LETTER 1185

A Direct Preparation of Functionalized Aryl and Heteroaryl Disulfides from Functionalized Zinc Organometallics by Using Sulfur Monochloride (S₂Cl₂)

Tobias J. Korn, Paul Knochel*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany Fax +49(89)218077680; E-mail: Paul.Knochel@cup.uni-muenchen.de Received 1 March 2005

Abstract: A range of functionalized aryl and heteroaryl disulfides has been prepared from zinc organometallics by using sulfur monochloride (S_2Cl_2). The zinc reagents were obtained by transmetalation from magnesium or lithium reagents with $ZnBr_2$.

Key words: zinc organometallic reagents, sulfur monochloride, aryl disulfides, heteroaryl disulfides, functionalized arylmagnesium halides

Aryl and heteroaryl disulfides (RSSR; R = Ar, Het) are usually prepared by the oxidation of the corresponding thiols (RSH).1 In several cases, the thiols are not easily prepared and their oxidation can be complicated by side reactions.^{1,2} Alternative preparation methods are desirable since aryl or heteroaryl disulfides are found in many natural products and may have useful biological properties.³ Recently, several methods for preparing polyfunctional zinc organometallics have become available.⁴ Their moderate reactivity is compatible with sensitive functionalities especially with aryl disulfides at temperatures below -30 °C. We have therefore envisioned the reaction of polyfunctional zinc reagents FG-ArZnX (1) with sulfur monochloride (S₂Cl₂). This commercially available reagent has been used for the preparation of various sulfur containing molecules.⁵ Thus, the addition of sulfur monochloride (0.5 equiv) to a THF solution of an aryl or heteroaryl zinc reagent of type 1 (1.0 equiv) at -80 °C produces within ten minutes the expected disulfide (FG-Ar- $S_{2}(2)$ in 62–99% yield (Scheme 1 and Table 1).

FG-ArZnX
$$S_2Cl_2$$
 (0.5 equiv) FG-Ar-S-S-Ar-FG -80 °C, 10 min 1 2 62–99 %

Scheme 1 Preparation of functionalized aryl disulfides of type 2 from functionalized zinc organometallics of type 1 by using S₂Cl₂

The arylzinc reagents can be prepared from the corresponding aryl bromides by the direct insertion of magnesium in THF (25 °C, 10 h) followed by a transmetalation with $\rm ZnBr_2$ (-40 °C, 0.5 h). The resulting arylzinc reagents **1a** and **1b** react with $\rm S_2Cl_2$ in excellent yield providing the aryl disulfides **2a,b** in 98–99% yield (entries 1 and 2 of Table 1). Alternatively, the zinc reagent **1** can be

prepared from the corresponding aryl or heteroaryl iodide by performing an I/Mg-exchange reaction with i-PrMgCl at -20 °C.6 Thus, 4-chloro-1-iodobenzene is converted to the arylzinc reagent 1a leading to the expected disulfide 2a in 91% yield. This preparation method, in contrast to the direct insertion reaction of magnesium, allows the preparation of functionalized arylmagnesium compounds. The ester-substituted arylzinc reagents (1c-e) were prepared via an I/Mg-exchange followed by the addition of ZnBr₂. Their reaction with S₂Cl₂ at -80 °C provides the corresponding disulfides in 65-89% (entries 3-5). The presence of an ortho substituent in the zinc reagent 1e (entry 5) does not interfere with the preparation of the corresponding disulfide 2e (89% yield). Interestingly, cheap and more easily available aryl bromides can also be used as substrates. The Br/Mg-exchange is, in this case, performed with i-PrMgCl·LiCl.8 The resulting Grignard reagents were as usually treated with ZnBr₂ leading to the functionalized zinc compounds **1f**-**h**, which are bearing a nitrile and an ester function, respectively. The reaction with S₂Cl₂ furnished the disulfides **2f–2h** in 62–77% yield (entries 6–8). The use of an aryllithium as precursor is possible. Thus, tributylstannylferrocene⁹ afforded by treatment with *n*-BuLi (-80 °C to 25 °C, 0.5 h) the monolithiated ferrocene, which was subsequently treated with ZnBr₂ and S₂Cl₂, affording the desired ferrocenyl disulfide 2i in 65% yield (entry 9). Heterocyclic iodides like 3-iodo-2-methyl-N-tosylindole¹⁰ or 3-iodo-2-carbethoxy-N-benzylindole¹¹ are readily converted to the corresponding zinc reagents 1j-k by the reaction with i-PrMgCl at −20 °C (0.5 h) followed by the addition of zinc bromide. After the reaction with S₂Cl₂, the desired heterocyclic disulfides 2j-k¹² are obtained in 75% and 62% yield, respectively (Scheme 2).

