STEREOCHEMICAL STUDIES, 145. SATURATED HETEROCYCLES, 152.
PREPARATION AND CONFORMATIDNAL ANALYSIS OF STEREOISOMERIC $1,6,7,11 b-$ TETRAHYDRO-2H [1,3] OXAZINO[4,3-a] ISOQUINOLIN-4-ONE DERIVATIVES
lászló lázár, ferenc fulöp, györgy dombi, gábor bernath*
Institute of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, PDB 121, H-6701 Szeged, Hungary

GYULA ARGAY, ALAJOS KÁLMAN

Central Research Institute of Chemistry, Hungarian Academy of Sciences, POB $17, H-1525$ Budapest, Hungary
(Received in UK 22 March 1990)

Abstract - Starting from 1 -[bis(hydroxymethyl)-methyl]-6,7-dimethoxy-1,2,3,4--tetrahydroisoquinoline 3a, trifunctional $1,2,3,4$-tetrahydroisoquinolines were synthetized. From the N-ethoxycarbonyl derivative of $3 a,(r-l l b, c-1)-1-$ -hydroxymethyl- (8) and (r-11b,t-1)-1-chloromethyl-9,10-dimethoxy-1,6,7,11b-
 pected reactions. High-resolution NMR revealed that the tetrahydroisoquino-line-fused $C-1$ epimer oxazinone derivatives 8 and 9 have different conformations in solution. The first X-ray diffraction evidence of the presence of two different conformations of oxazinoisoquinolines 8 and 9 in the solid state is provided.

A simple synthesis of 1 -[bis(hydroxymethyl)-methyl]-6,7-dialkoxy-1,2,3,4--tetrahydroisuquinolines $3 a, b$ was recently ${ }^{2}$ developed. In the base-catalysed reaction of l-methyl-6,7-dialkoxy-3,4-dihydroisoquinolines 1 with 2 mol of formaldehyde, the 1 - [bis(hydroxymethyl)-methyl]-3,4-dihydroisoquinolines 2a,b were obtained, and, on reduction with sodium borohydride or by catalytic reduction, these furnished the trifunctional isoquinoline l, 3-aminoalcohols 3a,b. Compounds $\mathbf{3 a}, \mathrm{b}$ are readily available, versatile, inexpensive starting materials for the synthesis of substances of interest from both chemical and pharmacological points of view. ${ }^{3-6}$ In this paper, some transformations of aminoalcohol 3a are described.

Results and discussion

Compound 3 a reacted with ethyl chloroformate to give the corresponding urethane 4a. The N-ethoxycarbonylmethyl derivative $4 b$ was obtained from aminoalcohol $3 a$ with ethyl bromoacetate. The ethoxycarbonyl ethyl derivative 4 C was formed from aminoalcohol 3a by ethyl acrylate addition (Schemes 1 and 2).

The reduction of esters $4 b$ and $4 c$ with lithium aluminium hydride yielded the corresponding hydroxyalkyl derivatives $7 b$ and $7 c .5 i m i l a r$ reduction of urethane 4a, as anticipated, ${ }^{7}$ resulted in the N-methyl derivative 10 .

The N-hydroxyethyl derivative $7 b$ was synthetized directly from $3 a$ too, by addition of ethylene oxide. This reaction could be carried out under milder conditions than those described ${ }^{8}$ for the similar addition of ethylene oxide to 1 -phenyl-1, 2, 3, 4-tetrahydroisoquinoline ($24 \mathrm{~h}, 75{ }^{\circ} \mathrm{C}$, in an autoclave).

On treatment with ammonia or methylamine, compounds 4a-c yielded the expected amides 5 and 6 only in the reactions of esters $4 b$ and $4 c$. Treatment of urethane $4 a$ with methylamine did not furnish urea derivative 6a. Compound 6a was prepared in another way: from aminoalcohol 3a by methyl isocyanate addition. Treatment of urethane 4 a with either ammonia or methylamine yielded the same unexpected oxazino [4, 3-a] isoquinoline derivative 8 .

Besides the ${ }^{1} H$ NMR spectroscopic evidence, the structure of oxazine B was confirmed chemically. Melting of ester 4 a with sodium methylate similarly afforded 8. Reduction of oxazine 8 with lithium aluminium hydride led to the corresponding N-methyl-substituted tetrahydroisoquinoline 10 through ringopening. This reaction is also characteristic of 1,3 -oxazines. ${ }^{9}$

In 1,3 -oxazino [4, 3 -a $]$ isoquinoline syntheses, mainly 1,3 -difunctional isoquinolines are used. ${ }^{10-T h}$ the other well-known method is the cycloaddition of ketenes to 3,4-dihydroisoquinolines. 18-21 In a recent paper, the synthesis of an oxazolo [4, 3-a] isoquinolin-3-one derivative is described ${ }^{22}$, starting from an N-ethoxycarbonylisoquinoline derivative, using alcoholic potassium hydroxide. However, when this type of cyclization was attempted for ester at in the present case, only the starting aminoalcohol 3a could be isolated.

