ASYMMETRIC SYNTHESIS OF ALL STEREOISOMERS OF ISOFAGOMINE USING [2,3]-WITTIG REARRANGEMENT

Yukiko Mihara, ${ }^{\text {a }}$ Hidetomo Ojima, ${ }^{\text {a }}$ Tatsushi Imahori, ${ }^{\text {a }}$ Yuichi Yoshimura, ${ }^{a}$ Hidekazu Ouchi, ${ }^{\text {b }}$ and Hiroki Takahata ${ }^{\text {a* }}$

${ }^{a}$ Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan:takahata@tohoku-pharm.ac.jp
${ }^{b}$ Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan

Abstract

The asymmetric synthesis of all stereoisomers of isofagomine from 5-hydroxymethyl-3-piperidene 6, which was prepared by [2,3]-Wittig rearrangement of O-alkylstannylmethyl compound 5 derived from readily available chiral 3-hydroxypiperidene 4, is described.

INTRODUCTION

Azasugars (or iminosugars), such as 1-deoxynojirimycin (1), are an important class of glycosidase inhibitors and are currently attracting great interest as potential therapeutic agents such as antidiabetics, antiobesities, antivirals, and therapeutic agents for certain types of genetic disorders. ${ }^{1-5}$ Miglitol (Glyset) ${ }^{6}$ has been approved as a second-generation α-glucosidase inhibitor for the treatment of type 2 diabetes, and N -butyl-1-deoxynojirimycin (Zavesca) ${ }^{7-9}$ has also been approved for use in patients with type 1 Gaucher disease in the European Union in 2002 and in the U.S. in 2003. The promising therapeutic potential of iminosugars has led to an increased interest and demand. In the process of the design and development of anomer-selective β-glycosidase inhibitors based on transition state mimics for hydrolysis by a glycosidase, Bols and co-workers noticed a subtle change in glycosidase inhibitory activity when the nitrogen atom of fagomine 2 was moved to the anomeric C_{1} position. ${ }^{10}$ This led to the development of isofagomine 3 which showed stronger and more selective β-glucosidase inhibitory activity than previously developed compounds. A number of isofagomine derivatives have been synthesized during the last few years. ${ }^{11}$ Most of the syntheses start from carbohydrates and, in general, require numerous steps to reach a specific target. The development of efficient and general procedures for their synthesis is still an
area of great interest, not only for the synthesis of natural products, but also for chemically modified analogues.

Figure 1
As a part of our ongoing interest in polyhydroxy piperidines, ${ }^{12}$ we envisioned the use of N-Boc-5-hydroxy-3-piperidene (4) as a general representative chiral building block that might permit easy access to these classes of compounds. ${ }^{13}$ We report herein on the asymmetric synthesis of all stereoisomers of the 1 -azasugars such as isofagomine (3), using the [2,3]-Wittig rearrangement ${ }^{14}$ as a key step starting from the chiral N -Boc-5-hydroxy-3-piperidene (4) as depicted in Scheme 1.

Scheme 1

RESULTS AND DISCUSSION

We began with the synthesis of a precursor 5 for the [2,3]-Wittig rearrangement from 4. O-Alkylation of $(S)-\mathbf{4}^{12}$ with tributyl(iodomethyl)stannane ${ }^{15}$ in the presence of KH and n - $\mathrm{Bu}_{4} \mathrm{NI}$ gave the stannane product (S)-5 in 98% yield. With (S) $\mathbf{- 5}$ in hand, the [2,3]-Wittig rearrangement of (S) - $\mathbf{5}$ by transmetallation using n - BuLi to obtain the requisite hydroxymethyl substituent $(R)-6$ was examined. ${ }^{16}$ After screening various reaction conditions, we were very pleased to find that the desired [2,3]-Wittig rearrangement of $(S)-5$ proceeded smoothly to afford $(R)-\mathbf{6}$ with no racemization. ${ }^{17}$ The results are shown in Table 1. The use of less polar solvents such as n-pentane and n-hexane gave good results.

Table 1. [2,3]-Wittig rearrangement of $(S)-5$

$\substack{\text { Boc } \\ (S)-5 \\ \text { dry solvent } \\ -80^{\circ} \mathrm{C}(2 \mathrm{~h}) \\ \text { to }-40^{\circ} \mathrm{C}(1 \sim 2 \mathrm{~h})}$		
Entry	Solvent	$(R)-6$, (Ra, Yield[\%]
1	n-pentane	65
2	n-hexane	53
3	$\mathrm{Et}_{2} \mathrm{O}$	50
4	THF	33
5	DME	16