1.)
$$i$$
-PrMgCl (1 equiv)
 $-20 \, \text{°C}$, 30 min
2.) $Z \cdot \text{NBr}_2$ (1.1 equiv)
 $-40 \, \text{°C}$, 30 min
3.) $S_2 \cdot \text{Cl}_2$ (0.5 equiv)
 $-80 \, \text{°C}$, 10 min
1j $R^1 = \text{Ts}$; $R^2 = \text{Me}$
1k $R^1 = \text{Bn}$; $R^2 = \text{CO}_2 \cdot \text{Et}$
2l 75 %
2k 62 %

Scheme 2 Preparation of functionalized heteroaryl disulfides

1186 T. J. Korn, P. Knochel LETTER

Table 1 Reaction of Functionalized Aryl- and Heteroarylzinc Halides **1** with Sulfur Monochloride, Leading to Functionalized Organic Disulfides of Type **2**

Entry	Zinc reagent of type 1	Disulfide of type 2	Yield (%)
1	CI—ZnBr	(CI—(S)-3	98 ^b (91) ^c
	1a	2a	
2	MeO — ZnBr	(MeO — S	99 ^b
	1b	2b	
3	EtO ₂ C — ZnBr	$\left(\text{EtO}_2\text{C}-\left(\begin{array}{c} \\ \\ \end{array}\right)-\text{S}\right)$	87°
	1c	2c	
4	PivO — ZnBr	(PivO—(S)—S	65°
	1d	\ _// /2	
~		2d	0.00
5	CO ₂ Et ZnBr	CO ₂ Et	89°
	1e	2e	
6	NC — ZnBr	(NC-(-S-)-S-	62 ^d
	1f	2f	
7	CN	/ _CN \	63 ^{d,f}
	ZnBr	$\left\langle \right\rangle$ s	
	1g	2g	
8	F10 0 7 7 P		$77^{\rm d,f}$
	EtO_2C ZnBr	EtO_2C O S	
		2h	
9	ZnBr Fe	S S	65 ^e
	1i		
		2i	

^a Yield of analytically pure product.

In summary, we have reported a new method for preparing functionalized disulfides using the reaction of various functionalized aryl- and heteroarylzinc reagents with S_2Cl_2 . The scope and limitations of this method have been delineated and further applications are underway.

Acknowledgment

We thank the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (DFG) and Merck Research Laboratories (MSD) for financial support. T. J. K. thanks the DFG and CNRS for a fellowship. We also thank Chemetall GmbH (Frankfurt) and BASF AG (Ludwigshafen) for the generous gift of chemicals.

