

Photoluminescence Properties of Green-Emitting ZnGa₂S₄:Eu²⁺ Phosphor

Ruijin Yu,^{a,b} Ruixin Luan,^a Caifeng Wang,^a Jingtao Chen,^a Zhenxing Wang,^a Byung Kee Moon,^b and Jung Hyun Jeong^{b,*,z}

^aCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, China ^bDepartment of Physics, Pukyong National University, Busan 608-737, South Korea

Green-emitting $ZnGa_2S_4$: Eu^{2+} phosphors have been synthesized by solid state reaction. Their luminescence properties have been investigated by photoluminescence excitation and emission spectra, concentration quenching, thermal quenching and photoluminescence decay. The critical dopant concentration is found to be 0.05 mol of Eu^{2+} and the critical transfer distance of Eu^{2+} is calculated as 17 Å. The thermal quenching result suggests that the phosphor does not have good thermal-quenching property. Its chromaticity coordinates are very close to those of $SrGa_2S_4$: Eu^{2+} . Because of their broadband absorption in the region 350–520 nm, the $ZnGa_2S_4$:0.05 Eu^{2+} phosphor can be a good green phosphor candidate for creating white light in phosphor-converted white LEDs, when combined with RB phosphors and a UV LED.

© 2012 The Electrochemical Society. [DOI: 10.1149/2.099205jes] All rights reserved.

Manuscript submitted December 23, 2011; revised manuscript received February 13, 2012. Published March 7, 2012.

Luminescence properties of the ternary compounds M^{II}M₂ ^{III}(S,Se)₄ doped with various rare earth ions have been investigated during the past decades.¹⁻⁶ Nowadays, the compounds have been paid more attention to another potential application for phosphor converted light-emitting diodes (pc-LEDs) as solid-state lighting (SSL). CaGa₂S₄:Eu²⁺, Sr₂Ga₂S₅:Eu²⁺ greenish-yellow phosphors showed a higher luminescent efficiency (120, 110%, respectively) than commercial Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce³⁺) phosphor and they also can be fabricated with blue-chips to produce white light.^{7,8} SrGa₂S₄:Eu²⁺ has a wide excitation band extending into the blue region, it is applicable as a green phosphor for white LEDs in which blue LEDs are used to excite the phosphor.^{9,10} SrGa₂S₄:Sn,Re (Re = Ce, Gd) also has been studied as possible phosphors of white LEDs.¹¹ Yu et al. described the structural and luminescent properties of $Ca_{1-x}Sr_x(Ga_{1-y}Al_y)_2S_4$:Eu²⁺ phosphors. Changing the values of x and y, the emission peak shifts almost linearly on the composition, which allows continuous tuning of the peak emission peak from 496 nm (SrAl₂S₄:Eu) to 556 nm $(CaGa_2S_4:Eu)$ ¹² They all can meet the application requirements for GaN based LEDs.

The ZnGa₂S₄ compounds have a bandgap at 3.18 eV and are expected as excellent phosphors.¹³ It has a defect chalcopyrite structure by replacing a half of Zn site cations with vacancies and belongs to the I42m tetragonal structure.^{14,15} Each metal atom is tetrahedrally surrounded by four sulfur atoms, while a sulfur atom is tetrahedrally surrounded by one Zn atom, two Ga atoms, and one vacancy.¹⁶ The photoluminescence properties of ZnGa₂S₄:Eu²⁺ have been investigated several years ago.^{17–20} The excitation spectrum of ZnGa₂S₄:Eu²⁺ indicated that ZnGa₂S₄:Eu²⁺ phosphor can be used in light-emitting diode. However, its diffuse reflectance spectra, photoluminescence decay, thermal quenching, and chromaticity coordinates properties as a phosphor for LEDs have been never reported yet. In this work, we synthesized Eu²⁺-doped ZnGa₂S₄ thiogallate phosphors by high temperature solid-state reactions, and described some new luminescent properties of the phosphors.

