
Squeezing
Jeffrey C. Mogul,

More Bits O u t of HTTP Caches
Compaq Computer Corporation Western Research Laboratory

Abstract
Computer s stem designers often use caches to solve performance problems.
Caching in tie World Wide Web has been both the sub'ect of extensive research
and the basis of a large and growing industry. Traditional Web caches store HTTP
responses, in anticipation of a subsequent reference to the URL of a cached
response. Unfortunately, experience with real Web users shows that there are limits
to the performance of this simple caching model, because many responses are use-
ful only once. Researchers have proposed a variety of more complex ways i n
which HTTP caches can exploit locality in real reference streams. This article sur-
veys several techniques, and reports the results of tracebased studies of a proposal
based on automatic recognition of duplicated content.

TTP accounts for most of the bytes flowing over
the Internet backbone (up to 75 percent, in one
study [l]). This bandwidth demand requires con-
tinued investment in link and switch capacity,

and leads to congestion, which increases user-perceived
latency. At the edges of the Internet, which are often band-
width-constrained, every extra byte transferred adds incre-
mental delay; this is a particular problem for home users,
most of whom do not yet have a cost-effective means to
increase bandwidth above 56 kbls. And every round-trip
through the Internet adds delay, often several hundred mil-
liseconds.

Almost any computer system that suffers from latency or
bandwidth problems can benefit from caching. The Web is no
exception, and caching mechanisms have been part of HTTP
almost since its inception. Caching is perhaps the one aspect
of the Web most easily amenable to academic studies, and
many research papers have been published. Web caching is
also sufficiently useful to have led to the creation of a rapidly
growing industry.

Caching works when a reference stream has locality. Tem-
poral locality exists when an item is referenced more than
once - a cache can store the item on the first reference, and
then return it for subsequent references. Traditionally, Web
caches have exploited temporal locality, with a URL as the
granularity of reference. Such a cache stores a response to a
request for a URL, and then a subsequent request for the
same URL yields a cache hit.

Other caches in computer systems, such as CPU data
caches, often reach hit rates approaching 100 percent, but
numerous studies of actual Web reference streams report
much lower hit rates, often 50 percent or less. Indeed, recent
studies have shown intrinsic limits to the hit rates achievable
with URL-granularity temporal locality: no matter how large
the cache or user population, many references will never be
cache hits.

This article surveys some of the techniques proposed to

extend the effectiveness of HTTP caches, by exploiting other
forms of locality or ensuring coherency requirements without
having to defeat caching. These techniques include coopera-
tive caching, prefetching, support for partial transfers, differ-
ential cache updates (also known as delta encoding), HTML
macros. The article also surveys several methods that have
been used to evaluate these techniques, and presents recent
results suggesting that a proposal for automatic duplicate sup-
pression can improve cache utility.

Reasons for H7lP Caching
Web caches have proved useful for three purposes:

Latency reduction: A cache can often deliver content to a
client faster than the origin server (HTTP's term for the
original source of the content).
Bandwidth conservation: Whenever a cache'avoids the
transmission of bytes to or from the origin server, this
reduces bandwidth requirements on that portion of the net-
work, resulting in cost savings and lower congestion.
Reduced congestion can also improve overall latency.
Disconnected operation: A cache can provide access to
information when the origin server is unavailable, due to
either network disconnection or server failure.

Subsequent sections of this article, describing various tech-
niques for improving HTTP caching, will indicate how each
approach affects the first two of these metrics.

Web caches do not yet support fully disconnected opera-
tion, because this would require anticipating all (or almost
all) of a user's future requests. While several projects have
demonstrated impressive results using caches to support
disconnected or weakly connected distributed file system
access [2 , 31, these results may prove hard to transfer to the
HTTP protocol. (Web caches designed for latency and
bandwidth reduction can still, as a side effect, reduce the
likelihood that a cachable resource is perceived as inacces-
sible.)

0890-8044/00/$10.00 0 2000 IEEE IEEE Network May/June 2000

~~

Cost and Benefit Synergies and Trade-offs

Sometimes the motivations for caching conflict: the ultimate
user might prefer reduced latency, while a corporate accoun-
tant might prefer reduced bandwidth charges. A
reduce latency by avoiding network round-trips, av
use of low-bandwidth links, or prefetching content.
ing imposes a trade-off a successful prefetch pleases
body (reducing latency for the user without m
unnecessary bytes), but most prefetching mechanisms often
fetch unnecessary bytes as well, increasing the overall band-
width requirements.

All caching mechanisms also impose a trade-off between
the idealized benefits of caching, and the practical costs of
building and operating a computer system. These costs
include CPU cycles, RAM, disk storage, and other hardware
costs; software costs, especially as implementation complexity
increases; and operational costs, particularly when cache algo-
rithms require expert intervention to maintain effectiveness.
These costs are not limited to the caches themselves; many
HTTP mechanisms intended to support caching impose addi-
tional costs on origin servers, and some impose added costs
on clients.