Thionyl chloride treatment of urethane a resulted in a mixture of oxa-
 pound 9 , even on refluxing for 3 h in thionyl chloride.

Scheme 2

The relative configuration of oxazine 9 was proved not only by the NMR and X-ray evidence, but also by preparative means. Erythro-l-[1’-(hydroxymeth-yl)-ethyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 13 was prepared from the l-ethoxycarbonylmethylene derivative 12 by the known method ${ }^{4}$: C-alkylation with methyl iodide and subsequent catalytic and lithium aluminium hydride reduction. Aminoalcohol 13 reacted with ethyl chloroformate (similarly as in reaction $3 a-4 a$) to yield the corresponding urethane, which on lithium aluminium hydride reduction gave the N-methyl derivative ll. The lithium aluminium hydride reduction of oxazine 9 (similarly as in reaction $8-10$) gave the same N-methyl compound 11 as was formed from the erythro-aminoalcohol 13. These chemical reactions did not affect the asymmetric carbon atoms of compounds 13 and 9, so oxazine 9 has the ($\underline{\text { - }}$ llb,t-l) configuration.
${ }^{1}{ }_{H}$ NMR spectroscopic investigations on oxazinoisoquinolines \mathbf{B} and 9
$250 \mathrm{MHz}{ }^{1_{H}} 10$ and 20 NMR studies allowed a complete analysis of the spectra and determination of the full set of coupling constants. The data listed in Table 1 lead to the only configuration corresponding to the spectroscopic results and the favoured conformation of the oxazinoisoquinoline ring system.

From the spectra of compounds 8 and 9, it is obvious that only one of the possible diastereomers is formed under the given reaction conditions. The most important coupling, which gives information about the connection of the two saturated rings, is $\mathrm{J}_{1}, 110$, which has typical axial-equatorial values 4.4 and 3.0 Hz , respectively. The nuclear Overhauser effects (NOE) found between
protons $H_{1 l b}, H_{6}$ and $H_{1 l b}, H_{2}$, respectively, in show that all these protons are axial and that they are close to each other (1,3-diaxial connection). This means that, similarly as from the X-ray results on compound 8 , the two saturated rings are trans-annelated to each other, the hydroxymethyl axial, and H_{1} is equatorial.

The lack of a NOE between protons $H_{11 b}, H_{2}$ shows that the hetero ring is connected to the tetrahydroisoquinoline moiety. The coupling constants in 8 and 9 differ only slightly, indicating that the saturated rings have similar conformations. In both cases the $\mathrm{CH}_{2} X$ group is axial and C_{1} is equatorial. The difference in the saturated ring annelation is that the co group attached to the nitrogen is quasi-equatorial in 8 (cis connection of the two hetero rings), while in 9 it is quasi-axial (trans connections of the two hetero rings). Because of the lack of a proton at the annelation position, the sets of coupling constants are very similar.

These results are supported by the fact that couplings $\underline{J}_{1}, 2 a x$ and $\underline{J}_{1}, 2 e q$ do not have trans-diaxial values ($>10 \mathrm{~Hz}$). The saturated heterocycle of the isoquinoline part of the molecule is twisted, because \underline{J}_{6} eq, 7 eq has a small value, suggesting a 90° dihedral angle between these atoms. The anisotropic shielding effect of the carbonyl group on $H_{\text {Geq }}$ in 9 and the NOE effect prove the inversion of the nitrogen.

Table 1. Chemical shifts (ppm) and coupling constants (Hz) for compounds $\mathbf{8}$ and $\mathbf{9}^{\mathbf{a}}$