Experimental

 Ga_2S_3 was prepared from Ga_2O_3 (A.R.) under flowing H_2S gas at 950°C for 2 h. EuS was prepared from Eu_2O_3 (99.99%) with CS_2 reducing atmosphere at 1200°C for 3 h. Stoichiometric amount of raw materials, ZnO (A.R.), Ga_2S_3 (self-prepared), and EuS (self-prepared) were mixed homogeneously and sintered for 2 h at 950°C in a flowing H_2S stream. In the initial and the final heat-treatment stages, the H_2S

* Electrochemical Society Active Member.

was replaced by Ar to prevent the possible oxidation of the mixture at temperatures below 700 $^{\circ}\text{C}.$

The structure of the final products was determined via X-ray powder diffraction (XRD) using a Rigaku D/max 2200 vpc X-ray diffractometer with Cu K\alpha radiation at 40 kV and 30 mA. The XRD patterns were obtained in the $15^{\circ} \le 2\theta \le 70^{\circ}$ range. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnGa₂S₄:Eu²⁺ were measured using a Fluorolog-3 spectrofluorometer (Jobin Yvon Inc/specx) equipped with a 450 W Xe lamp and double excitation monochromators. The decay curves and temperature-dependent PL spectra of the phosphor ZnGa₂S₄:Eu²⁺ were recorded by a FLS920-Combined Fluorescence Lifetime and Steady State Spectrometer (Edinburgh Instruments), equipped with a 450 W xenon lamp, a 150 W nF900 nanosecond flash lamp with a pulse width of 1 ns and pulse repetition rate of 40–100 kHz.

Results and Discussion

Phase characterization.— The crystal structure of $ZnGa_2S_4$ has been refined to be tetragonal, space group $I\bar{4}2m$ with a = 5.297 Å, c = 10.363 Å, and V = 290.77 Å^{3.15} The as-prepared $ZnGa_2S_4$: 0.01Eu²⁺ sample was characterized by X-ray diffraction (XRD) patterns to verify the phase purity. As indicated in Fig. 1, we have observed that the doped Eu²⁺ ions have no obvious influence on the structure of the host, and all the diffraction peaks of the $ZnGa_2S_4$: 0.01Eu²⁺ sample were in good agreement with the phase of $ZnGa_2S_4$ (JCPDS

Figure 1. XRD pattern of ZnGa₂S₄:0.01Eu²⁺ phosphor.

z E-mail: jhjeong@pknu.ac.kr

Figure 2. Diffuse reflectance spectra of $ZnGa_2S_4$: xEu^{2+} with different Eu^{2+} concentrations.

40-1462). The lattice parameters a = 5.293 Å and c = 10.473 Å obtained from the XRD pattern of the ZnGa₂S₄:0.01Eu²⁺ sample are in agreement with the literature data.¹⁵

The diffuse reflectance spectra of the phosphors were measured and are shown in Fig. 2. The absorption peaks of all the samples are similar in their spectral features with a little difference in the relative intensity with Eu^{2+} concentration increases. It can be seen that the strong absorptions in the range 250–350 nm do not almost change with the increase of Eu^{2+} concentration, which is attributed to the absorption of the host. Another strong absorption occurs from the UV to the visible spectral region (370–550 nm), which is caused by the $4f^7 \rightarrow 4f^65d^1$ transition of the Eu^{2+} ion. With the Eu^{2+} concentration increasing, this absorption becomes stronger, which yields the phosphor powder color varying from pale green to dark green.

