Synthesis of (-)-mellein, (+)-ramulosin, and related natural products

Md. Sadequl Islam, Ken Ishigami and Hidenori Watanabe*
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Received 4 November 2006; revised 22 November 2006; accepted 27 November 2006
Available online 15 December 2006

Abstract

Mellein, (+ -ramulosin, (-)-O-methylmellein, (-)-6-hydroxymellein, (-)-6-methoxymellein, and (+)-6-hydroxyramulosin were synthesized as optically active forms using one-pot esterification-Michael addition-aldol reaction of δ-hydroxy- α, β-unsaturated aldehyde and diketene as a key step. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

A lot of related compounds to isocoumarin have been isolated from fungal metabolites and other natural sources. Most of these compounds are aromatic derivatives such as mellein, while relatively few compounds are non-aromatic derivatives such as ramulosin. Many of naturally occurring 8-hydroxy-3-methyl-3,4-dihydroisocoumarins (mellein or ramulosin derivatives) exhibit a variety of biological activities. Mellein (1) (Fig. 1), ${ }^{1-7}$ which plays a pheromonal role, was isolated from many fungi and several insects. The derivatives of mellein, O-methylmellein (2), ${ }^{8} 6$-hydroxymellein (3), ${ }^{9-14}$ and 6-methoxymellein (4) ${ }^{12-19}$ were isolated from phytopathogen, fungi or plant and showed cytotoxicity, phytotoxicity, and phytoalexin activities. On the other hand, ramulosin (5), ${ }^{20-22}$ which has antigerminating and

$R^{1}=O H, R^{2}=H:$ Mellein (1)
$\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}:$ O-Methylmellein (2)
$R^{1}=R^{2}=\mathrm{OH}$: 6-Hydroxymellein (3)
$\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OMe}$: 6-Methoxymellein (4)

6-Hydroxyramulosin (6)

Figure 1.

[^0]antimicrobial activities, was isolated from several fungi. Its derivative, 6-hydroxyramulosin (6), ${ }^{22,23}$ was also isolated from several fungi and showed antimicrobial activity. These dihydro- and hexahydroisocoumarins have been synthesized in various ways till date. ${ }^{24-36}$ Herein, we describe the synthesis of these optically active isocoumarin derivatives (1-6) in a short and efficient way.

2. Results and discussion

We have already reported a novel method for one-pot ester-ification-Michael addition-aldol reaction of δ-hydroxy- α, β unsaturated aldehyde and diketene, and the synthesis of the insecticidal tetrahydroisocoumarin, $(3 R, 4 S, 4 \mathrm{a} R)-4,8$-di-hydroxy-3-methyl-3,4,4a,5-tetrahydro-1 H -2-benzopyran-1one. ${ }^{37,38}$ The synthesis of mellein (1), ramulosin (5), and other derivatives $(\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6})$ was considered to be possible by employing our one-pot procedure (Scheme 1). We expected the key intermediate (B) to be constructed from two building blocks, diketene (C) and δ-hydroxy- α, β unsaturated aldehyde (D) by successive esterification (a) to open the diketene β-lactone to give an acetoacetate, Michael addition (b) of the enolate, and aldol condensation (c) of the methyl ketone to the aldehyde. In the Michael addition step, the angular hydrogen atom would be controlled to be in an axial orientation by proceeding via the chair-form transition state with all equatorial substituents. Separation of diastereomers of \mathbf{B} would give 6-hydroxyramulosin (6). Other compounds ($\mathbf{1}-\mathbf{5}$) would be synthesized via intermediate \mathbf{A}, which would be obtained by dehydration of \mathbf{B}.

The synthesis of δ-hydroxy- α, β-unsaturated aldehyde 9 is shown in Scheme 2. Starting from enantiomerically pure ethyl (R)-3-hydroxybutyrate $7,{ }^{39,40} \delta$-hydroxy- α, β-unsaturated

Scheme 1. Synthetic plan.
aldehyde $9(=\mathbf{D})$ was prepared via C_{2} elongation by the modified method of the reported one. ${ }^{41}$

Scheme 2. Synthesis of (R, E)-5-hydroxyhex-2-enal (9). Reagents and conditions: (a) TBSCl, imid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant; (b) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; (c) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; (d) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (e) MnO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$; (f) aq HF, $\mathrm{CH}_{3} \mathrm{CN}, 94 \%$.