Server and cache operators often resist spending more on
hardware and software. However, hardware capacities are still
increasing at exponential rates (for CPU speeds, RAM sizes,
and disk capacity), while the speed of light (and hence round-
trip time) remains constant. Bandwidth, unlike latency, is not
intrinsically limited, although it is not universally improving
(especially not on wireless links). Almost any caching mecha-
nism that promises to eliminate round-trips will therefore
become cost-effective at some time in the future, and caching
mechanisms that improve bandwidth without harming latency
should also pay off at some point. On the other hand, a
caching system that adds much complexity or network com-
munication in order to avoid CPU or storage costs is not like-
ly to be useful in the long term.

We can encapsulate these considerations into four princi-
ples to guide the evaluation of HTTP caching proposals:

Exploit Moore’s law to avoid having to change the speed of

Avoid round-trips, unless the payoff is significant
Use extra header bytes, sparingly, to gain efficiency
Use hints to improve the payoff of speculative approaches

Later we summarize how the various proposals described in
this article address these trade-offs.

In addition, any realistic proposal must take into account
the difficulty of deploying protocol changes in an installed
base that already includes tens of millions of users. A protocol
that can be incrementally deployed may have significant prac-
tical advantages over a theoretically superior protocol that
does not prove useful until significant numbers of systems are
upgraded.

light

Alternatives to Caching
Caching is not the only way to avoid sending bytes over a net-
work; content simplification and data compression can also
pay off.

Content simplification works, to a point. For example, Web
designers can use common sense to reduce page complexity,
or special software tools to optimize image coding (e.g., [4]),
but the desire for richer user experiences usually prevails over
such pragmatism. New content formats, such as cascading
style sheets [5], can increase coding efficiency without reduc-
ing expressiveness. But some content, such as medical images,
broadcast-quality video, and executable software, cannot be
simplified without loss of meaning. And other emerging for-

mats, such as MPEG-1 layer 3 (MP3) audio [6], provide new
bandwidth challenges.

Data compression directly targets the transmission of
redundant bits within a single transfer. Existing general-pur-

ssion algorithms provide significant size reduc-
ly reducing text file sizes by a factor of three or
ver, the bulk of Web-related bytes transferred
ontent-types such as images, video, and audio,

which are already heavily compressed using highly efficient
content-specific compression algorithms; so the net benefit of
applying general-purpose compression to all Web traffic
would be relatively small [7]. The trend toward increased use
of nontext media further reduces the potential for general-
purpose compression in HTTP.

h the increased transmission of new data types (e.g.,
yte codes and other software), one can expect to see

ress on new type-specific compression techniques. For
ple, general-purpose algorithms can be tuned for

improved compression of binaries [8], and special-purpose
compression algorithms based on parse trees can do even bet-
ter [9] . Even so, compression has its limits, and data types
such as program binaries inevitably gain complexity with time.

Other Proxy functions
HTTP supports the use of caches directly integrated with the
end client (e.g., a browser), closely associated with a particular
server (server accelerator), or integrated with a proxy server.
Many proxy systems serve other functions, such as security
protection (i.e., as a firewall), censorship, and transcoding [lo]
(a non-end-to-end form of content simplification). These
functions are not intrinsically related to caching, and are out-
side the scope of this article.

Proxy systems set up as server accelerators operate on very
different reference streams than do other HTTP caches;
therefore, server accelerators are also outside the scope of
this article.

Methods for Evaluating HTTP Caching
Mechanisms
Because caching exploits locality in a reference stream, we can
evaluate the potential performance of various caching designs
by obtaining a reference stream, and then either analyzing the
stream or simulating the performance of a caching design on
this stream.

The input reference stream can be either a real stream,
captured by tracing the references of actual users, or a stream
generated by a model of user activity. Several workload gener-
ators have been devised either for use in benchmarking proxy
caches [ll] or for more general uses [12].

Trace-based studies require more effort to capture and
store the trace logs, but they avoid the simplifying assump-
tions made when parameterizing a workload generator (and,
in any case, the parameters for a realistic workload generator
must be based on some set of traces.) While a few studies
have been able to capture the reference stream generated by
instrumented browsers [13], almost all interesting traces have
been captured by either logging at proxies, or capturing net-
work packets and then reassembling the TCP streams.

Inaccuracies are possible even when using traces to drive
simulations or performance measurements, because this still
requires certain simplifying assumptions. In particular, a cache
may alter the response time seen by users, who in turn might
alter their behavior. One can test the modified system under a
live load, but because of unpredictable variations in usage pat-
terns, this might mean giving up the repeatability provided by

IEEE Network May/June 2000 7

traces or load generators. Consequently, it may be hard to dis-
cern whether a change in the system under test leads to a sig-
nificant performance improvement.

One can bypass the repeatability problem when comparing
two or more implementations by running them simultaneous-
ly, and randomly splitting the incoming reference stream
among the systems under test. In principle, this should elimi-
nate most of the variation in load, so any difference in perfor-
mance can be attributed to the implementation differences. In
practice, it might be difficult to achieve truly random load
splitting, and also to split the load without affecting locality
properties.

