Tetrahedron Letters 51 (2010) 5543-5545

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

'Melen complexes': a new family of Schiff base metal chelates derived from di-Meldrum's acid derivatives

Antonio Garrido Montalban*, Jorge Alonso, Andrew J. P. White, David J. Williams

Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK

ARTICLE INFO

Article history: Received 16 April 2010 Revised 4 August 2010 Accepted 7 August 2010 Available online 11 August 2010

ABSTRACT

A new family of N_2O_2 -tetradentate ligands and complexes derived thereof, based on Meldrum's acid and diamines, has been developed. The structure of **7b** has been unequivocally established by an X-ray crystallographic study. The general strategy has been successfully applied to the synthesis of a tridentate ligand that when reacted with Et₂Zn resulted in the formation of a coordinatively linked dimer. © 2010 Elsevier Ltd. All rights reserved.

Since their discovery in the 1860s,¹ Schiff base (SB) complexes continue to play an important role in the development of main group and transition metal coordination chemistry.² This is due to their preparative accessibility, diversity, and structural variability and to the fact that, in particular those with N₂O₂-tetradentate ligands have been recognized as useful models for metallobiosites. The most important early contribution, with respect to the latter, was provided by Jacobsen³ and Katsuki⁴ in the early 1990s, who extended the principles of cytochrome P-450 reactivity to the asymmetric epoxidation of unfunctionalized olefins using homochiral salen-type manganese(III) SB catalysts. Since then, there has been a resurgence of interest in chiral salen-type ligands as scaffolds for asymmetric catalysis and many second-generation salen-complexes for oxo transfer⁵ and other reactions⁶ have been developed.

It is well-known in homogeneous asymmetric catalysis that although sterics play the major role in the asymmetric induction mechanism, electronic effects have also been shown to be quite important.⁷ However, of the many effective chiral ligands, only a few are synthetically or structurally well-suited to electronic tuning and hence optimization. Therefore, the ability to easily synthesize a series of structurally similar ligands with subtle steric and electronic variations is highly desirable. Meldrum's acid is an easily prepared and versatile reagent⁸ which is more acidic than acyclic malonate esters, due to better π -orbital overlap of the resultant anion within the cyclic structure,⁹ and as such potentially useful for the development of novel metal-chelating agents. The synthesis of o-phenylenediamine-bis(methylene Meldrum's acid) derivatives (Scheme 1) was co-developed and reported by the main author in 2002 for the elaboration of 1,10-phenanthrolines.¹⁰ The above considerations, in addition to the topological similarity between these systems and salen-type SB ligands prompted us to study their metal-chelating properties. Thus, herein we now report a new

* Corresponding author. *E-mail address:* amontalban@arenapharm.com (A.G. Montalban). family of N₂O₂-tetradentate Schiff base complexes derived from Meldrum's acid and o-phenylene-diamines. In addition, we show that through reaction with aliphatic 1,2-diamines, chiral-tetradentate, and tridentate ligands and metal complexes derived thereof can be obtained for which an example of each is given. By analogy with salen-complexes, we have termed this new family of metal chelates 'melen-complexes'.

Thus, a series of novel and known di-Meldrum's acid derivatives **2a–g** were conveniently prepared by refluxing *o*-phenylene diamines **1a–g** with 2 equiv of 5-methoxymethylene Meldrum's acid¹¹ (generated in situ) in trimethyl orthoformate (Table 1). At this stage,

able 1
nthesis of di-Meldrum's acid derivatives from o-phenylene diamines according to
cheme 1

Entry	Diamine	\mathbb{R}^1	R ²	Product	Yield (%)
1	1a	Н	Н	2a ¹⁰	70
2	1b	Н	Me	2b ¹⁰	82
3	1c	Н	NO_2	2c	42
4	1d	Н	Cl	2d ¹⁰	34
5	1e	Н	OMe	2e	35
6	1f	Me	Н	2f	84
7	1g	NO ₂	Н	2g	39

^{0040-4039/\$ -} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.08.018

no attempts were made to further optimize the reaction conditions. In the case of **2e**, however, 2 equiv of triethylamine were added to the reaction mixture in order to neutralize the commercially available dihydrochloride salt of **1e**.¹² With the requisite N_2O_2 -tetradentate ligands in hand, next, we turned our attention to explore their metal-coordinating properties. To simplify the characterization, we decided to start with the synthesis of diamagnetic d⁸ Ni(II)-complexes which we rendered suitable due to the cation size and preferred coordination geometry (square planar). Indeed, when di-Meldrum's acid derivatives **2a**–**g** were treated with 1 equiv of Ni(OAc)₂-4H₂O in refluxing ethanol, the novel SB complexes **3a–g** were formed quantitatively (Scheme 2). The initial suspensions