One-pot reaction to afford the key intermediate \mathbf{B} is shown in Scheme 3. At first, the step-by-step reaction was examined. Esterification of 9 with diketene was promoted by catalytic amount of 4-(dimethylamino)pyridine at room temperature to give β-keto ester $\mathbf{1 0}$. When $\mathbf{1 0}$ was treated with potassium carbonate and 18 -crown- 6 at room temperature, the desired Michael addition occurred to afford hemiacetal 11 (inseparable mixture of α - and β-hydroxy isomers in a 1:2.4 ratio). Treatment of hemiacetal 11 with potassium carbonate and 18-crown-6 again at higher temperature effected reopening of hemiacetal ring and aldol reaction to give the desired bicyclic compounds $\mathbf{6 + 1 2}(=\mathbf{B})$ in a high yield as a 3.4:1 mixture. Now that the step-by-step reaction was successful, we then tried the one-pot esterification-Michael additionaldol reaction from $\mathbf{9}$ to $\mathbf{6 + 1 2}$. With 1.05 equiv of diketene, DMAP-catalyzed esterification proceeded smoothly also in benzene. Subsequent addition of a catalytic amount of potassium carbonate and 18 -crown- 6 and heating lead to the further reactions to give $\mathbf{6 + 1 2}$ (3.4:1) successfully in one-pot. In this reaction, concentration dependence was observed. When one-pot reaction was performed with 0.028 M of 9 , bicyclic products were obtained in good yield (74\%), while the higher concentrations $(0.42 \mathrm{M}, 0.084 \mathrm{M})$ gave moderate yield of products ($34 \%, 59 \%$, respectively). Thus, we succeeded in carrying out the key one-pot reaction to obtain intermediates $(\mathbf{6 + 1 2})$ efficiently. The diastereomers at C-6 were easily separated by preparative thin layer chromatography $\left(\mathrm{SiO}_{2}\right)$ to give (+)-6-hydroxyramulosin (6), whose spectral data were identical to those of natural

6-hydroxyramulosin. ${ }^{23}$ Its mp and specific rotation were $134-135^{\circ} \mathrm{C}$ and $[\alpha]_{\mathrm{D}}^{24}+91$ (c 0.43 , MeOH), respectively $\left\{\right.$ lit. $\left.{ }^{23} \mathrm{mp} 132-133{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}+91.6(c 1, \mathrm{MeOH})\right\}$.

Next, we examined the dehydration of $\mathbf{6 + 1 2}$ for the synthesis of mellein and ramulosin (Scheme 4). Although treatment with 2 -fluoro- N-methylpyridinium tosylate ${ }^{42}$ gave dehydrated product $\mathbf{1 3}$ in a moderate yield, treatment with Martin sulfurane ${ }^{43}$ (1 equiv) gave $\mathbf{1 3}$ in higher yield. The synthesis of (+)-ramulosin (5) was succeeded by the selective reduction ${ }^{29}$ of 13 and the synthesis of (-)-mellein (1) was also succeeded by the oxidative aromatization of 13 with DDQ in excellent yield. Interestingly, when the alcohol $\mathbf{1 2}$ was treated with excess amount of Martin sulfurane, mellein (1) was obtained unexpectedly in a one-step reaction via dehydration and aromatization. Similarly, the treatment of 13 with excess amount of Martin sulfurane gave mellein. During this aromatization with Martin sulfurane, formation of $\mathrm{Ph}_{2} \mathrm{~S}$ was observed. We therefore suppose the reaction mechanism of the aromatization to be as shown in Scheme 5. We considered that the enolic oxygen of $\mathbf{1 3}$ would attack

Scheme 4. Synthesis of mellein, ramulosin, and O-methylmellein. Reagents and conditions: (a) Martin sulfurane (1 equiv), $\mathrm{CHCl}_{3}, 74 \%$; (b) $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$, $\mathrm{ZnCl}_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CHCl}_{3}, 81 \%$; (c) DDQ, benzene, 98% or Martin sulfurane (excess), $\mathrm{CHCl}_{3}, 75 \%$; (d) Martin sulfurane (excess), $\mathrm{CHCl}_{3}, 72 \%$; (e) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, quant.

Scheme 3. Synthesis of key intermediates 6 and 12. Reagents and conditions: (a) DMAP, benzene, 83%; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, 18$-crown- 6 , benzene, 60%; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, 18-crown-6, benzene, reflux, 94%; (d) DMAP, benzene, then $\mathrm{K}_{2} \mathrm{CO}_{3}, 18$-crown-6, rt, then reflux, $71-74 \%$ (one-pot).