Having the key intermediate $(R)-6$ in hand, the stereoselective dihydroxylation of the double bond was examined. Treatment of $(R)-6$ with a catalytic amount of $\mathrm{OsO}_{4}(5 \mathrm{~mol} \%)$ and 4-methylmorphorine N oxide as a cooxidant gave an inseparable mixture of diastereomeric diols, which, after deprotection with $10 \% \mathrm{HCl}$ in dioxane followed by silica gel column chromatography using a mixture eluent (methanol:10\% $\mathrm{NH}_{4} \mathrm{OH}$), gave 3-epiisofagomine (7) (75\%) and 4-epiisofagomine (8) (14\%). The O TBDPS protected piperidene $\mathbf{1 0}$ was next dihydroxylated under similar conditions to give $\mathbf{1 1}(56 \%)$ and 12 (21%). Unfortunately, diastereoselectivity was not improved. The spectral data for $\mathbf{7}$ and $\mathbf{8}$ were found to be in good agreement with reported values from the literature. ${ }^{11 a, c}$ Donohoe reported that osmium tetroxide produces a bidentate and reactive complex with TMEDA, which can be used in the directed dihydroxylation of cyclic homoallylic alcohols. ${ }^{18}$ Under the condition, hydrogen bonding control preferentially led to the formation of the syn isomer in almost every case. However, the oxidation of $(R)-6$ with a combination of OsO_{4} with TMEDA gave $\mathbf{7}$ and $\mathbf{8}$ in 61% and 37% yields, respectively. Although the yield of $\mathbf{8}$ was increased, inversion of the ratio did not occur.

We next set out to synthesize $\mathbf{3}$ and $\mathbf{9}$ from this advanced intermediate 11. Thus, the cis-diol $\mathbf{1 1}$ was converted into the cyclic sulfate ester 13 in 76% yield in a two-step sequence, including cyclic sulfite formation with SOCl_{2} and triethylamine followed by oxidation with $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ (Scheme 8). ${ }^{19}$ Treatment of 13 with benzoic acid in the presence of cesium carbonate (DMF, $60^{\circ} \mathrm{C}$) resulted in the nonregioselective substitution at the C_{3} and C_{4} positions to produce benzoates $\mathbf{1 4}$ and $\mathbf{1 5}$ in $\mathbf{4 6 \%}$ and $\mathbf{4 2 \%}$ yields, respectively, after acid hydrolysis of the resultant sulfate esters. Finally, the deprotection of $\mathbf{1 4}$ and 15 by treatment with 6 N hydrochloric acid at $120^{\circ} \mathrm{C}$ gave $\mathbf{3}$ and $\mathbf{9}$ in 98% and 96% yields, respectively,
the spectral data for which were found to be in good agreement with reported values from the literature. ${ }^{11 \mathrm{f}}$

Scheme 2. (a) 1) cat. $\mathrm{OsO}_{4}, \mathrm{NMO}$, acetone; 2) $10 \% \mathrm{HCl}$, dioxane, reflux;
3) $\mathrm{NH}_{4} \mathrm{OH}$; or 1) OsO_{4}-TMEDA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2) conc HCl , MeOH ; 3) $\mathrm{NH}_{4} \mathrm{OH}$;
(b) cat. $\mathrm{OsO}_{4}, \mathrm{NMO}$, acetone

Scheme 3. (a) 1) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2) cat. $\mathrm{RuCl}_{3}-3 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, \mathrm{CCl}_{4}-\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$; (b) 1) $\mathrm{PhCOOH}, \mathrm{CsCO}_{3}, \mathrm{DMF}$; 2) conc $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$; (c) 1) 6 N HCl ; 2) $\mathrm{NH}_{4} \mathrm{OH}$

As an alternative synthesis of $\mathbf{3}$ and $\mathbf{9}$, we attempted an epoxidation of $(R) \mathbf{- 1 0}$ followed by cleavage. Thus, the dioxirane, generated in situ ${ }^{20}$ from Oxone® by treatment with $1,1,1$-trifluoroacetone was reacted with $(R)-\mathbf{1 0}$ to give the anti epoxide $\mathbf{1 6}$ and the syn epoxide $\mathbf{1 7}$ in 52% and 34% yields, respectively, which were tentatively assigned based on steric considerations between the allylic substitutent of the six membered cyclic alkene and a substituent of dioxirane. ${ }^{21}$ Subsequently, basic cleavage of the epoxy ring of $\mathbf{1 6}$ was accomplished using a mixture of $\mathrm{KOH} / 1,4$-dioxane $/ \mathrm{H}_{2} \mathrm{O}$ at reflux followed by a sequence of deprotection with 6 N hydrochloric acid and desalting to give $\mathbf{3}$ and $\mathbf{9}, 28 \%$ and 62% yields, respectively.

Scheme 4. (a) Oxone ${ }^{\circledR}, \mathrm{CF}_{3} \mathrm{COCH}_{3}, \mathrm{Na}_{2} \mathrm{EDTA}$ (aq.), $\mathrm{NaHCO}_{3}, \mathrm{MeCN}$;
(b) 1) $0.3 \mathrm{M} \mathrm{KOH}, 1,4$-dioxane; 2) 6 N HCl ; 3) $\mathrm{NH}_{4} \mathrm{OH}$

The regiochemistry of the nucleophilic opening of the epoxide on a six-membered ring is mainly subject to trans diaxial opening (Fürst-Plattner rule). ${ }^{22}$ Consequently, this regioselectivity would result, if the opening proceeded through the two possible half chair conformations (\mathbf{A} and \mathbf{B}) in the following explanation. A substituent at C-3 would preferentially occupy a pseudoequatrial orientation compared with a pseudoaxial one. Thus, the somewhat preferential attack of the hydroxide anion at C-4 through conformer A would occur with trans diaxial opening. On the other hand, a similar reaction using $\mathbf{1 7}$ somewhat preferentially gave $\mathbf{3}$ (53\%) together with 9 (37%). On the basis of the above reasoning, the existence of conformer \mathbf{D} would be major species and conformer \mathbf{C}, the minor species.