The PL excitation and emission spectra of ZnGa₂S₄:0.05Eu²⁺ are shown in Fig. 3. The excitation spectrum exhibits a broad absorption from 350 to 520 nm, which are attributed to the host absorption and the $4f^{7}(^{8}S_{7/2}) \rightarrow 4f^{6}(^{7}F)5d^{1}$ transitions of Eu²⁺ ion, and consistent with the diffuse reflectance spectra as presented in Fig. 3. Because the broad excitation matches well with Ga(In)N chip emission, ZnGa₂S₄:xEu²⁺ phosphors are suitable for n-UV or blue LED chip excited solid state lighting. As it has a broad excitation, this phosphor can be excited with different wavelengths. It can be seen from Figs. 3b and 3c, ZnGa₂S₄:0.05Eu²⁺ phosphor shows a green emission band peaking at 540 nm under 395- and 460-nm excitations. No differences are observed for the emission band shape and position for different excitation wavelengths except for the luminescent intensity. The full width at half maximum (fwhm) of the emission spectrum (curve c) is 47 nm. These results coincide well with those of Yuta and Whit¹⁷ while the maximum (565 nm) as well as the fwhm (about 100 nm) presented by Tagiev et al.¹⁸ show no agreement.

Figure 3. Excitation (a, $\lambda_{em} = 540$ nm) and emission (b, $\lambda_{ex} = 395$ nm; c, $\lambda_{ex} = 460$ nm) spectra of ZnGa₂S₄ :Eu²⁺.

The CIE chromaticity coordinates of ZnGa₂S₄:0.05Eu²⁺ phosphor are calculated in terms of the emission spectrum, and the value are x = 0.299, y = 0.673. Since the excitation spectra are not well resolved, the position of the lowest 5d excited level of Eu²⁺ (λ_{abs}) is generally estimated by using the mirror-image relationship between the emission and the excitation spectra.^{21,22} The Stokes shift (ΔS) can be estimated by taking twice the energy difference between the zero phonon line and the energy of the emission maximum. The position of the zero phonon line is taken to be the intersection point of the excitation and emission spectra.²³ In the present case, the lowest absorption energy of E_{abs} is about 2.52 eV (492 nm) and the Stokes shift (ΔS) is calculated to be 0.22 eV (1772 cm⁻¹).

Recently the PL properties of Eu²⁺-activated MGa₂S₄ (M = Ca, Sr, Ba) thiogallate compounds for LEDs have been studied.^{7–10,24} The crystallographic data of MGa₂S₄ and the luminescence characteristics of MGa₂S₄:Eu²⁺ are summarized in Table I. Usually Eu²⁺ ions exhibit broad-band emission, which is attributed to the 4f⁶5d¹–4f⁷ transition, and the wavelength positions of the emission bands depend very much on a host, changing from the n-UV to the red. Although these compounds have similar chemical compositions, their crystal structures are different. Previous works reported that the emission wavelengths of MGa₂S₄:Eu²⁺ shifted to longer wavelengths (redshift) as replacing M atoms with smaller ones due to larger crystal field splitting. Such as BaGa₂S₄:Eu²⁺ ($\lambda_{em} = 504$ nm), SrGa₂S₄:Eu²⁺ ($\lambda_{em} = 535$ nm), and CaGa₂S₄:Eu²⁺ ($\lambda_{em} = 558$ nm). The red-shift and the emission wavelengths generally increase with decreasing the size of 'M' cation (Ba²⁺ = 1.36 Å, Sr²⁺ = 1.26 Å, Ca²⁺ = 1.12 Å).

Table I. Crystallographic data of MGa₂S₄ and the luminescence characteristics of MGa₂S₄: Eu^{2+} (M = Ca, Sr, Ba, Zn).

Formula	CaGa ₂ S ₄	$SrGa_2S_4$	$BaGa_2S_4$	$ZnGa_2S_4$	
Crystal system	Orthorhombic	Orthorhombic	Cubic	Tetragonal	
Space group	D_{2h} ²⁴ -Fddd	D_{2h} ²⁴ -Fddd	Th ⁶ -Pa3	I42m	
a (Å)	20.122	20.855	12.685	5.293	
b (Å)	20.090	20.511	12.685	5.293	
c (Å)	12.133	12.213	12.685	10.473	
$V(Å^3)$	4904	5224	2041	293	
Emission (nm)	558	535	504	540	
fwhm (nm)	50	49	62	47	
Stokes shift (cm ⁻¹)	2079	2000	4000	1772	
CIE	(0.410, 0.580)	(0.270, 0.690)	(0.143, 0.506)	(0.299, 0.673)	
References	5,9,12	5,9,12	5,21	This work ¹⁵	