Scheme 5. Mechanism of aromatization by Martin sulfurane.
the sulfur of Martin sulfurane and then reductive removal of $\mathrm{Ph}_{2} \mathrm{~S}$ and $\mathrm{Ph}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{COH}$ was followed by aromatization to give mellein. Thus we succeeded in the effective synthesis of $(+)$-ramulosin (5) and (-)-mellein (1), which was subjected to methylation to give another natural product, $(-)-O-$ methylmellein (2) quantitatively. Spectral data of synthetic $(-)$-mellein, $(+)$-ramulosin, and $(-)-O$-methylmellein were identical to the reported data. ${ }^{5,20,8}$ Their mps and specific rotations were as follows: $(-)$-mellein: mp $55-56{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{22}$ -102 (c $0.53, \mathrm{CHCl}_{3}$) \{lit. ${ }^{5} \mathrm{mp} 56^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}-102.5$ (c 1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$; (+)-ramulosin: mp 118-119 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{21}+19$ (c $0.50, \mathrm{EtOH})\left\{\mathrm{lit}^{20} \mathrm{mp} 120-121^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}+18\right.$ (c 2.9 , $\mathrm{EtOH})\} ; O$-methylmellein: mp $87-88^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{26}-252$ (c 0.55, CHCl_{3}) $\left\{\right.$ lit. $^{3} \mathrm{mp} \mathrm{88-89}{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{15}-250(c \quad 0.50$, $\left.\mathrm{CHCl}_{3}\right)$ \}.

Finally, we examined the conversion of the intermediates $(6+12)$ to 6-hydroxymellein (3) and 6-methoxymellein (4). Oxidation of $\mathbf{6 + 1 2}$ was found to be slightly difficult. Oxidation with IBX, Dess Martin periodinane, PCC, TPAP, TEMPO or Swern condition gave no desired compound, but PDC oxidation afforded a trace amount of 6-hydroxymellein (3). The best result was obtained employing Jones condition, which gave the mixture of (-)-6-hydroxymellein (3, 8\%), ketone $\mathbf{1 4}(7 \%)$, mellein ($\mathbf{1}, 8 \%$), and starting material 6+12 (19\%) (Scheme 6). (-)-6-Hydroxymellein (3) was separated and subjected to mono-methylation to give (-)-6methoxymellein (4) in good yield. Spectral data of synthetic $(-)$-6-hydroxymellein and (- -6-methoxymellein were identical to the reported data. ${ }^{11,18}$ Their mps and specific rotations were as follows: (-)-6-hydroxymellein: mp 201$203{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}-51(c 0.10, \mathrm{MeOH})\left\{\right.$ lit. ${ }^{11} \mathrm{mp} \mathrm{211-214}{ }^{\circ} \mathrm{C}$, $\left.[\alpha]_{\mathrm{D}}^{26}-49(c 1.0, \mathrm{MeOH})\right\} ;(-)-6$-methoxymellein: mp $76-77^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}-55\left(c 0.23\right.$, MeOH) \{lit. ${ }^{15} \mathrm{mp} \mathrm{75-76}{ }^{\circ} \mathrm{C}$, $\left.[\alpha]_{\mathrm{D}}^{24}-56(c 1, \mathrm{MeOH})\right\}$.

In summary, (- -mellein, (+)-ramulosin, (-)- O-methylmellein, (-)-6-hydroxymellein, (-)-6-methoxymellein, and (+)-6-hydroxyramulosin were synthesized in short steps as optically active forms. The overall yields were (-)-mellein: 51% (in two steps), (+)-ramulosin: 43% (in three steps), (-)-O-methylmellein: 51% (in three steps), (-)-6-hydroxymellein: 6% (in two steps), (-)-6-methoxymellein: 5% (in three steps), and (+)-6-hydroxyramulosin: 55% (in one step) from the known δ-hydroxy- α, β-unsaturated aldehyde 9 . The key
step, one-pot esterification-Michael addition-aldol reaction from 9 to $6+12$, was succeeded in a high yield and in a stereoselective manner. This reaction would be applicable to the synthesis of other isocoumarins.

3. Experimental

3.1. General

Optical rotations were recorded with a JASCO DIP-1000 polarimeter. IR spectra were measured with a JASCO FT/IR230 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JNM AL300. Chemical shifts (δ) were referenced to the residual solvent peak as the internal standard $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26, \delta_{\mathrm{C}}=77.0 ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.30\right.$, $\delta_{\mathrm{C}}=49.0$; acetone $\left.-d_{6}: \delta_{\mathrm{C}}=29.8\right)$. Mass spectra were recorded on JEOL JMS-700T. Column chromatography was performed using Merck silica gel 60 ($0.060-0.200 \mathrm{~mm}$). TLC was carried out on Merck glass plates precoated with silica gel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$. Melting points are uncorrected values.

3.2. Synthetic studies

3.2.1. (1R,3E)-1-Methyl-5-oxopent-3-enyl 3-oxobutanoate (10). 4-(Dimethylamino)pyridine ($2.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added to a solution of hydroxyl aldehyde $9(48.5 \mathrm{mg}$, 0.425 mmol) in dry benzene (1 ml). After 8 min , it was cooled to $<10^{\circ} \mathrm{C}$ and then a solution of diketene (38 mg , 0.45 mmol) in benzene (1 ml) was added. After 30 min , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{ml})$ solution and the mixture was extracted with ether. The organic layer was washed with saturated NaHCO_{3} solution and brine and dried with MgSO_{4}. After filtration, the solvent was evaporated and the residue was subjected to silica gel column chromatography. Elution with n-hexane/ethyl acetate ($7: 3$) gave ester $\mathbf{1 0}(70 \mathrm{mg}, 83 \%)$ as a colorless oil.