Scheme 5

In addition, four enantiomers of $\mathbf{3}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ were prepared from $(R)-\mathbf{4}$ according to the above described procedure (Scheme 6).

Scheme 6

In summary, the asymmetric synthesis of all stereoisomers $\mathbf{3}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ of isofagomine is described using the $[2,3]$-Wittig rearrangement as a key step starting from the chiral N-Boc-5-hydroxy-3-piperidene (4). This rearrangement of $\mathbf{5}$ by transmetallation using n-BuLi proceeded smoothly in nonpolar solvents such as n-pentane with no racemization. Thus, the prepared hydoxymethylpiperidene $\mathbf{6}$ was transformed by dihydroxylation, cyclic sulfenylation, and epoxidation into stereoisomers of isofagomine, although their diastereoselectivities were not always high.

EXPERIMENTAL

Infrared (IR) spectra were recorded on a Perkin-Elmer 1600 series FT-IR spectrometer. Mass spectra (MS) were recorded on a JEOL JMN-DX 303/JMA-DA 5000 spectrometer. Microanalyses were performed on a Perkin-Elmer CHN 2400 Elemental Analyzer. Optical rotations were measured with a JASCO DIP-360 or JASCO P-1020 digital polarimeter. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on JEOL JNM-EX $270(270 \mathrm{MHz})$ or JEOL JNM-AL $400(400 \mathrm{MHz})$ or JNM-LA (600 MHz) spectrometer, using tetramethylsilane as an internal standard. The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Column chromatography was carried out on Merck Silica gel 60 (230-400 mesh) or KANTO Silica Gel 60N (40-50 mm) for flash chromatography.
(S)-N-tert-Butoxycarbonyl-5-(tributylstannyl)methoxy-3-piperidene [(S)-5]

A solution of (S) - $\mathbf{4}$ ($995 \mathrm{mg}, 5 \mathrm{mmol}$) in THF (5 mL) was added to a suspension of KH ($860 \mathrm{mg}, 35$ $\mathrm{wt} \%$ in oil, 7.5 mmol) in THF (20 mL) and DMF (5 mL) at $0{ }^{\circ} \mathrm{C}$ and the whole was stirred for 1 h . A solution of $\mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{I}(3.235 \mathrm{~g}, 7.5 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ and the whole was stirred overnight. Ice water was added to the reaction mixture and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ three times. The extracts were washed with brine, dried over MgSO_{4}, and evaporated. The residue was purified by flash column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=15: 1$) to give (S)-5 (2.46 g, 98%) as an oil; $[\alpha]_{D}{ }^{25}+45.7^{\circ}\left(c 5.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 0.86-0.94$
$(\mathrm{m}, 15 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.56(\mathrm{~m}, 15 \mathrm{H}), 3.11(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 3.63-4.00(\mathrm{~m}, 6 \mathrm{H})$, $5.71-5.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 9.0, 13.7, 27.2, 28.4, 29.1, 43.6, 44.5, 59.4, 74.6, 79.5, 125.8, 126.9, 154.5. IR (neat) $\mathrm{cm}^{-1}: 1703,758$. EI-MS (m / z): $502\left(\mathrm{M}^{+}-1\right)$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{Sn}$: 503.2422, found: 503.2367.
(R)-5 : $(99 \%)[\alpha]_{\mathrm{D}}{ }^{26}-43.9^{\circ}\left(c 1.08, \mathrm{CHCl}_{3}\right)$
(R)-N-tert-Butoxycarbonyl-5-(hydroxymethyl)-3-piperidene [(R)-6]
n-BuLi ($4.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in n-hexane, 6.98 mmol) was dropwise added to a solution of $(S)-5(2.12 \mathrm{~g}$, 4.23 mmol) in dry pentane (85 mL) at $-80^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature, and subsequently stirred at $-40{ }^{\circ} \mathrm{C}$ for 2 h . sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added the reaction mixture and the whole was separated. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by flash column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=15: 1 \sim 2: 1$) to give $(R)-6$ ($582 \mathrm{mg}, 65 \%$) as an oil; $[\alpha]_{\mathrm{D}}{ }^{24}-92.1^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.46(\mathrm{~s}, 9 \mathrm{H}), 2.11$ (br s, 0.5 H), $2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 3.21-3.83(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 28.4, 38.1, 41.3, 44.2, 63.1, 79.9, 125.8, 126.2, 154.9. IR (neat) cm^{-1} : 3435, 1698. EI-MS $(m / z): 213\left(\mathrm{M}^{+}\right)$. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}: 213.1365$, found: 213.1361. (S)-6 (65\%); $[\alpha]_{\mathrm{D}}^{22}+89.1^{\circ}\left(c 1.50, \mathrm{CHCl}_{3}\right)$.
(3S,4R,5R)-3,4-Dihydroxy-5-(hydroxymethyl)piperidine [(+)-3-epiisofagomine (7)] and (3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)piperidine ((-)-4-epiisofagomine (8))

