim., 1994, no. 8O312P; Balicki, R., Sobotka, W., and Ejmocki, Z., Pol. J. Chem., 1991, vol. 65, p. 1049; Malhotra, S.K., Dripps, J., Bradfisch, G.A., Wollavitz, S., and Knax, I.L., US Patent no. 4931452, 1990; Ref. Zh., Khim., 1991, no. 21O380P.
13. Sheldrick, G.M., SHELXS-97. Program for the Solution of Crystal Structures, Göttingen: University of Göttingen, 1997.
14. Sheldrick, G.M., SHELXL-97. Program for the Refinement of Crystal Structures, Göttingen: University of Göttingen, 1997.