Limits of Simple Approaches to H T P
Caching
Most studies of Web reference streams and proxy caches
report the hit ratio (HR) per resource and the byte hit ratio
(BHR), weighted by the size of the response body (also some-
times called the weighted hit ratio, WHR). The bandwidth
reduction ratio should be similar to the BHR, although the
BHR does not account for protocol header overheads. Simu-
lation studies have reported HRs ranging from 30-49 percent
and BHRs ranging from 14-36 percent (assuming an infinite
cache size) [14, 151; the variations may be due to differences
in user community, geography, or when the traces were
obtained. Reports generated from in-service measurements of
the National Laboratory for Applied Network Research
(NLANR caches [16] show actual BHRs vary tremendously
over short timescales.

It seems impossible to significantly increase HRs and BHRs
above a (fuzzy) threshold, because of several intrinsic aspects
of Web reference streams:

Uncachable Resources - Some responses cannot be cached;
for example, stock quotes, query results, o r e-commerce
“shopping baskets.” Other responses could be provided from
a cache, save for the server site’s desire to gather demograph-
ic information or advertising revenue.

Particular causes of cache misses include:
Coherency misses: Any system where data items are fre-
quently updated, caching is employed, and use of an out-
of-date value could lead to erroneous behavior requires a
mechanism t o maintain cache coherency. Various
coherency mechanisms have been developed for dis-
tributed systems, often using techniques such as callbacks
o r leases. HTTP, however, has n o way t o guarantee
coherency for a resource except by disabling caching for

Nonce UIUs: Some sites implicitly defeat caching by gener-
ating a unique URL for each reference to a resource. For
example, the same advertising banner may appear on mil-
lions of pages, but each time the banner appears with a dif-
ferent URL.

. that resource.

Zipf‘s Law - The Web is so large that many pages will never
be referenced more than once in the reference stream seen by
any one cache. Most cache hits come from a small set of
resources, but many references are made to resources outside
this set. Studies have shown that page re-reference frequen-
cies follow a distribution similar to Zipf‘s law, in which the
relative probability for a reference to the kth most popular
page is a proportional to llka, for some constant a [17-191.
This implies that in a large universe of pages, most of these
pages are extremely unlikely to be referenced twice in the
same reference stream. The first reference via a given caching

proxy to any given resource is a compulsory miss, since the
value cannot possibly be in the cache.

Hlgh Rate of Change - Many potentially cachable resources
change fairly rapidly [20], which would lead to cache incoher-
ence if responses for these resources were allowed to be
cached. If the semantics of the resource does not require
absolute coherency, HTTP allows the origin server to limit
the cachable lifetime of a response, in the hope that it will
expire before the resource is updated (effectively a form of
lease). But this trades improved latency against potential
incoherency.

Voelker et al. point out that most Web resources appear to
change more rapidly than they are re-referenced, unless the
reference stream comes from an enormous population [19].

Resource Size Distribution - Why is the byte hit ratio almost
always lower than the simple hit ratio? Williams et al. [21]
observed that most references in their traces were for small
resources. Breslau et al. [17], working from several trace sets,
showed that there is no strong correlation between resource
size and access frequency, although the mean size of popular
resources is smaller than the mean for unpopular ones. One
possible explanation for these observations is that a small set
of small resources accounts for most of the cache hits.

Practical limits on HTTP Caches
It is tempting to evaluate an H l T P caching design by simulat-
ing an idealized implementation of the design. However, this
runs afoul of several practical constraints on HTTP caches.

The most obvious one is cache capacity. Any real cache
has finite storage, and once it fills up, it must evict old
entries in order to store new ones, following some replace-
men t policy. O n e simple policy is Least Recently Used
(LRU), but various studies (e.g., [21, 221) have proposed
other policies that reduce the number of capacity misses, rel-
ative to LRU, in some cases. A replacement policy also
imposes implementation costs (including meta-data storage,
update, and lookup costs), and some policies might not be
feasible to implement.

In current technologies, the working set of a large HTTP
cache does not fit into an economically reasonable amount of
RAM; some or all of the cached data must be stored on disk.
Disk access adds latency: not only the disk’s average access
time, on the order of 10 ms, but also queuing delays if the
disk is the bottleneck. These queuing delays can be quite
large.

If we are using a cache to reduce latency, we cannot simply
evaluate it on the basis of HR. Instead, we must estimate its
weighted access latency, using

weighted-access-latency =

miss-cost = retneval-latency + cache-check-latency
HR * hit-cost + (1 - HR) * miss-cost

where H R is the mean hit ratio, hit-cost is the mean total cost
of processing a cache hit, and miss-cost is the mean latency
for a cache miss. The miss-cost is the sum of two terms: not
just the retrieval-latency for retrieving the response from the
origin server, but also the cache-check-latency to determine if
the cache entry is present. (The hit-cost may also include
cache-check-latency .)