To a solution of $(R)-6(200 \mathrm{mg}, 0.94 \mathrm{mmol})$ in acetone (6 mL) was added an aqueous $4 \% \mathrm{OsO}_{4}$ solution $(130 \mathrm{~mL}, 0.02 \mathrm{mmol}$). After 10 min , an aqueous $50 \% \mathrm{NMO}$ solution ($352 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added and the mixture was stirred overnight. To the solution were added $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered through a Celite pad and the filtrate was evaporated. The residue was chromatographed on silica gel $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give a diastereoisomeric mixture of tert-butyl 3,4-dihydroxy-5-(hydroxymethyl)piperidine-1-carboxylates ($210 \mathrm{mg}, 90 \%$). To a solution of the above diol in 1,4-dioxane $(6 \mathrm{~mL})$ was added $10 \% \mathrm{HCl}(15 \mathrm{~mL})$. The reaction mixture was refluxed for 1 h and evaporated. 28% $\mathrm{NH}_{4} \mathrm{OH}$ was added to the residue and evaporated. The residue was chromatographed on silica gel ($\mathrm{MeOH}: 10 \% \mathrm{NH}_{4} \mathrm{OH}=10: 1$) to give $7(104 \mathrm{mg}, 83 \%)$ and $\mathbf{8}(20 \mathrm{mg}, 16 \%)$ as oils;

7; $[\alpha]_{\mathrm{D}}{ }^{24}+85.2^{\circ}(c 1.04, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.72-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.98 (m, 2H), 3,42-3.54 (m, 2H), 3.61 (dd, $J=11.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (s , $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 39.0,44.9,48.1,60.3,66.8,69.2$. EI-MS $(\mathrm{m} / \mathrm{z}): 147\left(\mathrm{M}^{+}\right)$. HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}: 147.0895$, found: 147.0894.
8; $[\alpha]_{\mathrm{D}}{ }^{25}-5.1^{\circ}(c 0.98, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.64-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53 (t, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=12.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=12.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.57(\mathrm{~m}$, $3 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 39.9,41.5,43.5,60.1,67.1,68.1$. EI-MS (m / z): $147\left(\mathrm{M}^{+}\right)$.

HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}: 147.0895$, found: 147.0887.

An alternative synthesis of $\mathbf{7}$ and $\mathbf{8}$ using OsO_{4}-TMEDA complex.