IR (film): $\nu=3441$ (br), 2981, 2935, 2826, 1739, 1714, 1692, 1411, 1361, 1314, 1269, 1151, 1060, $978 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right): \delta=1.32(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.26$ $(3 \mathrm{H}, \mathrm{s}), 2.63(2 \mathrm{H}$, ddd, $J=7.2,6.0,1.2 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{s})$, $5.16(1 \mathrm{H}, \mathrm{m}), 6.15(1 \mathrm{H}$, ddd, $J=15.6,7.8,1.2 \mathrm{~Hz}), 6.80(1 \mathrm{H}$, $\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}), 9.52(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR

Scheme 6. Synthesis of 6-hydroxymellein and 6-methoxymellein. Reagents and conditions: (a) Jones reagent, acetone, $\mathbf{3}$ (8%), $\mathbf{1 4}$ (7\%), $\mathbf{1}$ (8%); (b) $\mathrm{Me}_{2} \mathrm{SO}_{4}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, 88%.
(75 MHz in CDCl_{3}): $\delta=19.6,30.1,38.6,49.9,69.3,135.4$, 152.2, 166.3, 193.5, 200.3. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$221.0784, found 221.0753.
3.2.2. (3R,4aR)-6-Hydroxy-3,8-dimethyl-4,4a,5,6-tetra-hydro-1H,3H-pyrano[3,4-c]pyran-1-one (11). To a stirring solution of ester $\mathbf{1 0}(108 \mathrm{mg}, 0.545 \mathrm{mmol})$ in dry benzene (3 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.6 \mathrm{mg}, 3.5 \mathrm{~mol} \%)$ and 18-crown-6 ($23 \mathrm{mg}, 16 \mathrm{~mol} \%$) at room temperature. After 2.5 h , solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ ethyl acetate (7:3-1:1) afforded hemiacetal 11 (65 mg , $60 \%, \beta-\mathrm{OH} / \alpha-\mathrm{OH}=2.4: 1)$ as a white solid.

IR (CDCl_{3} solution): 3256 (br), 2983, 2935, 2862, 1674, 1583, 1387, 1283, 1257, 1158, 1133, 1106, 1045, 999, 959, 943, 882, $837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}) for β-OH-isomer: $\delta=1.37(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.26-1.51$ $(2 \mathrm{H}, \mathrm{m}), 1.90-2.29(2 \mathrm{H}, \mathrm{m}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.84(1 \mathrm{H}, \mathrm{m})$, $4.45(1 \mathrm{H}, \mathrm{m}), 5.59\left(1 \mathrm{H}\right.$, br s). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$ in CDCl_{3}) for α-OH-isomer: $\delta=1.36(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$, $1.26-1.51(2 \mathrm{H}, \mathrm{m}), 1.90-2.29(2 \mathrm{H}, \mathrm{m}), 2.35(3 \mathrm{H}, \mathrm{s}), 2.71$ $(1 \mathrm{H}, \mathrm{m}), 4.42(1 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{m})$.
3.2.3. 6,8-Dihydroxy-3-methyl-3,4,4a,5,6,7-hexahydro1 H -isochromen-1-one [12 and (+)-6-hydroxyramulosin (6)]-stepwise reaction. To a stirring solution of hemiacetal $11(48 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dry benzene (3 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{mg}, 3.5 \mathrm{~mol} \%)$ and 18 -crown- $6(10.2 \mathrm{mg}$, $16 \mathrm{~mol} \%$). This mixture was then refluxed for 2 h and cooled to room temperature. The solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ethyl acetate (1:1) afforded a mixture of $\mathbf{6}$ and $\mathbf{1 2}(45 \mathrm{mg}, 94 \%, \mathbf{6} / \mathbf{1 2}=3.4: 1)$ as a white solid. Diastereomers were separated by preparative TLC using diethyl ether as the developing solvent to afford 6 ($35 \mathrm{mg}, 73 \%$) and $\mathbf{1 2}$ ($4.1 \mathrm{mg}, 8.6 \%$). Both of the isomers were recrystallized from ethyl acetate $/ n$-hexane to give colorless needles.
(+)-6-Hydroxyramulosin (6): mp 134-135 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{24}+91$ (c 0.43, MeOH). IR (KBr): $\nu=3448,3000-2840,1639$, 1599, 1444, 1401, 1352, 1289, 1257, 1233, 1166, 1145, 1107, 1062, 1028, 944, 867, $830 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right): \delta=1.25-1.46(2 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 1.66(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 1.92(1 \mathrm{H}, \mathrm{m}), 2.01$ $(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{d}, J=19.5 \mathrm{~Hz}), 2.66(1 \mathrm{H}, \mathrm{ddd}, J=19.5$, $4.5,2.4 \mathrm{~Hz}), 2.92(1 \mathrm{H}$, br $\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}), 4.37(1 \mathrm{H}$, br s), $4.52(1 \mathrm{H}, \mathrm{m}), 13.18(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=21.7,26.4,35.7,36.8,37.5,63.7,76.8,96.4,171.4$, 171.6. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 221.0784, found 221.0812. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}$, 60.59; H, 7.12. Found: C, 60.42; H, 6.87.