If the hit ratio is quite high and the cache-check-latency
not too excessive, the weighted-access-latency will be better
than the retrieval-latency (the latency without caching), and
the cache will pay off. However, observed hit ratios are usual-
ly well below 50 percent, and queuing delays at the disks of an
overloaded proxy can be quite large. Therefore, the hit-cost
may be significant, and one cannot simply assume that an

8 IEEE Network May/June 2000

HTTP proxy cache will actually improve overall latency. In
particular, the disk subsystem must be carefully designed to
avoid imposing excessive latencies [23, 241.

The cache-check-latency depends mostly on w
data structures used for the cache lookup can
RAM, or whether the lookup even requires a d
Also, if the data structure is stored on disk, loo
compete with frequent updates for disk bandwidth. Unless the
replacement policy has perfect future knowledge, it will store
responses that will never be used for cache hits. Hence, the
data structure might be updated almost as frequently as it is
used for lookups.

With modern large-capacity disks, it might be reasonable to
configure a cache with sufficient disk storage that it almost
achieves the H R of an infinite cache. But it might not pay to
increase the cache size beyond the point where the lookup
data structure no longer fits in RAM, since capacity misses
decline only slowly past a certain cache size.

Storage capacities of RAM and disk are still growing expo-
nentially. These growth rates could increase the effectiveness
of HTTP caches; but will hardware improve fast enough, or
will Web reference rates grow even faster? One study (of a
very small and atypical user population) reported that “poten-
tial for caching requested files in the network has declined”
between 1995 and 1998 [13], but more extensive studies are
warranted.

Given that RAM size is increasing exponentially, but disk
access times increase very slowly, and most cache hits come
from a relatively small subset of the cachable content, at some
point it might become feasible to build RAM-only HTTP
proxy caches. That is, if the replacement policy does not justify
storing a response in a large RAM, it might not be worth the
cost of storing the response on disk: the extremely low chance
that it would be useful in the future might not offset the cost
of the disk write or of maintaining relevant meta-data.

Cooperative Caching
Since the HR of a Web cache is a function of the user popula-
tion, perhaps by combining the efforts of several cooperative
caches [25], we could improve overall performance. When a
proxy P1 receives a request but has no corresponding valid
cache entry, P1 could send a request to one or more cooperat-
ing caches P2, P3, . . ., Pn, asking if they have a valid entry for
the resource. This pays off if the entry is indeed in one of the
cooperating caches, and if these caches are close enough that
the intercache transfer has a latency or bandwidth advantage
over direct retrieval from the origin server.

One might expect cooperative caching to pay off for two
reasons. First, the effective cache size is larger (reducing the
probability of a capacity miss). Second, the cooperating caches
see a combined reference stream from a larger set of users,
which reduces the probability of a compulsory miss; a resource
being referenced by a client of P1 might already have been
referenced by a client of P2.

Cooperative caching does have costs. The intercache mes-
sages add more latency to a reference that ultimately misses
in all the caches; these messages and their responses also
increase bandwidth demands. If the cooperating caches are
arranged in a hierarchy, as is common, the higher levels of the
hierarchy may become bottlenecks (imposing queuing delays).
Several recent proposals have greatly reduced these costs [15,
261 but they cannot entirely be eliminated.

Do the benefits of cooperative caching outweigh the
costs? One recent study by Voelker et al. [19] suggests that
cooperative caching is useful only in limited circumstances.
The overall cache HR does increase with increasing popula-
tion size, but as the population grows above a few thousand

users, the additional benefits are very small. Voelker et al.
state that the population size that can significantly benefit
from cooperative caching “could easily be handled by a sin-
gle proxy cache.” For larger populations, the benefits of
cooperative caching appear to be minimal, given current
access patterns.

There might be administrative or geographical constraints
that prevent the use of a single proxy for a set of small clus-
ters of users, but these same constraints might also work
against cooperative caching: separate administrations might
have security concerns about shared caches, and between geo-
graphically distinct clusters the network latencies and band-
width might make the intercache protocol infeasible.

In any case, a cooperative caching system serving a given
set of users cannot provide a better HR than an idealized infi-
nite cache. Studies have shown that even infinite caches could
not provide especially good HRs, which suggests that we must
look elsewhere for improved Web bandwidth and latency.

Squeezing More Performance Out of HTTP
- I

Caches
Given the apparent limits on the performance of simple
caches, researchers and vendors have developed several tech-
niques to extend the utility of Web caches. If the basic princi-
ple of simple “reuse” caching is to exploit repeated references
to ent i re cached responses, the basic principle of these
extended mechanisms is to exploit partial information present
in caches.

There are at least three such kinds of partial information:

Clues About Future References - Because a cache sees an
entire reference stream, it can use the information in the ref-
erence stream to make predictions about future references.
This may allow the cache to more accurately prefetch data
before it is actually referenced, potentially resulting in much
lower latencies. It may also allow the cache to make better
replacement decisions.