A solution of $\mathrm{OsO}_{4}(245.2 \mathrm{mg}, 0.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of $(R)-6 \quad(186 \mathrm{mg}$, 0.87 mmol) and TMEDA ($111.6 \mathrm{mg}, 0.95 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 2 h , warmed to rt , and stirred for 1 h . The reaction mixture was evaporated. The residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL}), 35 \% \mathrm{HCl}(1 \mathrm{~mL})$ was added, and the mixture was stirred at rt for 2 h , and then evaporated. The residue was treated with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ and evaporated. The residue was chromatographed on silica gel $\left(\mathrm{MeOH}: 10 \% \mathrm{NH}_{4} \mathrm{OH}=10: 1\right)$ to give $7(78 \mathrm{mg}, 61 \%)$ and $\mathbf{8}(47 \mathrm{mg}$, 37%) as oils;
ent-7 $(71 \%) ;[\alpha]_{D}{ }^{25}-83.7^{\circ}(c 1.06, \mathrm{EtOH})$. and ent-8 (20\%); $[\alpha]_{D}{ }^{25}+3.5^{\circ}(c 1.02, \mathrm{EtOH})$.
(R)-N-tert-Butoxycarbonyl-5-((tert-butyldiphenylsilyloxy)methyl)-3-piperidene [(R)-10]
To a solution of $(R)-6(507 \mathrm{mg}, 2.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added imidazole ($243 \mathrm{mg}, 3.57$ mmol), DMAP ($5.8 \mathrm{mg}, 0.05 \mathrm{mmol}$), and tert-butylchlorodiphenylsilane ($720 \mathrm{mg}, 2.62 \mathrm{mmol}$). The mixture was stirred at rt for 3 h . The reaction mixture was filtered through a Celite pad. The filtrate was washed with brine (10 ml), dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=15: 1$) to give $\boldsymbol{(R)} \mathbf{- 1 0}(1.06 \mathrm{~g}$, 98%) as a colorless oil; $[\alpha]_{\mathrm{D}}{ }^{21}-82.9^{\circ}\left(c 1.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.49$ (s, 9H), 2.44-2.54 (m, 1H), 3.30-3.59 (m, 3H), 3.70-3.89 (m, 2H), $3.94(\mathrm{dd}, J=18.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61$ (br s, 1H), $5.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2,26.8$, $28.4,38.4,43.3,64.9,79.4,126.0,127.6,129.6,133.6,134.8,135.5,155.1$. IR (KBr$)^{\mathrm{cm}}{ }^{-1}: 1699$. EI-MS $(\mathrm{m} / \mathrm{z}): 452(\mathrm{M}+1)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}: 451.2543$, Found: 451.2578 .
(S)-10 (99\%); $[\alpha]_{\mathrm{D}}{ }^{21}+85.4^{\circ} \quad$ (c 1.30, CHCl_{3}).
($\mathbf{3 R}, 4 R, 5 S$)- N-tert-Butoxycarbonyl-3-(tert-butyldiphenylsilyloxymethyl)-4,5-dihydroxypiperidine (11) and (3R,4S,5R)-N-tert-Butoxycarbonyl-3-(tert-butyldiphenylsilyloxymethyl)-4,5-dihydroxypiperidine (12)
To a solution of $(R)-\mathbf{1 0}(1.05 \mathrm{~g}, 2.3 \mathrm{mmol})$ in acetone $(18 \mathrm{~mL})$ was added an aqueous $4 \% \mathrm{OsO}_{4}$ solution ($335 \mathrm{~mL}, 0.05 \mathrm{mmol}$). After 10 min , an aqueous $50 \% \mathrm{NMO}$ solution ($905 \mathrm{~mL} \mathrm{mg}, 3.8 \mathrm{mmol}$) was added and the mixture was stirred overnight. To the solution were added $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered through a Celite pad and the filtrate was evaporated. The residue was chromatographed on silica gel (n-hexane : $\mathrm{AcOEt}=1: 1 \sim 1: 2$) to give a diastereoisomeric mixture of $\mathbf{1 1}(637 \mathrm{mg}, 57 \%)$ and 12 (208 mg, 19\%) as oils;
11: $[\alpha]_{\mathrm{D}}{ }^{21}-8.9^{\circ}\left(c 2.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.05-2.18$ (m, 1H), 2.57 (br s, 1H), 2.86 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.97-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 19.1, 26.8, 28.4,
$39.4,44.5,47.5,65.3,67.6,74.1,79.9,128.0,129.9,132.6,135.6,155.9$ IR (KBr) $\mathrm{cm}^{-1}: 3438,1697$, 1669. EI-MS $(\mathrm{m} / \mathrm{z}): 486\left(\mathrm{M}^{+}+1\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}: 485.2598$, Found: 485.2524.

12: $[\alpha]_{\mathrm{D}}{ }^{20}-32.0^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.70-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.78-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.91-4.05(\mathrm{br}, 1 \mathrm{H}), 7.26-7.50$ (m, 6H), $7.59-7.84(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 19.1, 26.7, 28.4, 40.8, 42.5, 43.6, 63.8, 66.2, $68.8,79.9,127.7,129.9,133.1,135.5,154.8$. IR (KBr) cm ${ }^{-1}: 3436,1697,1674$. EI-MS (m / z): $486\left(\mathrm{M}^{+}+1\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}$: 485.2598, Found: 485.2590.
ent-11 (56\%); $[\alpha]_{D}{ }^{25}+9.7^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right)$. ent-12 (21\%); $[\alpha]_{\mathrm{D}}{ }^{24}+32.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(3aS,7R,7aR)-Hexahydro-N-tert-butoxycarbonyl-7-(tert-butyldiphenyl-silyloxymethyl)-1,3-dioxa-2-thia-5-azaindene 2,2-dioxide (13)

To a solution of diol $\mathbf{1 1}(437 \mathrm{mg}, 0.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.0 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}$, 3.24 mmol) and thionyl chloride ($99 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$). The resultant mixture was stirred at $-15^{\circ} \mathrm{C}$ for 30 min and then poured into ice-water (20 mL). The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL}$), and the combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure to give a cyclic sulfite (500 mg) as an oil. To a solution of the above cyclic sulfite in $\mathrm{MeCN} / \mathrm{CCl}_{4} / \mathrm{H}_{2} \mathrm{O}(2: 2: 3, \mathrm{v} / \mathrm{v}, 21.0 \mathrm{~mL})$ at rt were added $\mathrm{NaIO}_{4}(339 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{RuCl}_{3}(12 \mathrm{mg}$, $45 \mu \mathrm{~mol})$ followed by water (4.0 mL). The resultant mixture was stirred at rt for 1 h and then extracted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (n-hexane : $\mathrm{AcOEt}=2: 1$) to give $13(417 \mathrm{mg}, 76 \%)$ as a colorless oil; $[\alpha]$ ${ }_{\mathrm{D}}{ }^{26}+12.7^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.32-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.97 (dd, $J=13.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.07 (br s, 1H), 4.45 (br d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (br s, 1H), 5.16 (br s, 1H), $7.37-7.47$ (m, 6H), 7.59 $7.63(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1,26.8,28.1,39.3,42.6,43.9,60.9,78.2,81.0,81.4$, 127.8, 130.0, 132.4, 135.4, 154.3. IR (KBr) $\mathrm{cm}^{-1}: 1703$. EI-MS $(\mathrm{m} / \mathrm{z}): 546\left(\mathrm{M}^{+}-1\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{7} \mathrm{SSi}$: 547.2060, Found: 547.2103.
($3 R, 4 R, 5 R$)-3,4-Dihydroxy-5-hydroxymethylpiperidine [(+)-isofagomine (3)] and (3S,4S,5R)-3,4-Dihydroxy-5-hydroxymethylpiperidine [(+)-3,4-di-epüsofagomin (9)]