	H_{1}	$\mathrm{H}_{2 \mathrm{a}}$	$\mathrm{H}_{2 \mathrm{c}}$	H_{69}	H_{6}	$\mathrm{H}_{7 \mathrm{a}}$	${ }^{7} \mathrm{l}$	$\mathrm{H}_{1 \mathrm{lb}}$	$\mathrm{H}_{\text {A }}$	H_{8}	x	"	${ }^{H} 1$	${ }^{9} \mathrm{Me}$	19 te
$\delta\left(\mu_{\text {m }}\right)$	2.58 2.71	4.65 4.27	4.41 4.14				2.91 3.02	5.08 4.66	3.26 3.88	3.52 3.83		6.64	$\begin{aligned} & 6.61 \\ & 6.67 \end{aligned}$	3.86	3.87 3.88
${ }_{H}$		4.4 4.2	1.7 3.0					4.4 3.0	$\begin{aligned} & 4.4 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 3.8 \end{aligned}$					
${ }_{2}$	4.4 4.2		-11.0 -11.4					$\sim_{1.0}^{\sim 1}$							
${ }^{\text {He}}$	$\begin{aligned} & 1.7 \\ & 3.0 \end{aligned}$	$\begin{array}{r} -11.0 \\ -11.4 \end{array}$													
$\mathrm{H}_{6 a}$					$\begin{aligned} & -12.0 \\ & -11.8 \quad 1 \end{aligned}$	10.7	$\begin{aligned} & 2.4 \\ & 2.8 \end{aligned}$								
H_{6}				$\begin{aligned} & -12.0 \\ & -11.8 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.8 \end{aligned}$								
H_{7}				10.7	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & -11.1 \\ & -11.9 \end{aligned}$								
$\mathrm{He}^{\text {l }}$				$\begin{aligned} & 2.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.9- \\ & 4.8 \end{aligned}$	$\begin{aligned} & -11.1 \\ & -11.9 \end{aligned}$									
H_{16}	$\begin{aligned} & 4.4 \\ & 3.0 \end{aligned}$	$\stackrel{\sim}{\sim}$													
H_{A}	$\begin{aligned} & 4.4 \\ & 3.7 \end{aligned}$									$\begin{aligned} & -10.8 \\ & -11.5 \end{aligned}$	5.1				
H^{\prime}	$\begin{aligned} & 5.9 \\ & 6.8 \end{aligned}$								$\begin{aligned} & -10.8 \\ & -11.5 \end{aligned}$		5.5				
X									5.1	5.5					
${ }^{3}$ Upper trace compound 8 , lower trace compound 9.															

The perspective views of the X-ray structures (Figure 1) computed from the atomic coordinates listed for 8 and 9 in lable 2 show the principal differences in their conformations and configurations. The $\mathrm{C}-1$ epimers are characterized by the different chirality of $C(1)$ with respect to the permanent chiral centre $C(11 B)$, chosen deliberately in both drawings with R configuration. Accordingly, the $\mathrm{CH}_{2} \mathrm{OH}$ group of 8 assumes the α-axial position, whereas the $\mathrm{CH}_{2} \mathrm{Cl}$ moiety is bound β-axially. The B / C rings fused along the $C(11 B)-N(5)$ bond exhibit further conformational differences.

Figure l. Perspective view of the molecular structures of 8 and 9 with atomic numbering. The bare numbers are for carbon atoms unless indicated otherwise. The hydrogen atoms are shown but not labelled.

The \quad, 3 -oxazine (C) ring conformation, assuming a transition state between an envelope (${ }^{l} E$), skew-boat $\left({ }^{1} 5_{11 B}\right)$ and half-chair (${ }^{l} H_{11 B}$) in B, is shifted towards an almost perfect half-chair (${ }^{2} H_{1}$) in 9 . This motion is accompanied by simultanenus pseudnrotation in the tetrahydropyridine (B) ring, which represents a shift from a distorted envelope shape with $C(6)$ in the flap towards an also nearly perfect half-chair (${ }^{5} H_{6}$). In the course of these pseudorotations, the fairly planar $N(5)$ gains some pyramidality ${ }^{26}\left(X_{N}=-0.06 \rightarrow\right.$ - 0.23 rad). The coriesponding pseudorotation can be expressed by the following puckering parameters ${ }^{27}$, the ring numbering starting from $O(3)$ towards $C(4)$ and from $N(5)$ towards $C(6)$, respectively.

Ring C
$8 \quad 9$

Q	$0.525(3)$
φ	$223.3(4)$
θ	$55.6(3)$

$0.498(3) 8$
$90.6(4)^{0}$
$128.6(3)^{0}$

8 9
he molecules drogen-bond pairs, of B are bound together by centre of symmetry-related hythereby forming dimer associates. The parameters of these hydrogen-bonds are:

$$
\begin{array}{cccccc}
& 0 \cdots \cdots 0 & H \cdots \cdots 0 & 0 H \cdots \cdots H
\end{array}
$$

Experimental

The ${ }^{l_{H}}$ NMR spectra were measured in CDCl_{3} solution at room temperature on a Bruker AC 250 SY spectrometer, with TMS as internal standard. The magnetic field was lucked on the deuterium signal of the solvent. The 20 measurements (COSY and NOESY) were carried out with the standard software written for the Aspect 3000 computer of the spectrometer. Size of the matrix: $2 \mathrm{~K} \times 512 \mathrm{~W}$; spectral width: 2748 Hz ; scans 32, experiments 512.

The spectral data on compounds 4-7, 10 and 11 are in accordance with the structures given in the Schemes.