Filling In or Replacing Gaps - A cached response might hold
some, but not all, of the bits required to satisfy a subsequent
request for the same URL. If the cache entry contains missing
information, the gap could be filled in using a partial transfer.
Or the underlying resource might have changed, but in such a
way that it would be more efficient to transfer the differences
between the cache entry and the current resource instance,
rather than retrieving an entire new response.

Alias Discovery - Frequently, the same content appears in the
Web under more than one URL: there are multiple aliases for
a given piece of data. If the cache can detect such aliasing, it
might be able to avoid storing multiple copies, or retrieving
data that it already has stored under another alias.

Techniques that exploit partial information typically impose
a trade-off. For example, they may require additional compu-
tation or storage; within certain limits, this is usually worth-
while if it reduces network bandwidth or latency. Or a
technique may improve latency at the expense of bandwidth,
by either transferring a few additional HTTP header bytes in
some cases, or transferring additional messages. Or one might
be able to improve overall bandwidth by transferring a few
additional bytes in carefully chosen cases.

The rest of this article describes various proposals to
exploit partial information in order to increase the utility of
HTTP caches. For each proposal, I will try to evaluate the
trade-offs involved.

IEEE Network MayiJune 2000 9

Prefetch ing and Replacement Hints

If a cache can predict a user's future references, and if there
is spare bandwidth, the cache can prefetch the expected
resources. When the prediction is correct and timely, this can
increase the BHR and reduce user-perceived latency [27-291,
but inevitably increases bandwidth requirements (because of
false prefetches). False prefetches also consume cache space,
and might displace useful cache entries. Prefetching forces a
cache operator to choose between improving latency and min-
imizing bandwidth.

Successful prefetching therefore requires solution of two
problems: making accurate predictions, and deciding whether
sufficient extra bandwidth exists.

Prefetch prediction algorithms use the reference stream,
usually on a per-user-session basis, in two ways. First, they
observe the stream over relatively long periods in order to con-
struct a model of the conditional probabilities of observing cer-
tain references given a set of previous references. Second, they
use the recent behavior of the stream (sometimes just the most
recent reference) as input to this model, which may then gen-
erate a prediction of some set of future references. For exam-
ple, if the most recent reference is to http://ieee.org/index.html,
the model might predict a reference to http://ieee.org/about/
with probability 0.2, and a reference to http://ieee.org/confer-
ences/ with probability 0.6.

The first proposals for Web prefetch prediction employed
first-order Markov models [30, 311. Other model-based mech-
anisms, with better prediction performance or storage require-
ments, have since been described [32].

Regardless of the particular prediction algorithm, such a
prefetching system cannot predict every reference: many ref-
erences will never have appeared before in the reference
stream, or involve parameters (as in a POST-based form) that
are not visible to a proxy cache. Also, since a prefetch delivers
data in advance of the actual reference, a response that can-
not be cached (e.g., due to coherency requirements) cannot
be prefetched. Kroeger et al . report a trace-based study
demonstrating that, with infinite cache capacity and infinite
bandwidth, at best one can get a 60 percent latency reduction
from any prefetching mechanism that obeys reasonable
causality constraints [28]. In other words, at least 40 percent
of the latency in this trace was due to compulsory and
coherency misses. Any real prefetching proxy would be further
constrained by both cache size and bandwidth.

Alternatively, a proxy can parse the HTML responses it
forwards, extract the link URLs from these, and then prefetch
the link targets [33, 341. This approach, however, has limits: it
cannot on its own distinguish between likely and unlikely
prefetch targets, and it depends on parsing HTML docu-
ments.

Prefetching makes sense only if sufficient unused band-
width exists; otherwise, the extra transfers for unnecessary
prefetches would cause network congestion. In a few special
cases, one can readily determine that extra bandwidth is avail-
able (e.g., when a home user's dialup modem is idle), but in
the general case this is a difficult problem, with little available
research. Maltzahn et al. were able to show that a diurnal vari-
ation in demand-fetch bandwidth requirements leaves capaci-
ty, during the early morning, for some prefetching, but their
work made several simplifymg assumptions [35].

Predictions about future references can also be useful in
making replacement decisions. Caches typically make such
predictions by applying an algorithm, such as LRU, to their
own reference streams (for HTTP caches, better algorithms
than LRU have been developed [2 2]) . However, because of
the Zipf's law distribution of references, a cache will seldom

have sufficiently precise information about most of its entries.
A server could supply hints, in the HTTP headers, about the
appropriate replacement strategy for a response [36, 371.
Hint information could include both the expected frequency
of future references, and the expected cost of a future
retrieval.