Compound 12: mp 127-128 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{18}+21(c 0.07, \mathrm{MeOH})$. IR (KBr): $\nu=3400$ (br), 3000-2840, 1639, 1599, 1411, 1295, 1231, 1176, 1105, 1058, $870 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.21-1.45(2 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 1.67(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 1.97(1 \mathrm{H}, \mathrm{m}), 2.12$ $(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}$, ddd, $J=18.3,9.9,2.4 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{br}$ $\mathrm{t}, J=11.1 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=18.3,6.3 \mathrm{~Hz}), 4.04(1 \mathrm{H}$, $\mathrm{m}), 4.46(1 \mathrm{H}, \mathrm{m}), 13.14(1 \mathrm{H}, \mathrm{s})$. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$221.0784, found 221.0744.
3.2.4. 6,8-Dihydroxy-3-methyl-3,4,4a,5,6,7-hexahydro1 H -isochromen-1-one $(6+12)$-one-pot reaction. 4 -(Dimethylamino) pyridine ($35 \mathrm{mg}, 5.6 \mathrm{~mol} \%$) was added to a solution of hydroxyl aldehyde $9(583 \mathrm{mg}, 5.11 \mathrm{mmol})$ in dry benzene (110 ml). After 8 min , a solution of diketene $(465 \mathrm{mg}, 5.52 \mathrm{mmol})$ in benzene $(90 \mathrm{ml})$ was added to the reaction mixture through cannula over 15 min at $10^{\circ} \mathrm{C}$ and it was stirred for further 30 min . Then $\mathrm{K}_{2} \mathrm{CO}_{3}(75 \mathrm{mg}$, $11 \mathrm{~mol} \%$) and 18 -crown-6 ($414 \mathrm{mg}, 30.7 \mathrm{~mol} \%$) were added and stirring was continued for 2.5 h at room temperature. After completion of Michael addition, the mixture was refluxed for 3 h to give aldol product. After cooling down to room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ and the organic layer was separated. The aqueous layer was extracted with dichloromethane (300 ml). Both of the benzene part and the dichloromethane part were washed with brine (10 ml) separately and the combined brine part was re-extracted with dichloromethane (50 ml). Combined organic layer was then dried over MgSO_{4}. After filtration, the solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ethyl acetate ($1: 1-4: 5$) afforded a mixture of 6 and $\mathbf{1 2}(715 \mathrm{mg}, 71 \%, \mathbf{6} / \mathbf{1 2}=3.4: 1)$ as a white solid, whose spectral data were identical to those of the product obtained by stepwise reactions.
3.2.5. 8-Hydroxy-3-methyl-3,4,4a,5-tetrahydro-1H-isochromen-1-one (13). To a stirring solution of bicyclic diol $\mathbf{6 + 1 2}$ ($135 \mathrm{mg}, 0.681 \mathrm{mmol}$) in chloroform (12 ml) was added Martin sulfurane (1 equiv) at $0^{\circ} \mathrm{C}$. After 3 h , solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ethyl acetate (4:1) afforded $\mathbf{1 3}(91 \mathrm{mg}, 74 \%)$ as a white solid.

Mp $83-84{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{26}+174\left(c \quad 0.40, \mathrm{CHCl}_{3}\right)$. IR (KBr): $\nu=3435,3000-2800,1647,1575,1388,1313,1248,1185$, 1146, 1092, $873,799 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$ in $\left.\mathrm{CDCl}_{3}\right): \delta=1.41(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.92-$ $2.07(2 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{dt}, J=17.1,6.3 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{m})$, $4.39(1 \mathrm{H}, \mathrm{m}), 6.07(1 \mathrm{H}, \mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}), 6.44(1 \mathrm{H}$, ddd, $J=9.9,6.9,2.1 \mathrm{~Hz}), 12.84(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$ in CDCl_{3}): $\delta=21.3,29.8,30.5,36.6,74.7,92.5,124.5,139.4$, 168.0, 171.8. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$203.0679, found 203.0699.
3.2.6. (3R,4aS)-(+)-Ramulosin (5). According to the method of Pietrusiewicz, ${ }^{29}$ reduction of diene $\mathbf{1 3}(=\mathbf{A})(45.5 \mathrm{mg}$, 0.253 mmol) afforded 5 ($37.1 \mathrm{mg}, 81 \%$) as a white solid.