Theoretically, $ZnGa_2S_4:Eu^{2+}$ had to show the longer wavelength emission than $SrGa_2S_4:Eu^{2+}$ and $CaGa_2S_4:Eu^{2+}$ because Zn atomic size was much smaller than Sr and Ca. However, in this experiment, the emission wavelength of $ZnGa_2S_4:Eu^{2+}$ was almost same with that of $SrGa_2S_4:Eu^{2+}$. Even though Zn^{2+} size was smaller than Sr^{2+} , the lattice parameter of $ZnGa_2S_4$ was also small comparing with $SrGa_2S_4$, leading to the almost same crystal field splitting energy, and so emission bands of these two phosphors were located at the similar wavelength. Therefore, the red-shift did not apply to $ZnGa_2S_4:Eu^{2+}$ in spite of the even smaller ionic radius of Zn^{2+} .²⁵

It is generally accepted that the Eu²⁺ concentration plays an important role in the searching of optimal composition of phosphor. Therefore, the emission spectra of $ZnGa_2S_4$:Eu²⁺ at various concentrations excited by 460 nm light and the dependence of PL intensity of $Zn_{1-x}Ga_2S_4$:xEu²⁺ on Eu²⁺ concentration (x = 0.005-0.10) are shown in Fig. 4. It is observed that the PL intensity increases with the increasing of Eu²⁺ content until reaches a maximum at x = 0.05, then it falls steadily as the content of Eu²⁺ further increases due to concentration quenching, which is mainly caused by the non-radiative energy transfer among the identical Eu²⁺ ions. The quench concentration is very close to the reported value x = 0.04.²⁰

While discussing the mechanism of energy transfer in phosphors, Blasse has pointed out that if the activator is introduced solely on Z ion sites, x_c is the critical concentration, N the number of Z ions in the unit cell and V the volume of the unit cell, then there is on the average one activator ion per V/ x_c N.²⁶ From Fig. 4, it is clear that 0.05 mol is the critical concentration of Eu²⁺. The critical transfer distance (*Rc*) is approximately equal to twice the radius of a sphere with this volume:

$$R_c \approx 2 \left(\frac{3V}{4\pi\chi_c N}\right)^{1/3}$$
[1]

By taking the appropriate values of V, N and x_c (298.27 Å³, 2, and 0.05, respectively), the critical transfer distance of center Eu²⁺ in ZnGa₂S₄:Eu²⁺ phosphor was found to be 17 Å. Non-radiative energy transfer between different Eu²⁺ ions may occur by exchange interaction, radiation reabsorption, or multipole-multipole interaction.^{27,28} Eu²⁺ is an isolated emission center in ZnGa₂S₄:Eu²⁺ phosphor. The 4f⁶5d¹–4f⁷ transition of Eu²⁺ is allowed while exchange interaction is responsible for the energy transfer for forbidden transitions and typical critical distances are then about 5°A.²⁹ This indicates that the mechanism of exchange interaction plays no role in energy transfer between Eu²⁺ ions in ZnGa₂S₄:Eu²⁺ phosphor. The mechanism of

Figure 4. Dependence of PL intensities of $ZnGa_2S_4:xEu^{2+}$ ($\lambda_{ex} = 460$ nm) with varying Eu^{2+} concentrations. The upper inset represents the concentration influence on the emission intensities of $ZnGa_2S_4:xEu^{2+}$ phosphors (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10).