Partial Transfers, Delta Encoding, and Macros
An HTTP transfer can terminate in midstream because of a
network error, because the user clicks the stop button, or
because the user clicks on a link before the entire page is
loaded. In HTTPf1.0, the result of a partial transfer is not
worth caching, but in HTI'Pfl.1, a cache can fill in the missing
data using a range retrieval request [28]. The ability to retrieve
ranges of a response makes partial cache entries useful:
although the proxy cannot avoid an additional HTTP
requestlresponse round-trip, it can avoid transferring bytes
that have already been sent over the network. Unfortunately,
there are no published statistics for the prevalence or size dis-
tribution of partial transfers, but anecdotal evidence suggests
they are not uncommon.

The use of range retrievals in HTTP/1.1 imposes a minimal
trade-off, limited to the transmission of one or two extra
request header lines. Since the requesting cache knows that it
has partial content and wants the full response, the only
uncertainty is whether the server is able to generate a partial
response.

Partial content as the result of a truncated transfer repre-
sents a special case of a more general situation: a cache entry
already contains some arbitrary subset of the bits of the
desired response. Proposals intended to exploit these bits
include delta encoding, cache-based compaction, and HTML
macros.

The motivation behind delta encoding [39,40] is the obser-
vation that, although many frequently referenced Web
resources change too frequently to allow for useful caching,
the changes are often minor. Instead of sending the entire
current instance of a resource, the server sends just the differ-
ence (or delta) between the cached and current instances.
With careful encoding [41], these differences can be quite
small. The potential savings vary by content-type, because
much Web content, such as images and continuous media,
tend to change more radically than HTML text, but one trace-
based study [7] showed potential overall bandwidth savings of
8.5 percent and latency savings of 5.6 percent, and significant-
ly greater improvements in text content.

The use of delta encoding in HTTP requires relatively little
protocol overhead and no extra round-trips, but it does
require the origin server to either store previous instances of a
changing resource, or be able to dynamically recreate these
instances. It also requires a modest amount of computation to
create and decode the deltas.

Woo and Chan proposed cache-based compaction [42],
which they describe as a further generalization of delta encod-
ing, combined with the use of dictionary-based compression.
Dictionary-based compression algorithms, such as Lempel-
Ziv-Welch [43], use a dictionary to map between input sym-
bols and compressed codes. In order t o decompress the
output, the receiver must have the dictionary, which means
that it is normally transmitted (in some form) as part of the
compressed file.

Whereas delta encoding transmits the difference between
the current instance of a resource and one older cached
instance of (usually) the same resource, cache-based com-
paction uses a larger set of cached older instances, possibly
from a variety of different resources. This set of older
instances functions as a large compression dictionary; the new

10 IEEE Network May/June 2000

http://ieee.org/index.html
http://ieee.org/about
http://ieee.org/confer

instance is compressed using this effective dictionary, which
does not itself have to be transmitted (because both cache and
server are using the same set of older instances).

Cache-based compaction should improve on the perfor-
mance of delta encoding (because it includes delta encoding
as a special case). However, the protocol is more complex,
because the mechanism must choose an appropriate subset
of cache entries (it would be infeasible for the cache to
inform the server of its entire state), and because the cache
and server need to agree on which set of older instances is
employed. So far, the proposal has not been extensively eval-
uated, but it appears to have advantages mostly for low-
bandwidth links.

The approaches described previously in this section operate
independent of the syntax and semantics of the data being
transferred (although delta encoding algorithms for images
may require some specialization). They function by decompos-
ing responses at the bit or byte level into currently cached and
need-to-be-transferred components. One can also do this
decomposition at a higher level. Douglis et al. [44] describe an
HTML macro mechanism in which a set of similar HTML
pages is decomposed into a constant component (akin to a
macro body) and a variable component (akin to macro argu-
ments). In many cases, the variable component can be quite
small; this means that once the constant component is in a
cache, references to similar pages require fetching only the
small variable component, at a significant cost savings over
transferring a monolithic response.

The main drawback to the HTML macro approach is that it
requires direct involvement by the designer (or software)
when generating the Web pages, including some careful atten-
tion to the decomposition of a set of similar pages. It might
also require some additional language-level standardization,
although this perhaps could be obviated through the use of
Java-based macros.

Alias Discovery and Automatic Duplicate
Suppress ion
The techniques for extending cache utility discussed above do
not exploit one possible mechanism for exploiting existing
cache entries: if two distinct resources generate exactly identi-
cal responses, a cache entry for one of them could be used to
provide a cache hit for a request referencing the other.1 This
technique is called duplicate suppression, and in principle
could avoid a lot of data transfer and related latency.

A simple and efficient way to detect exact duplication
A simple and efficient HTTP protocol extension to carry
the necessary meta-information
A sufficient rate of duplication to justify deploying the pro-
tocol extension
The first requirement is met by the use of a digest (or

checksum) algorithm, such as MD5 [45], for which it is diffi-
cult to generate identical digest values (“collisions”) for two
different inputs. However, there is some suspicion that MD5
is not collision-proof [46], and if an attacker could generate a
carefully chosen collision, this would create a security hole.
Other more secure digest algorithms, such as SHA-1 [47] or
RIPEMD-160 [48], could increase security but at the cost of
increased H?TP header sizes and computational costs.