Mp $118-119{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{21}+19$ (c $\left.0.50, \mathrm{EtOH}\right)$. IR (KBr): $\nu=3422,3000-2800,1643,1618,1446,1407,1387,1354$, $1304,1273,1235,1172,1145,1105,1065,1019,957$, 892, 831, $774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.09-1.34(2 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 1.62(1 \mathrm{H}$, m), 1.85-1.96 ($3 \mathrm{H}, \mathrm{m}$), $2.38(2 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{m}), 4.46$ $(1 \mathrm{H}, \mathrm{m}), 13.26(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 MHz in CDCl_{3}): $\delta=20.9$, 21.7, 29.0, 29.5, 32.9, 37.4, 76.0, 96.8, 171.8, 174.7. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 205.0835, found 205.0853.

3.2.7. (R)-(-)-Mellein (1).

3.2.7.1. Aromatization by DDQ. To a stirring solution of diene $13(26.1 \mathrm{mg}, 0.144 \mathrm{mmol})$ in dry benzene (2 ml)
was added DDQ ($60 \mathrm{mg}, 0.26 \mathrm{mmol}$) at room temperature. After 3 h , the reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was chromatographed over silica gel. Elution with n-hexane/ether (5:2) afforded 1 ($25 \mathrm{mg}, 98 \%$) as a white solid.
3.2.7.2. Aromatization by Martin sulfurane. To a stirring solution of diene $\mathbf{1 3}$ ($12.2 \mathrm{mg}, 0.068 \mathrm{mmol}$) in chloroform (1.5 ml) was added Martin sulfurane $(91.5 \mathrm{mg}$, 0.136 mmol) at $0^{\circ} \mathrm{C}$ and then the reaction mixture was allowed to warm to room temperature. After 7 h , solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ether (5:2) afforded 1 ($9.1 \mathrm{mg}, 75 \%$) as a white solid.
3.2.7.3. Dehydration and aromatization by Martin sulfurane. To a stirring solution of bicyclic diol $\mathbf{1 2}$ $(16 \mathrm{mg}, 0.08 \mathrm{mmol})$ in chloroform $(1.2 \mathrm{ml})$ was added Martin sulfurane ($161 \mathrm{mg}, 0.24 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and then the reaction mixture was slowly allowed to warm to room temperature. After 15 h , the solvent was evaporated in vacuo and the residue was chromatographed over silica gel. Elution with n-hexane/ether (5:2) afforded $1(10.3 \mathrm{mg}, 72 \%)$ as a white solid. Recrystallization from n-hexane gave colorless needles.

Mp $55-56^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{22}-102$ (c $0.53, \mathrm{CHCl}_{3}$). IR (KBr) : $\nu=3430,3000,1672,1619,1465,1366,1325,1293,1237$, $1225,1168,1118,1049,956,898,805,783,756,715$, 696, $680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.53$ $(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{m})$, $6.69(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.41(1 \mathrm{H}$, dd, $J=8.4,7.2 \mathrm{~Hz}), 11.03(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$ in CDCl_{3}): $\delta=20.7,34.5,76.2,108.2,115.9,117.9,136.1$, 139.3, 162.1, 169.9. ESI-HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$201.0522, found 201.0492.
3.2.8. (\boldsymbol{R})-(-)- \boldsymbol{O}-Methylmellein (2). To a stirring solution of $(R)-(-)$-mellein $1(29 \mathrm{mg}, 0.16 \mathrm{mmol})$ in acetone (5 ml) was added $\mathrm{Me}_{2} \mathrm{SO}_{4}(25 \mu \mathrm{l}, 0.26 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(136 \mathrm{mg}, 0.984 \mathrm{mmol})$ at room temperature. The mixture was warmed to $40^{\circ} \mathrm{C}$ and kept up to complete conversion. The solvent was evaporated in vacuo and ethyl acetate was added to the residue. After filtration, the filtrate was concentrated in vacuo to give almost pure product, which was chromatographed over silica gel. Elution with n-hexane/ ethyl acetate (1:1) afforded 2 (31.2 mg , quant). Recrystallization from ether/ n-hexane gave colorless prisms.