Melting points were determined on a Boetius micromelting point hot stage.
1-[bis(Hydroxymethyl)-methyl]-2-ethoxycarbonyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (4a). Method A

Compound 3 a ($8.02 \mathrm{~g}, 0.03 \mathrm{~mol}$) was suspended in a solution of NaHCO_{3} ($2.51 \mathrm{~g}, 0.03 \mathrm{~mol}$) in water (30 ml), and ethyl chloroformate ($3.26 \mathrm{~g}, 0.03$ mol) was added. The mixture was stirred at room temperature for 1 h , and then extracted with EtOAc. After drying and evaporation, 4a was obtained as crystals.

1-[bis(Hydroxymethyl)-methyl]-2-(ethoxycarbonylmethyl)-6,7-dimethoxy-1, 2, 3, 4tetrahydroisoquinoline (4b). Method B

To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(12.44 \mathrm{~g}, 0.09 \mathrm{~mol})$ in abs. acetone (50 ml), compound 3 a ($8.02 \mathrm{~g}, 0.03$ mol) and ethyl bromoacetate ($5.01 \mathrm{~g}, 0.03 \mathrm{~mol}$) were added. After stirring for 4 h at room temperature, the inorganic salts were filtered off and washed with abs. acetone, and the filtrate was evaporated. Compound 4b was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl.

1-[bis(Hydroxymethyl)-methyl]-2-(B-ethoxycarbonylethyl)-6,7-dimethoxy-1, 2, 3, 4tetrahydroisoquinoline (4 c). Method C

Compound 3 a ($8.02 \mathrm{~g}, 0.03 \mathrm{~mol}$) was refluxed for 4 h with ethyl acrylate ($3.00 \mathrm{~g}, 0.03 \mathrm{~mol}$) in methanol (50 ml). After evaporation, compound 4 c was obtained as an oil, which was converted into its derivatives 5c, 6c and 7c without purification.

1-[bis(Hydroxymethyl)-methyl]-2-(aminocarbonylmethyl)-6,7-dimethoxy-1, 2, 3, 4tetrahydroisoquinoline (5b). Method 0

Compound 4b ($1.06 \mathrm{~g}, 3 \mathrm{mmol}$) was dissolved in methanol containing 20% ammonia (25 ml), and the mixture was left to stand at room temperature for ${ }^{2}$ weeks. The solution was then evaporated, and amide 5 b was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl .

1-[bis(Hydroxymethy1)-methyl]-2-(β-aminocarbonylethyl)-6,7-dimethoxy-1,2, 3, 4tetrahydroisoquinoline (5c).

Compound 5c was prepared from ester 4c by Method D.
1-[bis(Hydroxymethyl)-methyl]-2-methylcarbamoyl-6,7-dimethoxy-1, 2, 3, 4-tetrahydroisoquinoline (6a). Method E

Methyl isocyanate ($0.40 \mathrm{~g}, 7 \mathrm{mmol}$) was added to compound 3 a ($1.87 \mathrm{~g}, 7$ mmol) in benzene (25 ml). After stirriny and refluxing for 2 h , the mixture was evaporated and urea derivative 6 a was obtained as crystals.

1-[bis(Hydroxymethy1)-methyl] -2-[(methylaminocarbonyl)-methyl]-6,7-dimethoxy-$1,2,3,4$-tetrahydroisoquinaline (6 b).

Compound 6 b was prepared from ester 4 b with methanol containing 20% methylamine by Method D .

1-[bis(Hydroxymethyl)-methyl] - 2 -[β-(methylaminocarbonyl)-ethyl] $-6,7$-dime thoxy-1,2,3,4-tetrahydroisoquinoline (6 c).

Compound 6c was prepared from ester 4c with methanol containing 20% methylamine by Method 0.
(r-11b, c-1)-1-Hydroxymethyl-9, 10-dimethoxy-1,6, 7, 11b-tetrahydro-2H[1, 3] oxazino-[4,3-a) isoquinolin-4-one (8).

Compound 8 was prepared from urea derivative 4 a by Method 0 , using methanolic ammonia or methylamine solution. After evaporation of the reaction mixture, oxazine 8 was obtained as crystals.

Method F

Compound 4 a ($3.39 \mathrm{~g}, 0.01 \mathrm{~mol}$) was heated with sodium methylate (0.1 g) at $1300^{\circ} \mathrm{C}$ for 30 minutes. Hot EtOAc was added to the mixture and the sodium methylate was filtered off. The filtrate was dried and evaporated, and crystalline oxazine 8 was obtained.

Reaction of 4 a with ethanolic KOH . Method G

Compound 4 a ($1.70 \mathrm{~g}, 5 \mathrm{mmol}$) was refluxed in 10% ethanolic potassium hydroxide solution (30 ml) for 1 h . Following evaporation, the residue was dissolved in water and extracted with CHCl_{3}. After drying and evaporation, aminoalcohol 3a was obtained as crystals.
(r-11b, t-1)-1-Chloramethyl-9, 10-dimethoxy-1,6,7,11b-tetrahydro-2H[1, 3]oxazino[4, 3-a) isoquinolin-4-one (9). Method H

Compound 4 a ($5.35 \mathrm{~g}, 15.8 \mathrm{mmol}$) was refluxed in thionyl chloride (10 ml) for 30 minutes. After evaporation of the mixture, a brown oil was obtained, which was crystallized by the addition of ethanol and ether. On recrystallization from Et0Ac, only compound 8 (0.3 g) crystallized out. The mother liquor was evaporated and the residue was recrystallized from $E t 0 H$, when pure oxazine 9 was obtained.