Figure 1. The molecular structure of 7b.

cleared and turned orange after 30 min. After reflux for 3 h, the solvent was rotary evaporated and the red-orange solids obtained were dried under vacuum. All spectroscopic data¹³ were consistent with the proposed structures except for complexes **3f** and **g** that resisted adequate characterization due to solubility issues. Similarly. reaction of (R,R)-1,2-diaminocyclohexane with Meldrum's acid (vide supra) followed by treatment of the intermediate chiral N₂O₂tetradentate ligand 4 with Ni(OAc)₂.4H₂O in refluxing ethanol resulted again in the quantitative formation of complex 5 as a red solid (Scheme 3).¹⁴ On the other hand, the same reaction, but with $Zn(OAc)_2 \cdot 2H_2O$ instead, was not as efficient. However, when **4** was treated with 1 equiv of Et_2Zn^{15} (1.0 M solution in hexane) at ambient temperature in dichloromethane, the corresponding zinc-complex 6 was obtained quantitatively (Scheme 3). The analogous reaction of 2a-g with Et_2Zn resulted in the quantitative formation of metal chelates 7a-g (Scheme 4).

In contrast, to compounds **3f** and **g**, the corresponding Zn-complexes **7f** and **g** were soluble enough to allow adequate characterization.¹⁶ In addition, crystals of complex **7b** suitable for X-ray crystallography were obtained from DMSO.¹⁷ The structure of **7b** (Fig. 1) shows the zinc to have adopted a square pyramidal coordination geometry with the DMSO oxygen atom occupying the apical site; the metal lies ca. 0.41 Å out of the N₂O₂ basal plane which is coplanar to better than 0.01 Å.

Finally, the strategy was applied to the synthesis of a tridentate Meldrum's acid derivative (Scheme 5). Thus, reaction of *N*,*N*-dimethylethane-1,2-diamine with Meldrum's acid under the above general conditions gave the desired tridentate ligand **8** in 79% yield (Scheme 5).

Scheme 5.

Subsequent treatment of 8 with 0.5 equiv of Et₂Zn in dichloromethane at ambient temperature gave complex 9 as a pale yellow solid in quantitative yield (Scheme 5). Both, NMR- and high resolution MS-data were consistent with the proposed dimer structure.¹⁸ Interestingly, reaction of 8 with Ni(OAc)₂·4H₂O under the above conditions resulted only in recovery of the starting material.

In summary, we have developed a new family of N₂O₂-tetradentate ligands and complexes derived thereof by combining Meldrum's acid with a variety of diamines. By analogy with salen-complexes, and due to the ease of synthesis and suitability to electronic tuning, melen-complexes should have rich and varied catalytic activities. Such properties are currently being investigated and will be reported in due course.

Acknowledgments

We thank Professor A. G. M. Barrett and the Spanish Government (J.A.) for generous support of our studies.

References and notes

- Yamada, S. Coord. Chem. Rev. 1999, 190-192, 537.
- 2. Mederos, A.; Dominguez, S.; Hernandez-Molina, R.; Sanchiz, J.; Brito, F. Coord. Chem. Rev. 1999, 193-195, 857.
- Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112. 2801.
- 4. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345
- Katsuki, T. Coord. Chem. Rev. 1995, 140, 189.
- (a) Saito, B.; Katsuki, T. Tetrahedron Lett. 2001, 42, 3873. and references cited 6. therein; (b) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M.; Parsons, T.; Tararov, V. I. Tetrahedron 2001, 57, 771; (c) Shyu, H.-L.; Wei, H.-H.; Lee, G.-H.; Wang, Y. J. Chem. Soc., Dalton Trans. 2000, 911; (d) Balsells, J.; Walsh, P. J. J. Org. Chem. 2000, 65, 5005; (e) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259; (f) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. and references cited therein.
- 7. (a) Campbell, E. J.; Nguyen, S. B. T. Tetrahedron Lett. 2001, 42, 1221. and references cited therein; (b) Katsuki, T. Chem. Soc. Rev. 2004, 33, 437.