Mp $87-88{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{21}-252$ (c $0.55, \mathrm{CHCl}_{3}$). IR (KBr): $\nu=3100-2840,1712,1597,1589,1476,1457,1435,1353$, $1300,1274,1238,1117,1084,1057,948,900,802,776$, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.48(3 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{m}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.55(1 \mathrm{H}, \mathrm{m}), 6.80$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}$, $J=8.4,7.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz in CDCl_{3}): $\delta=20.6$, 36.0, 56.0, 74.1, 110.7, 113.5, 119.1, 134.4, 141.8, 161.0, 162.7. ESI-HRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 215.0679, found 215.0635. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 68.74; H, 6.29. Found: C, 68.53; H, 6.08.
3.2.9. 6-Hydroxymellein (3). To a stirring solution of bicyclic diol $\mathbf{6}+\mathbf{1 2}(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ in acetone $(1.5 \mathrm{ml})$
was added Jones reagent ($76 \mu \mathrm{l}$) at $0^{\circ} \mathrm{C}$ and stirring was continued for 45 min . After evaporation in vacuo, the residue was diluted with ether and filtered through Celite pad. The filtrate was concentrated in vacuo to give the crude product, which was purified by preparative TLC using chloroform/ methanol (30:1) as the developing solvent to afford 3 ($2.3 \mathrm{mg}, 7.8 \%$) as a white solid, ketone $14(2.0 \mathrm{mg}, 6.7 \%)$, mellein $1(2.1 \mathrm{mg}, 7.8 \%)$, and starting material $12(5.7 \mathrm{mg}$, 19%).

6-Hydroxymellein (3): mp 201-203 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{18}-51$ (c 0.10, MeOH). IR (KBr): $\nu=3600-2800$, 1651, 1632, 1587, 1503, 1477, 1386, 1290, 1257, 1221, 1195, 1170, 1120, 1067, 854, 796, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.51(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{m}), 4.68(1 \mathrm{H}, \mathrm{m})$, $6.21(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 11.22$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 MHz in acetone $-d_{6}$): $\delta=20.8,35.0$, 76.3, 101.6, 101.9, 107.4, 143.2, 165.3, 165.3, 170.7. ESIHRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 217.0471$, found 217.0469. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$: C, 61.85 ; H, 5.19. Found: C, 61.81; H, 5.00.

Ketone 14: IR (CDCl_{3} solution): $\nu=3100-2840,1728,1651$, 1604, 1407, 1313, 1285, 1259, 1215, 1175, 1138, 1087, $855 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.44(3 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 1.49(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{ddd}, J=13.5,4.5$, $1.8 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=15.0,12.3 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}$, $J=15.0,4.2 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{m}), 3.25(2 \mathrm{H}, \mathrm{s}), 4.47(1 \mathrm{H}, \mathrm{m})$, $13.26(1 \mathrm{H}, \mathrm{s})$.
3.2.10. 6-Methoxymellein (4). To a solution of (-)-6-hydroxymellein ($\mathbf{3}, 14.8 \mathrm{mg}, 0.076 \mathrm{mmol}$) in acetone (1.5 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(52 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}$ $(7.5 \mu \mathrm{l}, 0.078 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $4^{\circ} \mathrm{C}$ for 36 h . The solvent was evaporated in vacuo and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ and dichloromethane (20 ml) were added to the residue. After separation of the organic layer, the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with brine and concentrated in vacuo. The residue was chromatographed over silica gel. Elution with n-hexane/ethyl acetate (7:3) afforded 4 ($14 \mathrm{mg}, 88 \%$) as a white solid. Recrystallization from n-hexane/ether gave colorless needles.
$\mathrm{Mp} 76-77{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}-55(c \quad 0.23, \mathrm{MeOH})$. IR (KBr): $\nu=3600-2840,1664,1635,1583,1510,1440,1372,1247$, 1205, 1157, 1115, 1095, 1069, 1037, 964, 849, 828, 800, $709 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz in CDCl_{3}): $\delta=1.50(3 \mathrm{H}, \mathrm{d}$, $J=6.2 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.67(1 \mathrm{H}, \mathrm{m}), 6.24$ $(1 \mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{s}), 11.25(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$ in CDCl_{3}): $\delta=20.7,34.8,55.5,75.5,99.4,101.5,106.2$, 140.9, 164.5, 165.7, 169.9. ESI-HRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$231.0628, found 231.0588. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$: C, 63.45; H, 5.81. Found: C, 63.85; H, 6.12.