To a solution of cyclic sulfate $13(164 \mathrm{mg}, 0.3 \mathrm{mmol})$ in DMF (3.0 mL) at rt were added cesium carbonate ($150 \mathrm{mg}, 0.465 \mathrm{mmol}$) and $\mathrm{PhCOOH}(63 \mathrm{mg}, 0.54 \mathrm{mmol})$. The resultant suspension was stirred at $60^{\circ} \mathrm{C}$ for 4 h and then concentrated under reduced pressure to give an benzoxy sulfate as a pale yellow solid. To a stirred suspension of the above benzoxy sulfate in THF (6.0 mL) at rt were added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (4 drops) and $\mathrm{H}_{2} \mathrm{O}$ (6 drops). The mixture was stirred at rt for 22 h and then partitioned between
$\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with CHCl_{3}. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was chromatographed on silica gel (n hexane : AcOEt $=1: 1)$ to give $(3 R, 4 R, 5 R)$ - N-tert-butoxycarbonyl-3-benzoyloxy-5-(tert-butyldiphenyl-silyloxymethyl)-4-hydroxypiperidine 14 ($82 \mathrm{mg}, 46 \%$) and ($3 R, 4 S, 5 S$)-N-tert-butoxycarbonyl-4-benzoyloxy-5-(tert-butyldiphenylsilyloxymethyl)-3-hydroxypiperidine 15 ($75.0 \mathrm{mg}, 42 \%$) as oils. A solution of $\mathbf{1 4}(49.5 \mathrm{mg} .0 .084 \mathrm{mmol})$ was dissolved in $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was heated at $120{ }^{\circ} \mathrm{C}$ for 12 h . and then washed with CHCl_{3}. The aqueous layer was evaporated and the residue was treated with 28% $\mathrm{NH}_{4} \mathrm{OH}$ and evaporated. The residue was chromatographed on silica gel $\left(\mathrm{MeOH}: 10 \% \mathrm{NH}_{4} \mathrm{OH}=10: 1\right)$ to give $\mathbf{3}(12 \mathrm{mg}, 98 \%)$. According to the procedure described for $\mathbf{3}, \mathbf{1 5}(41 \mathrm{mg} .0 .0695 \mathrm{mmol})$ gave (+)-3,4-di-epi-isofagomine, 9 ($9.8 \mathrm{mg}, 96 \%$).
3: $[\alpha]_{D}^{25}+25.4^{\circ}(c 1.30, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.61-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 2$ H), $3.05(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 43.9,45.7,48.8,59.8,71.4,73.1$. EI-MS $(\mathrm{m} / \mathrm{z}): 147\left(\mathrm{M}^{+}\right)$. HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}: 147.0895$, found: 147.0845 .
9: $[\alpha]_{\mathrm{D}}{ }^{19}+18.4^{\circ}(c 0.96, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.90-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.65(\mathrm{~m}, 3 \mathrm{H}), 2.84$ (dd, $J=13.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=11.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 38.2,41.4,45.7,59.3,66.8,68.7$. EI-MS $(\mathrm{m} / \mathrm{z}): 147$ ($\left.\mathrm{M}^{+}\right)$. HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}: 147.0895$, found: 147.0926.
(3S,4R,5S)-N-tert-Butoxycarbonyl-3-(tert-butyldiphenylsilyloxymethyl)-4,5-epoxypiperidine
and (3S,4S,5R)-N-tert-Butoxycarbonyl-3-(tert-butyldiphenylsilyloxymethyl)-4,5-epoxypiperidine (17)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $(R) \mathbf{- 1 0}(433 \mathrm{mg}, 0.96 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added $4 \mathrm{mmol} / \mathrm{L}$ aq. Na_{2} EDTA ($5 \mathrm{~mL}, 0.02 \mathrm{mmol}$) and 1,1,1-trifluoroacetone (1 mL). The mixture of $\mathrm{NaHCO}_{3}(630 \mathrm{mg}, 7.5$ $\mathrm{mmol})$ and $\mathrm{Oxone}^{\circledR}(3.07 \mathrm{~g}, 5.0 \mathrm{mmol})$ as a solid were added slowly over a period of 1 h at $0{ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ overnight, the solution was quenched by adding water (30 mL), and extracted with CHCl_{3} ($30 \mathrm{~mL} \times 3$). The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (n hexane : $\mathrm{AcOEt}=11: 1)$ to give $\mathbf{1 6}(231 \mathrm{mg}, 52 \%)$ and $\mathbf{1 7}(152 \mathrm{mg}, 34 \%)$ as colorless oils. 16: $[\alpha]_{\mathrm{D}}{ }^{22}$ $-41.7^{\circ}\left(c 1.23, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{br} \mathrm{d}, J=28.9 \mathrm{~Hz}, 9 \mathrm{H}), 2.33(\mathrm{br}$ d, $J=25.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{dd}, J=52.4,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.45(\mathrm{~m}$, $6 \mathrm{H}), 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.31(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.57-$
$3.67(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 19.5,27.1,28.5,37.1,40.9,42.9,49.8,52.3,63.9,79.2,127.8,128.1,128.3,128.5$, $130.1,133.9,133.9,135.9,136.0,155.1$. IR (neat) $\mathrm{cm}^{-1}: 2962,2931,2859,1696,1473,1461,1428,1392$, 1366, 1248, 1174, 1113. EI-MS (m / z): $468\left(\mathrm{M}^{+}+1\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}: 467.2492$, found: 467.2465.

