STRUCTURES OF TWO HIGHLY OXYGENATED IRIDOID GLUCOSIDES FROM ${\it Globularia\ alypum}^1$

Ratan K. Chaudhuri and Otto Sticher Eidgenössische Technische Hochschule, Pharmazeutisches Institut, ETH-Zentrum, CH-8092 Zurich, Switzerland

> Tammo Winkler Cıba-Geigy AG, CH-4002 Basel, Switzerland

Summary - Structures of two acylated iridoid glucosides $\underline{1}$ and $\underline{6}$ were determined on the basis of chemical transformation and spectroscopic evidence.

In a recent communication, we have reported²⁾ the structure of globularidin, an unusual iridoid glucoside lacking the typical bond between C-3 and C-4, isolated from *Globularia alypum* L.. Further investigation with the plant extract resulted in the isolation of two other new iridoids. The structure elucidation of these compounds constitutes the subject of this communication.

Globularimin (<u>1</u>), $C_{24} H_{30} O_{12}$ (M⁺, 510 FD), $[\alpha]_D^{20} = -105.97$ (c=0.64, MeOH), on hydrolysıs with emulsin yielded D-glucose. Likewise, hydrolysis with methanolic NaOH (0.1 N) afforded cinnamic acid and des-cinnamoyl globularimin (2), $C_{15} H_{24} O_{11} (M^+, 380), [\alpha]_{D}^{20} = -139.89 (c=0.64, MeOH).$ In the IR spectrum (KBr) of 1 significant bands appeared at 3400 (br., OH), 1702 (COO), 1638 (C=C), 1580, 1495 and 1450 cm $^{-1}$ (aromatic ring). The UV absorption spectrum showed λ_{max} (MeOH):217 (log ε 4.08), 223 sh, 278 (4.38) nm, characteristic of a cinnamoyl ester chromophore. The 100 MHz 1 H NMR spe ${
m otrum}$ of <u>1</u> in CD₃OD exhibited, besides the signals due to five aromatic (7.62-7.30 ppm) and two olefinic protons (7.72 and 6.52 ppm, AB system, J=16 Hz) arising from the trans-cinnamoyl ester part of the molecule, signals at 6.22 (1H, dd, J=7 and 1.5 Hz, H-3), 5.54 (1H, d, J=5 Hz, H-1), 5.08 (1H, dd, J=7 and 3 Hz, H-4), 4.62 (1H, d, J=7 Hz, H-1'), 4.56 and 4.32 (2H, AB system, J=13 Hz, H-10), 2.72-2.30 ppm (2H, m, H-5 and H-9) and the signals due to glucose protons³⁾. The 25.2 MHz 13 C NMR spectrum of <u>1</u> in CD₃OD showed apart from the signals due to cimmanoyl residue, signals corresponding to 15 carbon atoms, consistent with an iridoid glucoside structure. ¹³C NMR spectral data of 1 and 2 (Table) clearly revealed the site of acylation. The spectrum of 1 differs from 2 mainly in the resonance value of C-10. The signal for C-10 in 1 appeared at 66.41 ppm whereas in 2 this signal is shifted 2.12 ppm upfield, thereby locating the site of acylation at C-10. Acetylation of 1 provided a hexaacetate 3, $C_{36} H_{42} O_{18} (M^+, 762), [\alpha]_D^{20} = -81.08 (c=0.63, CHCl_3), in which one hydroxy group remained unaffected (IR, ¹H NMR and M-17 peak) indicating its tertiary nature. Prolonged acetylation, however, afforded the heptaacetate, 4, <math>C_{36} H_{44} O_{19} (M^+, 804), [\alpha]_D^{20} = -81.83 (c=0.63, CHCl_3).$

Taken together, these data support the gross structure <u>1</u> (disregarding the stereochemistry). On the basis of comparison of existing data ⁴) for the coupling constants, H-1, H-5 and H-9 can be placed α -, β -, and β - positions, respectively, leaving the configurations at the three carbinol centers in the cyclopentane ring undecided.