References and notes

[^1]4. Arakawa, H.; Torimoto, N.; Masui, Y. Liebigs Ann. Chem. 1969, 728, 152-157.
5. Sasaki, M.; Kaneko, Y.; Oshita, K.; Takamatsu, H.; Asao, Y.; Yokotsuka, T. Agric. Biol. Chem. 1970, 34, 1296-1300.
6. Hill, R. A. Prog. Chem. Org. Nat. Prod. 1986, 49, 1-78.
7. Gill, M. The Chemistry of Natural Products, 2nd ed.; Thomson, R. H., Ed.; Blackie A\&P: London, 1993; pp 60-105.
8. Devys, M.; Bousquet, J. F.; Kollmann, A.; Barbier, M. Phytochemistry 1980, 19, 2221-2222.
9. Chexal, K. K.; Tamm, C.; Clardy, J.; Hirotsu, K. Helv. Chim. Acta 1979, 62, 1785-1803.
10. Ito, M.; Maruhashi, M.; Sakai, N.; Mizoue, K.; Hanada, K. J. Antibiot. 1992, 45, 1559-1565.
11. Ito, M.; Tsuchida, Y.; Mizoue, K.; Hanada, K. J. Antibiot. 1992, 45, 1566-1572.
12. Stadler, M.; Anke, H.; Sterner, O. J. Antibiot. 1995, 48, 261-266.
13. Stadler, M.; Anke, H.; Sterner, O. J. Antibiot. 1995, 48, 267270.
14. Marinelli, F.; Zanelli, U.; Ronchi, V. N. Phytochemistry 1996, 42, 641-643.
15. Sondheimer, E. J. Am. Chem. Soc. 1957, 79, 5036-5039.
16. McGahren, W. J.; Mitscher, L. A. J. Org. Chem. 1968, 33, 1577-1580.
17. Govindachari, T. R.; Patankar, S. J.; Viswanathan, N. Phytochemistry 1971, 10, 1603-1606.
18. Coxon, D. T.; Curtis, F. R.; Price, K. R.; Levett, G. Phytochemistry 1973, 12, 1881-1885.
19. Dunn, A. W.; Johnstone, R. A. W. J. Chem. Soc., Perkin Trans. 1 1979, 2113-2117.
20. Stodola, F. H.; Cabot, C.; Benjamin, C. R. Biochem. J. 1964, 93, 92-97.
21. Stierle, D. B.; Stierle, A. A.; Kunz, A. J. Nat. Prod. 1998, 61, 1277-1278.
22. Findlay, J. A.; Buthelezi, S.; Lavoie, R.; Rodriguez, L. P. J. Nat. Prod. 1995, 58, 1759-1766.
23. Tanenbaum, S. W.; Agarwal, S. C. Tetrahedron Lett. 1970, 11, 2377-2380.
24. Matsui, M.; Mori, K.; Arasaki, S. Agric. Biol. Chem. 1964, 28, 896-899.
25. Arai, Y.; Kamikawa, T.; Kubota, T. Bull. Chem. Soc. Jpn. 1973, 46, 3311-3312.
26. Regan, A. C.; Staunton, J. J. Chem. Soc., Chem. Commun. 1983, 764-765.
27. Cordova, R.; Snider, B. Tetrahedron Lett. 1984, 25, 29452948.
28. Mori, K.; Gupta, A. K. Tetrahedron 1985, 41, 5295-5299.
29. Pietrusiewicz, K. M.; Salamończyk, I. J. Org. Chem. 1988, 53, 2837-2840.
30. Vogt, K.; Schmidt, R. R. Tetrahedron 1988, 44, 3271-3280.
31. Takano, S.; Shimazaki, Y.; Ogasawara, K. Heterocycles 1989, 29, 2101-2102.
32. Asaoka, M.; Sonoda, S.; Takei, H. Chem. Lett. 1989, 18471848.
33. Asaoka, M.; Sonoda, S.; Fujii, N.; Takei, H. Tetrahedron 1990, 46, 1541-1552.
34. Superchi, S.; Pini, D.; Salvadori, P.; Marinelli, F.; Rainaldi, G.; Zanelli, U.; Nuti-Ronchi, V. Chem. Res. Toxicol. 1993, 6, 46-49.
35. Enders, D.; Kaiser, A. Synthesis 1996, 209-214.
36. Dimitriadis, C.; Gill, M.; Harte, M. F. Tetrahedron: Asymmetry 1997, 8, 2153-2158.
37. Uchida, K.; Watanabe, H.; Kitahara, T. Heterocycles 2000, 53, 539-542.
38. Uchida, K.; Ishigami, K.; Watanabe, H.; Kitahara, T. Tetrahedron, in press. doi:10.1016/j.tet.2006.11.006
39. Seebach, D.; Züger, M. Helv. Chim. Acta 1982, 65, 495503.
40. Mori, K.; Watanabe, H. Tetrahedron 1984, 40, 299-303.
41. Keck, G. E.; Palani, A.; McHardy, S. F. J. Org. Chem. 1994, 59, 3113-3122.
42. Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1979, 18, 707-808.
43. Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 23412342.

[^0]: * Corresponding author. Tel.: +81 35841 5119; fax: +81 35841 8019; e-mail: ashuten@mail.ecc.u-tokyo.ac.jp

[^1]: 1. Nishikawa, H. J. Agric. Chem. Soc. Jpn. 1933, 9, 772-774.
 2. Yabuta, T.; Sumiki, Y. J. Agric. Chem. Soc. Jpn. 1933, 9, 12641275.
 3. Blair, J.; Newbold, G. T. J. Chem. Soc. 1955, 2871-2875.