References

- (1) Uemura, S. In *Comprehensive Organic Synthesis*, Vol. 7; Trost, B. M.; Fleming, I.; Ley, S. V., Eds.; Pergamon Press: Oxford, **1991**, 757–787.
- (2) Solladié, G. In *Comprehensive Organic Synthesis*, Vol. 6; Trost, B. M.; Fleming, I.; Winterfeldt, E., Eds.; Pergamon Press: Oxford, 1991, 133–170.
- (3) (a) Tan, R. X.; Jensen, P. R.; Williams, P. G.; Fenical, W. J. Nat. Prod. 2004, 67, 1374. (b) Eisenbarth, S.; Gehling, M.; Harder, A.; Steffan, B. Tetrahedron 2002, 58, 8461.
 (c) Nicholas, G. M.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 2001, 64, 341. (d) Nicolaou, K. C.; Hughes, R.; Pfefferkorn, J. A.; Barluenga, S.; Roecker, A. J. Chem.—Eur. J. 2001, 7, 4280. (e) Kim, D.; Lee, I. S.; Jung, J. H.; Yang, S.-I. Arch. Pharm. Res. 1999, 22, 25. (f) Tamamura, H.; Matsumoto, F.; Sakano, K.; Otaka, A.; Fujii, N. Chem. Commun. 1998, 151. (g) Kang, H.; Fenical, W. Tetrahedron Lett. 1996, 37, 2369. (h) Akaji, K.; Fujino, K.; Tatsumi, T.; Kiso, Y. J. Am. Chem. Soc. 1993, 115, 11384.
- (4) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org. React. (N. Y.) 2001, 58, 417.
- (5) (a) Langhals, H.; Wahner, B.; Polborn, K. *Tetrahedron* 1996, 52, 1961. (b) Derbesy, G.; Harpp, D. N. *Tetrahedron Lett.* 1994, 35, 5381. (c) Okazaki, R.; Inoue, K.; Inamoto, N. *Tetrahedron Lett.* 1979, 3673. (d) Zysman-Colman, E.; Harpp, D. N. *J. Org. Chem.* 2003, 68, 2487. (e) Huang, N. Z.; Lakshmikantham, M. V.; Cava, M. P. *J. Org. Chem.* 1987, 52, 169. (f) Yang, X.; Rauchfuss, T. B.; Wilson, S. R. *J. Am. Chem. Soc.* 1989, 111, 3465.
- (6) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42, 4302; Angew. Chem. 2003, 115, 4438.
- (7) Burns, T. P.; Rieke, R. D. J. Org. Chem. 1987, 52, 3674.
- (8) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333; Angew. Chem. 2004, 116, 3396.
- (9) (a) Guillaneux, D.; Kagan, H. B. J. Org. Chem. 1995, 60, 2502. (b) Liu, C.-M.; Lou, S.-J.; Liang, Y.-M. Synth. Commun. 1998, 28, 2271.
- (10) (a) Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H. *Chem. Pharm. Bull.* 1988, 36, 2248. (b) Achab, S.; Guyot, M.; Potier, P. *Tetrahedron Lett.* 1995, 36, 2615.
 (c) Fürstner, A.; Ernst, A.; Krause, H.; Ptock, A. *Tetrahedron* 1996, 52, 7329.
- (11) (a) Achad, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615. (b) Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 897; Angew. Chem. 2004, 116, 915.

^b Preparation of the Grignard reagent via Mg-insertion.

^c Preparation of the Grignard reagent via I/Mg-exchange with *i*-PrMoCl.

d Preparation of the Grignard reagent via Br/Mg-exchange with i-PrMoCl-LiCl.

^e Preparation of the lithium reagent via Sn/Li-exchange with *n*-BuLi.

^f The crude products contained some polysulfides, which were removed by recrystallization from Et₂O.

(12) Typical Procedure. Preparation of the Functionalized Indolyl Disulfide 2k.

A dry and nitrogen flushed 25 mL Schlenk flask, equipped with a rubber septum and a magnetic stirring bar, was charged with dry THF (5.0 mL) and 3-iodo-1-(phenylmethyl)-1*H*-indole-2-carboxylic acid ethyl ester (403 mg, 0.99 mmol). The solution was cooled to –20 °C and *i*-PrMgCl (1.12 mL, 1.00 mmol, 0.9 M in THF) was added slowly. The reaction mixture was stirred at that temperature until the I/Mg-exchange was complete (0.5 h, checked by GC), cooled to –40 °C, ZnBr₂ (0.64 mL, 1.09 mmol, 1.7 M

in THF) was added and the white suspension was stirred for 30 min at that temperature. The heterogeneous mixture was cooled to -80 °C and $S_2\text{Cl}_2$ (67 mg, 0.50 mmol) was added dropwise. After 10 min the reaction mixture was quenched with sat. NH₄Cl solution (50 mL), extracted with Et₂O (3 × 50 mL), the combined organic layers were washed with brine (50 mL), dried over MgSO₄ and concentrated in vacuo. Flash chromatographic purification on silica gel (pentane–Et₂O = 3:1) furnished **2k** as a light yellow solid (193 mg, 0.31 mmol, 62%, mp >240 °C decomposition).