Due to the ambiguity in the interpretation of the proton-proton coupling constants in saturated five membered rings⁵, the configuration at C-6, C-7 and C-8 was assigned with the aid of ¹³C NMR^{6,7,8)}. It has been ovserved that a α -hydroxy group at C-8 causes deshielding at C-9 as compared to its α -counterpart and they absorb at 50 \pm 1.5 ppm. This is corroborated by the shifts observed in the 13 C NMR spectra of 1 and 2, indicating thereby a β -hydroxy function at C-8. C-6 and C-7 in <u>1</u> and <u>2</u> absorb at rather lowfield and this indicates a trans-1, 2-diol arrangement at these two carbons. Additional evidence regarding the stereochemistry at C-6 and C-7 can be obtained from ¹H NMR (360 MHz) of <u>4</u>. Irradiation of the multiplet centered at 2.82 ppm (H-5) simplified both the signals at 4.85 ppm (tdd, $J_{5,7}=2$ Hz and $J_{6,7}=2.5$ Hz, H-6), and at 5.62 ppm (dd, $J_{5,7}=1$ Hz and $J_{6,7}=2.5$ Hz, H-7) to doublet, indicating thereby a long-range coupling (W-coupling) between H-5 and H-7 and demands a cis-relationship between these protons. $J_{5.6}$ is small (2 Hz) which demands a dihedral angle close to 90° between H-5 and H-6, necessiating a trans-relationship of these protons⁹⁾. The above observations lends credence to structure 1 for globularimin. Globularimin can be visualized to have been derived from globularin 5 (or equivalent) by cleavage of epoxide ring.

Consequently, a search has been made to isolate the other isomer $\underline{6}$, which can also be formed from $\underline{5}$ by the opening of epoxide from the other side. The structure of this compound $\underline{6}$, named globularinin, is based upon the following data.

Globularinin (<u>6</u>), C_{24} H₃₀ O₁₂ (M⁺, 510), $[\alpha]_D^{20} = -84.47$ (c=0.64, MeOH). The presence of D-glucose and cinnamic acid in the molecule is confirmed by hydrolytic experiments. The UV and IR spectra of <u>6</u> were very similar to that of <u>1</u>. The 100 MHz ¹H NMR spectrum of <u>6</u> in CD₃OD revealed the signals, with their assignments in parenthesis, at 6.31 (1H, dd, J=6 and 1 Hz, H-3), 5.28 (1H, d, J=6 Hz, H-1), 5.12 (1H, dd, J=6.5 and 3 Hz, H-4), 4.65 (1H, d, J=9 Hz, H-1'), 4.55 and 4.34 (2H, AB system, J=12 Hz, H-10), 2.84-2.58 (1H, m, H-5), 2.40 ppm (1H, dd, J=10 and 6 Hz, H-9), and the signals arising from glucose³⁾ and *trans*-cinnamoyl protons. The ¹³C NMR data of <u>6</u> are given in the Table. The placement of cinnamoyl

Compd.	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
<u>1</u>	93.48	140.45	105.84	38.38	83.76	85.38	80.23	48.89	66.41
2	93.34	140.39	106.54	37.32	83.14	86.42	80.33	48.04	64.29
<u>6</u>	96.29	140.61	106.40	38.86	78.63	78.63	81.36	44.59	69.01
<u>7</u>	95.16	141.61	105.27	37.16	78.34	79.34	81.03	43.70	66.37

Table.¹³C NMR Data of 1, 2, 6 and 7^*

* The spectra were recorded in CD₃OD. In <u>7</u> few drops of DMSO-d₆ were added to increase the solubility. Chemical shifts in ppm relative to (CH₃)₄Si. Additional signals arising from glucose. Compds <u>1</u> and <u>6</u> in addition those from cinnamoyl part.

