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The irradiation of [Au(CN),]™

in oxygen-saturated acetonitrile leads to photooxidation of

Au(I). In the presence of additional chloride [Au(CN)aCI ]~ is formed with ¢ = 0.5 x 107*

at \ir = 254 nm. It is assumed that [Au(CN),]~

in its metal-to-ligand charge transfer state

undergoes an excited state electron transfer to oxygen in the primary photochemical step.

1. Introduction

The light sensitivity of gold complexes has been
known since 1737 [1, 2]. Despite this early interest
progress in this field has been rather slow. In this
context it is quite surprising that numerous reports
on the photophysics of Au(I) complexes have ap-
peared during the last decade [3 - 9]. Although the
nature of the luminescence is not yet completely
understood a variety of different excited states such
as metal-centered ds and dp [3, 4a, c, Sa, c-f, 6],
ligand-to-metal charge transter (LMCT) [Sg, 7, 8],
metal-to-ligand charge transfer (MLCT) [4b] and
intraligand (IL) [4f, g] excited states have been
suggested to be emissive. All these different ex-
cited states may be also reactive. Recently, we have
shown that ds [3c, d], LMCT [3b, e, 10] and MMCT
[11, 12] excitation indeed induce photoreactions of
Au(I) complexes while reactive MLCT states have
not yet been identified. We explored this possibil-
ity and selected the complex [Au(CN),]~ for the
present study. This anion is a suitable candidate be-
cause it has a relatively simple electronic structure
and is characterized by low-energy MLCT transi-
tions [13]. Moreover, a variety of reducing transition
metal cyano complexes undergo a photooxidation
following MLCT excitation [14].

2. Results

The electronic spectrum of [Au(CN),]” in
CH;CN (Fig. 1) shows absorptions at Ay, = 240
£ =3200 dm® M~! cm™!), 232 (3800), 214 (sh,
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Fig. l Spectral changes during the photolysis of 2.34 x
10°* M [NBu4]Au(CN)a in O»-saturated CH3CN in the
presence of 107~ M [NBuy4]Cl at (a) 0, 2, 4, and (d) 8 h
irradiation times, with A\i; = 254 nm (Hanovia 977 B-1, 1
kW lamp) and a 1-cm cell.

4900) and 205 (12000) nm in agreement with
previous results [13]. In the presence of addi-
tional chloride the spectrum (Fig. 1) is unaffected
above 220 nm. Deaerated solutions of [Au(CN),]~
in CH3CN are not light sensitive while oxygen-
saturated solutions are photoreactive. In the pres-
ence of chloride the photolysis is accompanied by
spectral variations which indicate the formation of
[Au(CN),CL ]~ (Amax = 292 nm, £ = 1060 and 220
nm, 21400) [15]. As shown by the isosbestic points
at 244 and 235 nm the photoreaction is rather clean
during the early stages of irradiation. The forma-
tion of [Au(CN),Cl;]~ is monitored by measur-
ing the increase of the optical density at 220 nm.
[Au(CN),Cl,]~ is formed with the quantum yield
6 =0.5 x 107* at \j; = 254 nm. At later stages
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of the irradiation the spectral changes are obscured
by a secondary photolysis. The primary photoprod-
uct [Au(CN),Cl;]~ undergoes a photosubstitution.
After prolonged irradiation (Fig. 1) the absorption
spectrum approaches that of [AuCly]™ (Apax = 323
nm, ¢ = 5800; 227 nm, 44800) [15].

3. Discussion

The electronic spectrum of [Au(CN),]~ is char-
acterized by a set of MLCT absorptions [13]. At
room temperature solutions of [Au(CN),]~ do not
show any emission. and are not photoreactive in
the absence of a suitable electron acceptor. How-
ever, in the presence of oxygen a photooxidation
takes place which in the presence of chloride yields
[Au(CN),CI;]~ as a well defined product [16].
In analogy to [AuCl,]~ and [AuBr,][3d] it is
suggested that the lowest-energy excited state of
[Au(CN),]~ undergoes electron transfer to oxy-
gen in the primary photochemical step. The low
quantum yield of photooxidation is certainly re-
lated to the small concentration of oxygen in so-
lution. The lowest-energy and reactive excited state
of [AuCl,]~ and [AuBr,]~ is of the metal-centered
ds type [3d, 17]. In contrast to these halide com-
plexes the lowest excited state of [Au(CN),]~ is of
the MLCT type because by overlap with the gold 6p

the cyanide 7* orbital is pushed below the empty
6s orbital of gold and becomes the LUMO [13]
of the complex. Accordingly, MLCT excitation of
[Au(CN),]~ induces the photooxidation of Au(I)
to Au(Ill). Although the overall photoreaction is
a two-electron oxidation of Au(I) it may initially
proceed by a one-electron oxidation generating an
Au(Il) intermediate which either disproportionates
to Au(l) and Au(IIl) or is oxidized to Au(IIl) in a
second electron transfer step. In this context it is of
interest that the existence of Au>* ions in different
systems even under ambient conditions has been
confirmed quite recently [18, 19].

The photoproduct [Au(CN),Cl,]~ undergoes a
further photolysis. The irradiation leads to a photo-
substitution which finally yields [AuCly]~. The na-
ture of the reactive excited state of [Au(CN),Cl, ]~
is not clear since low-energy LF as well as LMCT
states exist in close proximity [15]. In analogy to
other d® metals such as Pt(I) [20], LF states are
certainly reasonable candidates for inducing substi-
tutions.
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