Figure 5. The decay curves of Eu^{2+} in ZnGa₂S₄: xEu^{2+} at different concentrations ($\lambda_{ex} = 460 \text{ nm}$, $\lambda_{em} = 540 \text{ nm}$) (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10).

radiation re-absorption comes into effect only when there is broad overlap of the fluorescent spectra of the sensitizer and activator and in the view of the emission and excitation spectra of $ZnGa_2S_4:Eu^{2+}$ phosphor is unlikely to be occurring in the case. Since the fluorescent mechanism of Eu^{2+} in $ZnGa_2S_4:Eu^{2+}$ phosphor is the 4f–5d allowed electric-dipole transition, the process of energy transfer should be controlled by electric multipole–multipole interaction according to Dexter's theory.^{29,30}

The decay curves of Eu²⁺ in the phosphor ZnGa₂S₄: xEu^{2+} have been measured at different concentrations (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10) ($\lambda_{ex} = 460$ nm, $\lambda_{em} = 540$ nm). The emission decay curves of Eu²⁺ ion are well fitted with a second order exponential Equation 2³¹:

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
 [2]

where *I* is the luminescence intensity, *t* is time, τ_1 and τ_2 are the slow and fast components of the decay lifetimes, and A_1 and A_2 are the fitting parameters, respectively. The average lifetimes of Eu²⁺, $\bar{\tau}$, could be calculated as Equation 3³²:

$$\bar{\tau} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
[3]

A representative pattern is shown in the inset of Fig. 5. The average lifetimes of Eu^{2+} ions were determined to be 0.126, 0.115, 0.102, 0.091, 0.085 and 0.079 µs for $ZnGa_2S_4:xEu^{2+}$ with x = 0.005, 0.01, 0. 03, 0.05, 0.07 and 0.10, respectively (Table II). With the concentration increasing, the lifetime values decrease, due to the parity allowed electric dipole transitions of Eu^{2+} ions with high transition probabilities. The decay times of these transitions are submicroseconds. Generally, at high concentrations of Eu^{2+} , the migration of energy nonradiatively between the Eu^{2+} increases, resulting in a decrease in the lifetime.

In the solid-state lighting application, a lower-temperature quenching effect is in favor of keeping the chromaticity and brightness of white light output. The temperature dependence of the PL spectra for the $ZnGa_2S_4$:0.05Eu²⁺ phosphor under excitation at 460 nm is shown in Fig. 6. With an increase in temperature from 300 K to 480 K, the PL intensity decreases slowly. The thermal quenching

Table II. The lifetimes of Eu ²⁺ in ZnGa ₂ S ₄ :xEu ²⁺ at different
concentrations ($\lambda_{ex} = 460 \text{ nm}, \lambda_{em} = 540 \text{ nm}$) ($x = 0.005, 0.01, 0$.
03, 0.05, 0.07, and 0.10).

Concentration	0.005	0.01	0.03	0.05	0.07	0.10
τ̄ (μs)	0.126	0.115	0.102	0.091	0.085	0.079

Figure 6. Dependence of PL emission of $ZnGa_2S_4$:0.05Eu²⁺ ($\lambda_{ex} = 460$ nm) on temperature. The inset shows the relationship of relative intensity and temperature.

temperature T_{50} defined as the temperature at which the emission intensity is 50% of its original value, is 407 K for $ZnGa_2S_4:0.05Eu^{2+}$. With heating the sample up to 420 K at which the LEDs usually work, the emission intensity of it remains at about 44% of that measured at room temperature. Dorenbos has proposed that the main mechanism responsible for the thermal quenching of 5d–4f emission of Eu^{2+} in solids is the ionization of the electron from the lowest energy level of the relaxed $Eu^{2+} 4f^{6}5d^{1}$ electronic configuration to the host lattice conduction band level.^{30,33} Following this suggestion, it is responsible that the thermally activated ionization from the excited 5d state of the Eu^{2+} ion is for temperature quenching of the luminescence in $ZnGa_2S_4:Eu^{2+}$. The temperature dependence of the luminescence intensity is described by the following Arrhenius equation^{34,35}

$$I(T) = \frac{I_0}{1 + c \exp(-E/\kappa T)}$$
[4]

where I_0 is the initial intensity, I(T) is the intensity at a given temperature *T*, *c* is a constant, *E* is the activation energy, which represents the energy difference between the lowest excited state and the bottom of the host lattice conduction band, and *k* is Boltzmann's constant (8.62 ×10⁻⁵ eV). Figure 7 plots $\ln[(I_0/T)-1]$ vs. 1/*T*. When performing lin-

Figure 7. Arrhenius plot of the temperature dependence of the PL emission intensity of $ZnGa_2S_4$: 0.05Eu²⁺.