17: $[\alpha]_{\mathrm{D}}{ }^{22}-32.7^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.27-2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.72(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.92-$ $4.06(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,26.8,28.4,38.2$, 40.1, 40.7, 41.7, 50.7, 51.9, 63.7, 79.8, 127.7, 129.7, 133.4, 133.4, 135.5, 135.6, 154.7. IR (neat) cm^{-} ${ }^{1}: 2962,2932,2859,1695,1473,1462,1428,1392,1366,1247,1174,1152,1113,1083$. EI-MS $(\mathrm{m} / \mathrm{z})$: $468\left(\mathrm{M}^{+}+1\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}: 467.2492$, found: 467.2580.
ent-16 (40\%); $[\alpha]_{\mathrm{D}}^{22}+41.3^{\circ}\left(c 1.26, \mathrm{CHCl}_{3}\right)$. ent-17 $(21 \%) ; \quad[\alpha]_{\mathrm{D}}^{22}+30.5^{\circ}\left(c 1.33, \mathrm{CHCl}_{3}\right)$.
An Alternative synthesis of 3 and 9 from 16 and 17.
A mixture of $16(103 \mathrm{mg}, 0.22 \mathrm{mmol})$, 1,4-dioxane (5.6 mL), and $3 \mathrm{M} \mathrm{KOH}(11.2 \mathrm{~mL})$ was refluxed overnight. After evaporation, $\mathrm{MeOH}(2 \mathrm{~mL})$ and $6 \mathrm{~N} \mathrm{HCl}(6.2 \mathrm{~mL})$ were added to the residue. The mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h and evaporated. The residue was treated with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ and evaporated. The residue was chromatographed on silica gel ($\mathrm{MeOH}: 10 \% \mathrm{NH}_{4} \mathrm{OH}=10: 1$) to give $\mathbf{3}$ ($9 \mathrm{mg}, 28 \%$) and $9(20 \mathrm{mg}, 62 \%)$. By similar procedure described the above, $17 \quad(104 \mathrm{mg}, 0.22 \mathrm{mmol})$ gave $\mathbf{3}(17 \mathrm{mg}$, $53 \%)$ and $9(12 \mathrm{mg}, 37 \%)$.

ACKNOWLEDGEMENTS

This research was supported by the Uehara Memorial Foundation and a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES AND NOTE

1. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond; ed. by A. E. Stütz, Wiley-VCH: Weinheim, 1999.
2. N. Asano, R. J. Nash, R. J. Molyneux, and G. W. J. Fleet, Tetrahedron: Asymmetry, 2000, 11, 1645.
3. A. A. Watson, G. W. J. Fleet, N. Asano, R. J. Molyneux, and R. J. Nash, Phytochemistry, 2001, 56, 265.
4. O. R. Martin and P. Compain, Curr. Top. Med. Chem., 2003, 3, 5.
5. N. Asano, Glycobiology, 2003, 13, 93R-104R.
6. A. Mitrakou, N. Tountas, A. E. Raptis, R. J. Bauer, H. Schulz, and S. A. Raptis, Diab. Med., 1998,