Several protocols have been proposed to address the sec-

In practice, its utility depends on:

Cache-based compaction can do this in principle, but only if the two
resources have similar URLs; this is often not true in practice.

ond requirement. The first such design, the Distribution and
Replication Protocol (DRP) [49], proposed creating a special
Universal Resource Name (URN) out of the MD5 or SHA
digest for a resource. A later refinement of this proposal
retains the traditional HTTP URL mechanism for naming
resources, and transmits the digest in a new HTTP header
field [50]. We present a simplified description of this proposal
below; it involves sending hint information from servers to
clients, and other hint information from clients to caches, in
the hope that the caches can avoid requesting duplicated
responses directly from the servers.

Finally, we need to evaluate whether the rate of duplication
is high enough that it justifies the extra protocol overhead,
computational overhead, and implementation complexity of
the proposal. We summarize the results of a trace-based study
that addresses this question.

Related Work
Several other techniques also use digests to exploit exact data
equality. If duplication is indeed common, a caching proxy
could end up storing multiple copies of many response bodies.
By computing a digest of every cachable response body and
maintaining an index keyed by the digest results, the proxy
can detect this situation and arrange to store only one copy of
the duplicated body. Inktomi’s Traffic Server [51] uses this
technique.

Given that duplication of HTTP bodies is common, one
might also expect to see exact duplication at the packet level.
Santos and Weatherall [52] describe a router-based tech-
nique which detects when a packet body is a duplicate, and
sends its digest value instead of the entire body. This mecha-
nism requires the sending router to have fairly accurate
information about the state of the receiving router’s packet
cache. Santos and Weatherall report bandwidth savings of
about 20 percent, with relatively little overhead. They also
report an HTTP-specific packet duplication ratio of about 26
percent.

Proposed Duplicate Suppression Protocol
This section presents a simplified duplicate suppression exten-
sion to HTTP in order to make the rest of the article more
concrete. Complete specifications for several protocols are
available [49, 501.

Although users occasionally load Web pages by typing a
URL, in most cases an HTTP transfer is initiated when the
browser software follows a link. Except in the relatively infre-
quent case where a link leads to another server, the source of
the linkage information is also the source of the linked-to
resource; that is, the same server often controls both the link
information and its target.

This allows the server to provide meta-information about
the link target as part of the linkage information. (For exam-
ple, HTML supports the HEIGHT and WIDTH attributes of
an IMG tag, allowing the browser to reserve screen space for
an image before loading it.) To support duplicate suppression,
the server would include in this meta-information an MD5 (or
similar) digest of the link target.

As an alternative to using a new HTML attribute, the
digest value could be transmitted in a structured type. DRP
introduces a new “index” content-type to provide meta-infor-
mation for a consistent set of link targets [49]; similarly,
WEBDAV [53] specifies a similar “collection” resource,
whose state consists of a list of member URLs and an extensi-
ble set of properties.

Assume then that a client, about to make a request for
URL U, has a server-supplied hint that the proper response

IEEE Network MayiJune 2000 1 1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

- Total ratio - Cache hit ratio - Duplicate suppression ratio

0 7 14 21 23
Days since Saturday 1998-1 0-17 0O:OO:Ol

I Figure 1 . Daily ratios.

has an MD5 digest value D. The client can check its cache not
only for an existing entry for U, but also for an existing entry
with a digest value of D. Either cache entry should therefore
be a satisfactory substitute for getting a response from the
actual server.

If the client’s local cache does not contain the target, it
could send its request via a proxy cache that might. This
request would be, in essence, “please send me either a
response for URL U, or a response with MD5 digest value
D.” If the proxy cache has a response cached under either
key, it can return the cache hit rather than forward the
request to the server. Thus, once the client knows the proper
MD5 digest value, it can use both its own cache and a proxy’s
cache to find a duplicate with the same digest, rather than
waiting for a response from the actual server.

The complete specification of a duplicate suppression pro-
tocol would require attention to a number of other issues,
such as whether HTTP header information for a cached
response (e.g., authentication information) can properly be
associated with a duplicate suppression response for a differ-
ent resource, and whether the cache entries discovered by
duplicate suppression hints are timely with respect to the
requested URL.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

t---* Weighted total ratio
t---. Weighted hit ratio - Weighted duplicate suppression ratio

0
0 7 14 21 23

Days since Saturday 1998-10-17 0O:OO:Ol

Figure 2. Daily ratios, weighted by response size in bytes.

Potential Benefits of Duplicate Suppression . .
Duplicate suppression can be evaluated by simulating its
effect on a reference stream trace, such as one taken from a
proxy server; the trace would have to include the digest value
of every response body. However, without actual deployment
of a duplicate suppression protocol, one cannot know how
often clients would actually receive server-supplied digest
hints. For this reason, a trace-based simulation of current ref-
erences can provide only an upper bound on the potential
improvements.