1-[bis(Hydroxymethyl)-methy1]-2-(β-hydroxyethyl)-6, 7-dimethoxy-1, 2,3 , 4-tetrahydroisoquinoline (7b). Method I
$\mathrm{LiAlH}_{4}(0.76 \mathrm{~g}, 0.02 \mathrm{~mol})$ was suspended in abs. THF (100 ml), and compound 4 b ($2.34 \mathrm{~g}, 6$ mmol) was added. After stirring for 15 minutes at room temperature, the mixture was decomposed with 1.5 ml water under ice cooling. After stirring for 1 h , the inorganic material was filtered off, and the filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Compound 7b was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl.

Method J
Compound 3a ($2.67 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved in methanol (40 ml), and ethylene oxide ($0.66 \mathrm{~g}, 0.015 \mathrm{~mol}$) was added. After standing for 24 h at room temperature, the mixture was evaporated. Compound 7b was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl.

1-[bis(Hydroxymethyl)-methyl]-2-(r-hydroxypropyl)-6,7-dimethoxy-1,2, 3,4-tetrahydroisoquinoline (7c)

Compound 7 c was prepared by $\mathrm{l}_{\mathrm{i}} \mathrm{iAlH}_{4}$ reduction of ester 4 c , as described in Method I.

1-[bis(Hydroxymethy1)-methy1]-2 methyl-6,7-dimethoxy-1, 2, 3,4-tetrahydroisoquinoline (10)

Compound 10 was prepared from urea derivative 4 a by $L_{i A l H}^{4}$ reduction, as described in method I. The mixture was stirred and refluxed for 3 h . Product 10 was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl .

Compound 10 was also prepared from oxazine 8 by LiAlH 4 reduction, as described in Method I. The mixture was stirred under reflux for 1 h .

Erythro-1-[1'-(Hydroxymethyl)-ethy1]-2-methyl-6,7-dimethoxy-1, 2, 3,4-tetrahydroisoquinoline (il)

From aminoalcohol 13
Compound 13 was converted into its \underline{N}-ethoxycarbonyl derivative by method A, in 45\% yield. Mp: 73-76 ${ }^{\circ} \mathrm{C}$ (diisopropyl ether), $\mathrm{C}_{17} \mathrm{H}_{2} 5^{\mathrm{NO}} \mathrm{N}_{5}$ (calcd/found) C $63.14 / 63.10, \mathrm{H} 7.79 / 8.03, \mathrm{~N} 4.33 / 4.37 \%$.

The product of the above reaction was reduced wih LiAlH4, as described in Method I. The mixture was stirred and refluxed for 1 h . Compound ll was obtained as an oil, which was converted to the hydrochloride with ethanolic HCl.

From oxazine 9

Oxazine 9 was reduced with LiAlH_{4} by Method I. The mixture was stirred and refluxed for 2 h . Compound 11 was formed as an oil, which was converted to the hydrochloride with ethanolic HCl.

The products obtained by these two methods were identical.
Table 2. Physical and analytical data on prepared tetrahydroisoquinolines 4-11