Figure 8. The CIE chromaticity diagram of MGa_2S_4 : Eu^{2+} (M = Ca, Sr, Ba, Zn) phosphors.

ear regression, the thermal activation energy for quenching is found to be ~ 0.32 eV.

The Commission International del'Eclairage (CIE) chromaticity coordinates of the $MGa_2S_4:Eu^{2+}$ (M = Ca, Sr, Ba, Zn) were depicted in Fig. 8 in form of four rectangles. The chromaticity coordinates of phosphors CaS:Eu²⁺ (0.680, 0.310) and BaMgAl₁₀O₁₇:Eu²⁺ (BAM) (0.144, 0.072), which are two primary color phosphors used for fluorescent lamps, are also depicted in the figure. The chromaticity coordinates of ZnGa₂S₄:Eu²⁺ phosphor fall into the green region and are very close to those of SrGa₂S₄:Eu²⁺. It is due to the similarity of the photoluminescence spectra of both phosphors. As we can see, if combined with other high efficiency blue and red phosphors, ZnGa₂S₄:Eu²⁺ should be a good green component phosphor for UV-excited white LEDs.

Conclusions

Here, a green Eu²⁺-activated ZnGa₂S₄ thiogallate phosphor has been synthesized by solid-state reaction and its luminescent properties are investigated. The excitation and emission spectra of this phosphor show that all are broadband due to $4f^7-4f^65d^1$ transitions of Eu²⁺. The PL emission spectrum shows a broad band peaking at 540 nm. The luminescence characteristics of thiogallate phosphors MGa₂S₄:Eu²⁺ (M = Ca, Sr, Ba, Zn) have been compared in this paper. The optimal concentration for Eu^{2+} in $ZnGa_2S_4$ is about 5 mol%. The critical transfer distance of Eu^{2+} is calculated as 17 Å and the mechanism of concentration quenching is determined to be the multipole-multipole interaction. The thermal quenching result suggests that the phosphor does not have good thermal-quenching property. The energy barrier for thermal quenching is confirmed as 0.32 eV by the Arrhenius equation. Its chromaticity coordinates are very close to those of SrGa₂S₄:Eu. Because of their broadband absorption in the region 350-520 nm, the ZnGa₂S₄:0.05Eu²⁺ phosphor can be a good green phosphor candidate for creating white light in phosphor-converted white LEDs, when combined with RB phosphors and a UV LED.

Acknowledgments

This work was supported by Chinese Universities Scientific Fund (QN2011119). And this research was supported by the Industrials Strategic Technology Development Program (Project No: 10037416) funded by the Ministry of Knowledge Economy (MKE, Korea).