- <u>1</u>. $R=R^{1}=R^{2}=R^{3}=H$; $R^{4}=C_{6}H_{5}CH=CH-CO$
- <u>2</u>. $R=R^{1}=R^{2}=R^{3}=R^{4}=H$
- <u>3</u>. $R=R^1=R^2=Ac$; $R^3=H$; $R^4=C_6H_5CH=CH-CO$
- <u>4</u>. $R=R^{1}=R^{2}=R^{3}=Ac$; $R^{4}=C_{6}H_{5}CH=CH-CO$

- <u>6</u>. $R=R^{1}=R^{2}=R^{3}=H$; $R^{4}=C_{6}H_{5}CH=CH-CO$
- <u>7</u>. $R=R^1=R^2=R^3=R^4=H$
- <u>8</u>. $R=R^{1}=R^{2}=Ac; R^{3}=H; R^{4}=C_{6}H_{5}CH=CH-CO$
 - 9. $R=R^{1}=R^{2}=R^{3}=Ac; R^{4}=C_{6}H_{5}CH=CH-CO$

5. R=C6H5CH=CH-CO

<u>10</u>. $R=C_6H_5CH=CH-CO$

group at C-10 was made, as before, by comparison of <u>6</u> and <u>7</u>. Acetylation of <u>6</u> afforded a hexaacetate <u>8</u>, C_{36} H₄₂ O₁₈ (M^{+.}, 762), $[\alpha]_D^{20} = -97.06$ (c=0.61, CHCl₃). Prolonged acetylation, however, provided a heptaacetate <u>9</u>, C_{38} H₄₄ O₁₉ (M^{+.},804), $[\alpha]_D^{20} = -95.03$ (c=0.50, CHCl₃). Definite proof for the structure <u>6</u> for globularinin was gained from its transformation to <u>10</u> (structure established by ¹H and ¹³C NMR). Treatment of <u>6</u> with acetone-HClO₄ at room temperature (45 min) followed by acetylation gave <u>10</u>. This established the stereochemistry at C-5, C-6, C-7, C-8 and C-9 of the aglucone, as the ring must be *cis*-fused and 8-OH group α -oriented for the cyclization to proceed¹⁰. In addition formation of acetonide demonstrated the *cis*-diol function at C-6 and C-7.

The occurrence together in the same plant of globularin $\underline{5}$ and its corresponding two *trans*-diols globularimin $\underline{1}$ and globularinin $\underline{6}$, and globularidin $2^{)}$, is perhaps unique. Globularin thus act as a link between the two compounds ($\underline{1}$ and $\underline{6}$) and the recently reported²⁾ dihydrocompound, globularidin.

Acknowledgement - The financial support for this work by Wilhelm Doerenkamp foundation is gratefully acknowledged.

References and Notes

- 1. Part 2 in the series, "Glycosides of Globulariaceae". For Part 1 see Ref. 2
- 2. R.K. Chaudhuri and O. Sticher, Helv. Chim. Acta, 62, 644 (1979).
- 3. Partly merged in the solvent signals. H-6 and H-7 are overlapped with the glucose protons.
- 4. H. Rimpler, Planta Medica, 33, 313 (1978) and references theirin.
- 5. R. Steyn and H.Z. Sable, Tetrahedron, 27, 4429 (1971).
- 6. R.K. Chaudhuri, F.U. Afifi-Yazar and O. Sticher, Helv. Chim. Acta, in press.
- 7. R.K. Chaudhuri, F.U. Afifi-Yazar and O. Sticher, Tetrahedron, communicated.
- 8. R.G.S. Ritchie, N. Cyr, B. Korsch, H.J. Koch and A.S. Perlin, Can. J. Chem., 53, 1424 (1975).
- 9. P. Eigtved, S.R. Jensen and B.J. Nielsen, Acta Chem. Scand., B28, 85 (1974) and references theirin.
- H.Inouye, S. Ueda, S. Uesato, T. Shingu and P.W. Thies, Tetrahedron, 30, 2317 (1974).

(Received in Germany 7 June 1979)