Compound	Yield (\%) (Method)	M.p. (${ }^{\circ} \mathrm{C}$) (Solvent)	Formula (M.W.)	Analysis, C	Calculated/ H	$\operatorname{ound}_{N}\left(\frac{\%}{\%}\right)$
4a	75 (A)	$\begin{aligned} & 114-117 \\ & (\text { Et0Ac) } \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6}$ (339.38)	60.16/60.57	7.43/7.02	4.13/4.20
$40^{\text {a }}$	79 (B)	$\begin{aligned} & 178-181 \\ & \text { (EtOH-ether) } \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ClNO}_{6}(389.86)$	55.45/55.42	7.24/7.25	3.59/4.20
$50^{\text {a }}$	$65(D)^{\text {b }}$	$\begin{gathered} 213-217 \\ (96 \% \text { EtOH-ether) } \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}(360.84)$	53.25/52.87	6.98/7.19	7.77/7.31
$5 c^{\text {a }}$	60 (D)	$\begin{aligned} & 212-217 \\ & (\text { EtOH-ether }) \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5}(374.87)$	54.46/54.43	7.26/7.22	7.47/7.15
60	72 (E)	$\begin{aligned} & 176-179 \\ & (E \dagger O H) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ (324.37)	59.24/59.68	7.45/7.27	8.63/8.42
$6 b^{a}$	68 (0)	$\begin{aligned} & 211-213 \\ & \text { (EtOH-ether) } \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5}(374.87)$	54.46/54.19	7.26/7.61	7.47/7.26
6c	$64(D)^{\text {b }}$	$\begin{aligned} & 147-148 \\ & (\text { Et0H }) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ (352.42)	61.34/61.73	8,00/7.79	7.95/7.80
$7 b^{\text {a }}$	$\begin{aligned} & 74(I) \\ & 80(J) \end{aligned}$	$\begin{gathered} 219-221 \\ (\text { EtOH-ether }) \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClNO}_{5}$ (347.84)	55.24/55.48	7.54/7.68	4.03/4.29
7c	$65(1)^{\text {b }}$	$\begin{aligned} & 138-140 \\ & (\text { EtOAC) } \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \quad$ (325.40)	62.74/62.31	8.37/8.24	4.31/4.23
8	45 (D) 30 (F) 5 (H)	$\begin{aligned} & 188-192 \\ & (E+0 A C) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5} \quad(293.31)$	61.42/61.68	6.52/6.73	4.78/4.86
9	15 (H)	$\begin{aligned} & 155-157 \\ & (\mathrm{E}+\mathrm{OH}) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}_{4}(311.76)$	57.78/58.05	5.82/5.93	4.49/4.68
$10^{\text {a }}$	$\begin{aligned} & 35(\mathrm{I})^{\mathrm{c}} \\ & 28(\mathrm{I})^{d} \end{aligned}$	$\begin{gathered} \text { 199-201 } \\ \text { (E toH-e ther) } \end{gathered}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClNO}_{4}(317.8 \mathrm{I})$	56.68/56.48	7.61/7.43	4.41/4.23
11^{a}	$\begin{aligned} & 55(\mathrm{I})^{\mathrm{f}} \\ & 32(\mathrm{~A}, \mathrm{I})^{\mathrm{D}, \mathrm{e}} \end{aligned}$	$\begin{gathered} 199-202 \\ (\text { EtOH-ether }) \end{gathered}$	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{ClNO}_{3}(301.81)$	59.69/59.32	8.01/8.31	4.64/4.58

$\mathrm{a}_{\text {Hydrochloride. }} \mathrm{b}_{\text {Overall yield. }} \mathrm{C}_{\text {From }}$ 4a. $\mathrm{d}_{\text {From }}$ 8. ${ }^{\mathrm{E} \text { From }} 13$. $\mathrm{f}_{\text {From }} 9$.

Lrystal structure determination of B

 ō diffractometer angles for 25 automatically centredreflexions), space group
$\mathrm{P}_{2} / \mathrm{n}$ (No 14) from systematic absences as $h+1=2 n+1$ in hol and $k=2 n+1$ jn OkO reflexions. $Z=4, \mathrm{D}_{\mathrm{x}}=1.36 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=624 \mathrm{u}\left(\mathrm{Cu}-\mathrm{K}_{\bar{\alpha}}, \lambda=1.54184\right.$ $\left.Q_{A}\right)=8.1 \mathrm{~cm}^{-1}$. Crystal dimensions: $0.25 \times 0.30 \times 0.70 \mathrm{~mm}^{3}$.

Data collection was carried out with a CAD-4 diffractometer in the range 1. $5<8<75.0^{\circ}$ with $\omega / 2 \theta$ scan using graphite monochromated Cu-K K_{α} radiation. Three standard reflexions ($270, \overline{7} 210,2012$) were monitored every hour and showed no detectable deviation. 2961 unique, non-zero and independent observations were recorded, of which 2640 with $I \geqslant 3$. 00 (I) were usgd for structure analysis and refinement. The structure was solved by MULTAN, 28 using $257 \mathrm{E} \geq 1.73$ normalized the $\sum w(\Delta F)^{2}$. Final $R=0.048$, wR $=0.049$, R tot $=0.054, \mathrm{~S}=0.76$. In the last cycle of refinement, the largest shift-error was 0,065 , while the highest peak in the final difference Fourier map was 0.22 e. A^{3}.

Table 3. Fractional atomic coordinates for compounds 8 and 9 with their e.s.d.'s in parentheses.