- 8. (a) Chen, B.-C. Heterocycles 1991, 32, 529; (b) Dumas, A. M.; Fillion, F. Acc. Chem. Res. 2010, 43, 440.
- ٥ McNab, H. Chem. Soc. Rev. 1987, 7, 345.
- Graf, G. I.; Hastreiter, D.; da Silva, L. E.; Rebelo, R. A.; Garrido Montalban, A.; 10 McKillop, A. Tetrahedron 2002, 58, 9095.
- 11. Bihlmayer, G. A.; Derflinger, G.; Derkosch, J.; Polansky, O. E. Monatshefte 1967, 98 564
- 12 Synthetic procedure for the preparation of di-Meldrum's acid derivative 2e: The general procedure was followed except that 2 equiv of Et₃N was added to the reaction mixture. Thus, Meldrum's acid (0.68 g, 4.72 mmol) was gently refluxed in CH(OMe)₃ (6.8 mL) for 2 h. After this time, the dihydrochloride salt of diamine 1e (0.50 g, 2.36 mmol) was added followed by Et₃N (2 equiv, 0.66 mL) and the resulting mixture further refluxed for 2 h. The reaction mixture was allowed to cool, the solvent rotary evaporated and the residue was re-dissolved in EtOAc (50 mL). The organic layer was washed with H₂O $(3 \times 50 \text{ mL})$, dried (MgSO₄) and rotary evaporated. The residue was triturated with Et₂O and filtered to give **2e** (0.37 g, 35%) after drying as an off-white solid.
- 13. Selected data for complexes **3c** and **d**: (**3c**) ¹H NMR (CDCl₃, 300 MHz) δ 1.73 (s, 12H), 7.64 (d, J = 9.0 Hz, 1H), 8.06 (d, J = 9.0 Hz, 1H), 8.42 (s, 1H), 8.83 (s, 2H). (3d) ¹H NMR (CDCl₃, 300 MHz) δ 1.71 (s, 12H), 7.12 (dd, J = 1.8 and 8.8 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 1.7 Hz, 1H), 8.22 (s, 2H).
- 14. Selected data for ligand 4: ¹H NMR (CDCl₃, 300 MHz) δ 1.44 (t, J = 9.9 Hz, 2H), 1.65 (s, 6H), 1.67 (s, 6H), 1.73 (d, J = 9.1 Hz, 2H), 1.93 (d, J = 8.6 Hz, 2H), 2.22 (d, J = 13.4 Hz, 2H), 3.42–3.48 (m, 2H), 8.07 (d, J = 14.5 Hz, 2H), 9.60 (dd, J = 7.2 and 14.5 Hz, 2H). HRMS (FAB) calcd for C₂₀H₂₆N₂O₈: [M⁺] 422.1689, found [M⁺] 422.1683. [α]_D²⁰: -179.5 (*c* 2, CHCl₃). 15. Morris, G. A.; Zhou, H.; Stern, C. L.; Nguyen, S. T. Inorg. Chem. **2001**, 40, 3222.
- Selected data for Zn-complex 7g: ¹H NMR (DMSO-d₆, 300 MHz) 1.70 (s, 12H), 7.20 (d, J = 9.0 Hz, 1H), 7.33 (t, J = 9.0 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 8.21 (s, 1H), 8.88 (s, 1H). HRMS (FAB) calcd for C₂₀H₁₈N₃O₁₀Zn: [M⁺] 524.0284, found [M⁺] 524.0269.
- 17. Crystal data for **7b**: $C_{23}H_{26}N_2O_9SZn$, M = 571.89, triclinic, $P\bar{1}$ (no. 2), a = 9.3283(12),b = 12.4948(16), c = 13.1171(17)Å, $\alpha = 61.859(9),$ $\gamma = 69.129(9)^\circ$, V = 1259.0(3) Å³, Z = 2, D_c = 1.509 g cm⁻¹ $\beta = 78.736(10).$ μ (MoK α) = 1.113 mm⁻¹, T = 293 K, yellow diamond prisms, Siemens P4 diffractometer; 4258 independent measured reflections ($R_{int} = 0.0234$), F^2 refinement, $R_1(obs) = 0.0358$, $wR_2(all) = 0.0894$, 3564 independent observed absorption-corrected reflections [$|F_0| > 4\sigma(|F_0|)$, $2\theta_{max} = 50^\circ$], 332 parameters. CCDC 773195.
- Selected data for complex 9: ¹H NMR (DMSO-*d*₆, 300 MHz) 1.65 (m, 12H), 2.25 (s, 12H), 2.42-2.58 (m, 2H), 2.67-2.81 (m, 2H), 3.42-3.52 (m, 2H), 3.61-3.69 (m, 2H), 8.54 (s, 2H). HRMS (FAB) calcd for C₂₂H₃₅N₄O₈Zn: [M+H]⁺ 547.1746, found [M+H]* 547.1716.