15, 657.
7. T. D. Butters, R. A. Dwek, and F. M. Platt, Curr. Top. Med. Chem., 2003, 3, 561.
8. T. D. Butters, R. A. Dwek, and F. M. Platt, Chem. Rev., 2000, 100, 4683.
9. T. Cox, R. Lachmann, C. Hollak, J. Aerts, S. van Weely, M. Hrebicek, F. M. Platt, T. D. Butters, R. A. Dwek, C. Moyses, I. Gow, D. Elstein, and A. Zimran, Lancet, 2000, 355, 1481.
10. M. Bols, Acc. Chem. Res., 1998, 31, 1.
11. a) Y. Ichikawa, Y. Igarashi, M. Ichigawa, and Y. Suhara, J. Am. Chem. Soc., 1998, 120, 3007. b) H. H. Jensen, A. Lohse, B. O. Petersen, J. Ö. Duus, and M. Bols, J. Chem. Soc., Perkin Trans. 1, 2000, 667. c) S. U. Hansen and M. Bols, J. Chem. Soc., Perkin Trans. 1, 2000, 911. d) G. Pandey and M. Kapur, Tetrahedron Lett., 2000, 41, 8821. e) X. Liang, A. Lohse, and M. Bols, J. Org. Chem., 2000, 65, 7432. f) G. Pandey and M. Kapur, Synthesis, 2001, 1263. g) G. Zhao, U. C. Deo, and B. Ganem, Org. Lett., 2001, 3, 201. h) M. Amat, N. Llor, M. Huguet, E. Molins, E. Espinosa, and J. Bosch, Org. Lett., 2001, 3, 3257. i) G. Pandey and M. Kapur, Org. Lett., 2002, 4, 3883. j) N. T. Patil, S. John, S. G. Sabharwal, and D. D. Dhavale, Bioorg. Med. Chem., 2002, 10, 2155. k) H. Han, Tetrahedron Lett., 2003, 44, 1567. 1) G. Pandey, M. Kapur, M. I. Klan, and S. M. Gaikwad, Org. Biomol. Chem., 2003, 1, 3321. m) J. Ostrowski, H.-J. Altenbach, R. Wischnat, and D. J. Brauer, Eur. J. Org. Chem., 2003, 1104. n) G. Guanti and R. Riva, Tetrahedron Lett., 2003, 44, 357. o) J. Xie, T. Guveli, S. Hebbe, and L. Dechoux, Tetrahedron Lett., 2004, 45, 4903. p) L. Banfi, G. Guanti, M. Paravidino, and R. Riva, Org. Biomol. Chem., 2005, 3, 1729.
12. (a) H. Takahata, Y. Banba, M. Sasatani, H. Nemoto, A. Kato, and I. Adachi, Tetrahedron, 2004, 60, 8199. (b) H. Takahata, Y. Banba, H. Ouchi, and H. Nemoto, Org. Lett., 2003, 5, 2527. c) H. Takahata, Y. Banba, H. Ouchi, H. Nemoto, A. Kato, and I. Adachi, J. Org. Chem., 2003, 68, 3603. (d) Y. Banba, C. Abe, H. Nemoto, A. Kato, I. Adachi, and H. Takahata, Tetrahedron: Asymmetry, 2001, 12, 817. e) N. Asano, K. Ikeda, L. Yu, A. Kato, K. Takebayashi, I. Adachi, I. Kato, H. Ouchi, H. Takahata, and G. W. J. Feet, Tetrahedron: Asymmetry, 2005, 16, 223. f) A. Kato, N. Kato, E. Kano, I. Adachi, K. Ikeda, L. Yu, T. Okamoto, Y. Banba, H. Ouchi, H. Takahata, and N. Asano, J. Med. Chem., 2005, 48, 2036.
13. a) H. Ouchi, Y. Mihara, and H. Takahata, J. Org. Chem., 2005, 70, 5207. b) H. Ouchi, Y. Mihara, H. Watanabe, and H. Takahata, Tetrahedron Lett., 2004, 45, 7053.
14. For reviews on [2,3]-Wittig rearrangement, see: (a) T. Nakai and K. Mikami, Chem. Rev., 1986, 86, 885. (b) J. A. Marshall, In Comprehensive Organic Synthesis; ed. by B. M. Trost and I. Fleming, Pergamon: Oxford, 1991; Vol. 3, 975. (c) T. Nakai and K. Mikami, Synthesis, 1991, 594. (d) T. Nakai and K. Mikami, Org. React., 1994, 46, 105. (e) T. Nakai and K. Tomooka, Pure Appl. Chem., 1997, 696, 595.
15. J. Aahman and P. Somfai, Synth. Commun., 1994, 24, 117.
16. W. C. Still and A. Mitra, J. Am. Chem. Soc., 1978, 100, 1927.
17. N-Boc compound $(R)-6$ was converted to N-tosyl compound, of which enantiomeric excess was determined by chiral HPLC (CHIRALPAK IA) to be $>99 \%$. It has been reported that reactions of cyclohexene rings proceeded with retention of stereochemistry. (a) L. A. Paquette and T. Sugimura, J. Am. Chem. Soc., 1986, 108, 3841. (b) J. A. Marshall, E. D. Robinson and A. Zapata, J. Org. Chem., 1989, 54, 5854.
18. T. J. Donohoe, L. Mitchell, M. J. Waring, M. Helliwell, A. Bell, and N. J. Newcombe, Org. Biomol. Chem., 2003, 1, 2173.
19. H.-S. Byun, L. He, and R. Bittman, Tetrahedron, 2000, 56, 7051.
20. D. Yang, M.-K. Wong, and Y.-C. Yip, J. Org. Chem., 1995, 60, 3887.
21. (a) R. W. Murray, M. Singh, B. L. Williams, and H. M. Moncrieff, J. Org. Chem., 1996, 61, 1830. (b) D. Yang, G.-S. Jiao, Y.-C. Yip, and M.-K. Wong, J. Org. Chem., 1999, 64, 1635.
22. E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds; Wiley-Interscience: New York, 1994; 730.