8				9			
Atom	x / a	y / b	z/c	Atom	x / a	y / b	z/c
C(1)	0.8517(1)	0.4891(2)	$0.2955(1)$	C(1)	$0.1186(3)$	$0.6211(1)$	0.5808(1)
C(2)	0.8514(2)	0.6007(3)	$0.3716(1)$	C(2)	$0.3079(4)$	0.5906(1)	0.5366 (1)
O(3)	$0.9765(1)$	0.6433(2)	$0.4242(1)$	O(3)	$0.4893(2)$	0.6004(1)	0.5947(1)
C(4)	1.0770 (2)	0.6220(2)	0.3921 (1)	C(4)	$0.5182(3)$	0.6808(2)	0.6355(1)
$N(5)$	1.0611(1)	0.5720(2)	$0.3042(1)$	$N(5)$	$0.3568(2)$	$0.7379(1)$	$0.6384(1)$
C(6)	1.1707(2)	0.5451(2)	$0.2708(1)$	C(6)	$0.3949(3)$	$0.8326(1)$	$0.6622(1)$
C(7)	1.1614(2)	0.3744(2)	$0.2264(1)$	C(7)	$0.3974(3)$	0.8889(1)	$0.5806(1)$
C(7a)	1.0412(1)	0.3796(2)	0.1489 (1)	c(7a)	$0.2160(3)$	0.8650 (1)	$0.5184(1)$
C(8)	1.0332(2)	0.2912(2)	$0.0692(1)$	C(8)	$0.1680(3)$	0.9231 (1)	$0.4489(1)$
[(9)	$0.9242(2)$	$0.2817(2)$	-0.0023(1)	[(9)	0.0026 (3)	0.9081 (1)	$0.3920(1)$
C10)	$0.8197(1)$	0.3643 (2)	$0.0024(1)$	C(10)	-0.1309(3)	0.8345 (1)	$0.4061(1)$
[(11)	$0.8267(1)$	0.4512(2)	0.08 g 2 (1)	C(11)	-0.0826(3)	$0.7757(1)$	$0.4738(1)$
C(1la)	$0.9372(1)$	0.4578(2)	$0.1545(1)$	C(11a)	$0.0936(3)$	0.7887 (1)	0.5294(1)
C(11b)	$0.9353(1)$	0.5516(2)	$0.2388(1)$	C(11b)	$0.1437(3)$	0.7217 (1)	$0.6032(1)$
O(12)	$1.1794(1)$	0.6508(2)	0.4470 (1)	0(12)	$0.6881(2)$	0.6979(1)	$0.6686(1)$
[(13)	0.8926(2)	$0.3376(2)$	$0.3342(1)$	C(13)	$0.0817(3)$	0.5673(1)	0.6623(1)
$0(14)$	0.8033(1)	0.2670(2)	$0.3708(1)$	$\mathrm{Cl}(14)$	$0.0455(1)$	$0.44835(4)$	$0.63940(4)$
O(15)	$0.9079(1)$	0.1981 (1)	-0.0821(1)	0(15)	-0.0516(2)	0.9613 (1)	0.3217(1)
[(16)	1.0155(2)	0.1298(3)	-0.0959(1)	C(16)	$0.0969(4)$	$1.0266(1)$	0.2970(1)
0(17)	0.7166 (1)	$0.3538(2)$	-0.0746(1)	0(17)	-0.2986(2)	$0.8277(1)$	$0.3491(1)$
C(18)	0.6144(2)	0.4474(3)	-0.0752(2)	C(18)	-0.4432(3)	0.7574(1)	0.3618(1)

At the end of the least-squares treatment of the non-hydrogen atoms with isotropic temperature factors, an empirjgal absorption correction was performed through the use of program DIFABS. ${ }^{29}$ Relative transmissicn coefficients ranged from 0.633 to 1.313 , with an average value of 0.984 . At this stage, the positions of hydrogen atoms bound to carbons were generated from assumed geometries, while $H(014)$ was located in a difference fourier map. The hydrogen positions were rot refined, but only added to structurg factor calculations with mean isotropic temperature factors ($\mathrm{B}_{\mathrm{iH}}=\mathrm{B}_{\mathrm{i}} \mathrm{X}+1 \mathrm{in}$ in ${ }^{2}$, where $\mathrm{X}=\mathrm{C}$ or 0). Atomic scattering factors were taken from Cromer and Waber. 30 Program system applied: Enraf-Nonius Structure Determination Package, with local modification adapted to e PDP-11/34 minicomputer.

Crystal structure determination of 9
Crystal data: $\mathrm{C}_{1} \mathrm{H}_{18 \mathrm{Cl} \mathrm{NO}_{4},{ }^{\mathrm{M}}=311.76 \text {, monoclinic }} \mathrm{a}=6.477(1)$, $\mathrm{b}=$ 14.646(1), $C=15.531(1)^{8}, \beta=93.38(1)^{\circ}, V=1470.6(4) Q^{3}$ (by least-squares refinement on diffractometer angles for 25 automatically centred reflexions) space group $\mathrm{P}_{\mathrm{L}} / \mathrm{n}$ (No. 14) from systematic absences as $\mathrm{h}+\mathrm{H}^{1}=2 \mathrm{n}+\mathrm{f}$ in hol and $k=2 n+1$ in OkO reflexions, $Z=4, D=1.41 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=656$, $u\left(\mathrm{Cu}-\mathrm{K}_{\bar{\alpha}}, \lambda=1.54184 \AA\right)=24.6 \mathrm{~cm}^{-1}$.