References

- 1. T. E. Peters and J. A. Baglio, J. Electrochem. Soc., 119, 230 (1972).
- 2. T. E. Peters, J. Electrochem. Soc., 119, 1720 (1972).
- M. Y. Kim, S. J. Baik, W. T. Kim, M. S. Jin, H. G. Kim, S. H. Choe, and C. S. Yoon, J. Korean Phys. Soc., 43, 128 (2003).
- 4. C. Guo, Q. Tang, D. Huang, C. Zhang, and Q. Su, Mater. Res. Bull., 42, 2032 (2007).
- 5. M. Nazarov, D. Y. Noh, and H. Kim, Mater. Chem. Phys., 107, 456 (2008).
- 6. H. J. Yu, W. Chung, S. H. Park, J. Kim, and S. H. Kim, Mater. Lett., 65, 474 (2010).
- J. M. Kim, K. N. Kim, S. H. Park, J. K. Park, C. H. Kim, and H. G. Jang, J. Korean Chem. Soc., 49, 201 (2005).
- J. M. Kim, J. K. Park, K. N. Kim, S. J. Lee, C. H. Kim, and H. G. Jang, J. Korean Chem. Soc., 50, 237 (2006).
- Y. R. Do, K.-Y. Ko, S.-H. Na, and Y.-D. Huh, J. Electrochem. Soc., 153, H142 (2006).
- 10. X. Zhang, W. Hao, H. Zeng, and S. Qiang, J. Rare Earths, 25, 701 (2007).
- M. Nagata, S. Okamoto, K. Tanaka, T. Sakai, H. Kawasaki, and A. Tamaki, J. Lumin., 130, 2040 (2010).
- R. Yu, J. Wang, M. Zhang, H. Yuan, W. Ding, Y. An, and Q. Su, J. Electrochem. Soc., 155, J290 (2008).
- 13. H. G. Kim and W. T. Kim, Phys. Rev. B: Condens. Matter, 41, 8541 (1990).
- G. B. Carpenter, P. Wu, Y. M. Gao, and A. Wold, *Mater. Res. Bull.*, 24, 1077 (1989).

- J. Zhang, W. W. Chen, A. J. Ardell, and B. Dunn, J. Am. Ceram. Soc., 73, 1544 (1990).
- A. Eifler, G. Krauss, V. Riede, V. Kraemer, and W. Grill, J. Phys. Chem. Solids, 66, 2052 (2005).
- 17. M. M. Yuta and W. B. White, J. Electrochem. Soc., 139, 2347 (1992).
- B. G. Tagiev, G. G. Guseinov, R. B. Dzhabbarov, O. B. Tagiev, N. N. Musaeva, and A. N. Georgobiani, *Inorg. Mater.*, 36, 1189 (2000).
- 19. C. Wickleder, S. Zhang, and H. Haeuseler, Z. Kristallogr., 220, 277 (2005).
- 20. J. W. Kim and Y. J. Kim, J. Eur. Ceram. Soc., 27, 3667 (2007).
- R. B. Jabbarov, C. Chartier, B. G. Tagiev, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, J. Phys. Chem. Solids, 66, 1049 (2005).
- C. Barthou, R. B. Jabbarov, P. Benalloul, C. Chartier, N. N. Musayeva, B. G. Tagiev, and O. B. Tagiev, J. Electrochem. Soc., 153, G253 (2006).
- V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, and P. J. Schmidt, *J. Lumin.*, **121**, 441 (2006).
- 24. R. Yu, J. Wang, J. Zhang, and Q. Su, J. Electrochem. Soc., 158, J86 (2011).
- 25. P. Dorenbos, J. Lumin., 104, 239 (2003).
- 26. L. G. Van Uitert, J. Electrochem. Soc., 114, 1048 (1967).
- G. Blasse and B. C. Grabmaier, *Luminescent Materials*, p. 46, Springer-Verlag, Berlin, Heidelberg (1994).
- 28. D. L. Dexter, J. Chem. Phys., 21, 836 (1953).
- 29. G. Blasse, Phys. Lett. A, 28, 444 (1968).
- 30. P. Dorenbos, J. Phys.: Condens. Matter, 17, 8103 (2005).
- R. K. Bauer, R. Borenstein, P. De Mayo, K. Okada, M. Rafalska, W. R. Ware, and K. C. Wu, *JACS*, **104**, 4635 (1982).
- T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, J. Phys. Chem. B, 101, 10631 (1997).
- 33. R. J. Yu, B. Deng, G. G. Zhang, Y. An, J. H. Zhang, and J. Wang, J. Electrochem. Soc., 158, J255 (2011).
- 34. S. Bhushan and M. V. Chukichev, J. Mater. Sci. Lett., 7, 319 (1988).
- V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, *Chem. Mater.*, 1, 316 (2009).