Data collection, structure determination and refinement were basically similar as for 8 . Of 3069 unique reflexions, 2768 were taken as observed with I > 3.0ه(I). MULTAN 82; minimum and maximum relative transmission coefficients: 0.778 and 1.338 , with an average value of 0.979 . The H positions were refined in isotropic mode. Full matrix refinement. Final $R=0.049, R_{w}=0.044$, R ${ }_{\text {tot }}$ $=0.053,05=0.72$. The highest peak in the final difference fourier map was $0.26(4)$ e. \AA^{3}, ($\Delta / 0$) max 0.026 .

Acknowledgement. The authors gratefully acknowledge the financial support of the Gedeon Richter Pharmaceutical Works, Budapest.

REFERENCES

1. Parts 144/151. Stájer, G.; Szōke-Molnár, Zs.; Bernáth, G.; Sohár, P. Tetrahedron, accepted for publication.
2. Kóbor, J.; Fülöp, F.; Bernáth, G. Heterocycles, 24, 2227 (1986).
3. Bernáth, G.; Kóbor, J.; Fiilöp, F.; Sohár, P.; Argay, Gy.; Kálmán, A. Ietrahedron, 42, 5139 (1986).
4. Kóbor, J.; Fưlöp, F.; Bernáth, G.; Sohár, P. Tetrahedron, 43, 1887 (1987).
5. Bernáth, G.; Kóbor, J.; Fülöp, F.; Sohár, P.; Perjésí, P.; Ezer, E.; Hajós, Gy.; Pálosi, É.; Dénes, L.; Szporny, L. Ger. Pat. DE 3,439,131 Chem. Abstr. 103, 160523 (1985).
6. Bernáth, G.; Kóbor, J.; Fullöp, F.; Sohajda, A.; Kálmán, A.; Ezer, E.; Hajós, Gy.; Pálosi, E.; Dénes, L.; Szporny, L. Ger. Pat. DE 3,510,526 Chem. Abstr. 104, 109667 (1986).
7. Hajós, A. Complex Hydrides, Akadémia, Budapest, Hungary, 1979, p. 99.
8. Vlaeminck, F.; De Cock, E.; Tourwé, D.; Van Binst, G. Heterocycles, 15, 1213 (1981).
9. Fülöp, F.; Bernáth, G. Synthesis, 1981, 628.
10. Openshaw, H. T.; Whittaker, N. J. Chem. Soc., 1963, 1449.
11. Schneider, W.; Schilken, K. Arch. Pharm., 299, 997 (1966).
12. Crabb, I. A.; Newton, R. F. Tetrahedron Letters, 1971, 3361.
13. Crabb, T. A.; Mitchell, J. S. Urg. Magn. Reson., 8, 258 (1976).
14. Crabb, T. A.; Mitchell, J. S.; Newton, R. F. J. Chem. Soc. Perkin 2, 1977, 370.
15. Harsányi, K.; Kiss, P.; Korbonits, D. J. Heterocyclic Chem., 10, 435 (1973)
16. Fülöp, F.; El-Gharib, M. S.; Sohajda, A.; Bernáth, G.; Kóbor, J.; Dombi, Gy. Heterocycles, 20, 1325 (1983).
17. Kano, S.; Yuasa, Y.; Shibuya, S. Synth. Comm., 15, 883 (1985).
18. Pratt, R. N.; Taylor, G. A. J. Chem. Sul. (C), 1967, 1569.
19. Huisgen, R.; Davis, B. A.; Morikawa, M. Angew. Chem., 80, 802 (1968); Angew. Chem. Int. Ed. Engl., 7, 826 (1968).
20. Martin, J. S.; 8rannock, K. C.; Burrpitt, R. D.; Gott, P. G.; Hoyle, V. A. 3. Org. Chem., 36, 2211 (1971).
21. Taylor, G. A. J. Chem. Soc. Perkin l, 1975, 1001.
22. Czarnocki, Y.; MacLean, D. B.; Szarek, W. A. Can. J. Chem., 64, 2005 (1986).
23. Dunitz, J. D.; Winkler, F. K. Acta Crystallogr., B31, 251 (1975).
24. Cremer, D.; Pople, J. A. J. Am. Chem. Soc., 97, 1354 (1975).
25. Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; Declerca, J.-P.; Woolfson, M. M. MULTAN B2, A System of Computer Programs of Automatic Solution of Crystal Structures from X-ray Diffraction Data, 1982, University of York, England and Louvain, Belgium.
26. Walker, N.; Stuart, D. Acta Crystallogr., A39. 158 (1983).
27. Cromer, D. T.; Waber, J. T. in International Tables for X-ray Crystallography. The Kynoch Press, Birmingham, 1974, Vol. IV. Table 2628.