I obtained a 23-day trace from a noncaching proxy at Com-
paq Computer Corporation. The raw trace includes 29 million
entries, although only about 19 million are useful for this
study. The trace was then fed to a simulator, which modeled
an infinite cache; this avoids any capacity misses, and thus
reduces the apparent advantage of duplicate suppression. The
simulation also models a “perfect coherency” cache, since the
MD5 digests allow the simulator to know for sure whether a
coherency miss would be necessary or not.

Space permits only a brief summary of the simulation
results; more detail is available in [54].

The infinite perfect-coherency cache simulation, without
duplicate suppression, yielded an HR of 50.4 percent and a

BHR of 32.2 nercent.
Duplicate supprcssion
“hits” always takc the place
of cachc misscs, not cachc
hits, so thcir bcnefit always
adds to that of simple
caching. Had the duplicate
supprcssion mechanism
been applied to every eligi-
ble request, it would have
avoided an additional 5.4
percent of the retrievals in
the trace. Weighted by
bytes transferred, duplicate
supprcssion would have
saved an additional 6.2 pcr-
cent of the scrver response
bytes.

Figure I shows the
unweighted cache H R and
duplicate suppression
ratios, sampled at 24-hr Table 1 . A cotnparisori of H 7 T P caching ~echniques.

12 IEEE Nctwork May/June 2000

intervals. The curves trend upward because the simulations
start with an empty ("cold") cache. The figure also shows the
unweighted "total" ratio (including both cache hits and dupli-
cate suppression "hits"). Figure 2 shows the corre
byte-weighted ratios.

The weighted cache HR is much lower than the U
cache HR, but the weighted duplicate suppression
higher than the unweighted duplicate suppression r
Therefore, the net bandwidth improvement due to dupli
suppression is more significant than one would expect from
the unweighted ratios.

The unweighted duplication ratio never gets much above
6 percent on a daily basis, which implies that it might not
be worth the extra protocol overhead. This statistic is calcu-
lated over all responses in the trace, but one might expect
that some sets of resources are far more likely than others
to be subject to duplication. If so, one could limit the pro-
tocol overhead of duplicate suppression to these contexts,
and concentrate the effort where the benefits justify the
costs. For example, "audio/midi" content (relatively rare in
this trace) yields a duplication ratio of 15 percent and a
weighted ratio of 15.5 percent. Other content-types with
relatively high ratios include Java byte codes, other pro-
gram binaries, GIF and JPEG images, and some video for-
mats.

Almost 84 percent of the URLs in the trace were never
involved in duplication; 16 percent were duplicated exactly
once, and 0.15 percent were duplicated exactly twice. In other
words, very few URLs are duplicated more than once, but
some highly duplicated URLs account for most of the duplica-
tion. In fact, half of all duplicate responses come from URLs
that give rise to at least 406 different duplicate responses (i.e.,
the median of the nonzero duplication counts is 406). Also,
most duplication is limited to a very small subset of the server
hosts in the trace.

These results and others suggest that one could predict,
based on content-type, server host, or other factors, whether a
response is likely to experience duplication. This would allow
the server to avoid sending digest hints except in cases where
they would probably pay off.

Summary
This article has surveyed a number of techniques for better
exploiting the bits in HTTP caches. How do these techniques
compare? Table 1 summarizes the trade-offs for each tech-
nique on five metrics: latency, bandwidth requirements, cache
coherency, CPU time (on servers, proxies, and clients), and
proxy RAM requirements. The last column lists the contexts
in which each approach appears to be most applicable. The
table entries are guesses, at best, pending more extensive
studies.

Note that most of the entries in Table 1 do not affect cache
coherency. Several techniques to improve HTTP cache
coherency have been proposed [55, 561. Because current
methods for avoiding incoherency often disable caching, these
new techniques may enable improvements on other metrics.
For example, if more cache entries are known to be coherent,
this should provide more opportunities for delta encoding and
partial transfers.

Conclusions
HTTP caching remains a fertile area for both research and
development of commercial products and services. Web
caching researchers initially focused on replacement policies
and cooperative caching, but these lines of research may be

nishing returns. The wide variety of recent pro-
rove the effectiveness of Web caches suggests

that the space of possible solutions has not yet been fully
explored. Even for the techniques described in this article, we
still lack sufficient understanding of their utility, and how best
to implement and deploy them.

Acknowledgments
I would like to thank Mark Manasse and Andrei Broder for
their help in explaining to me various aspects of cryptography
and digital signatures. I would also like t o thank Carey
Williamson for prodding me to write this article, and the
anonymous reviewers for their helpful comments.

References
[l] K. Thompson, G. J. Miller, and R. Wilder, 'Wide-Area Internet Traffic Pat-

terns and Characteristics," IEEE Nehvork, vol. 1 1, no. 6, Nov./Dec. 1997,
pp. 10-23.

(2) J. J. Kistler and M. Satyanarayanan, "Disconnected Operation in the Coda
File System," Proc. 13th ACM Symp. Op. Sys. Principles, Oct. 1991, pp.

[3] 1. B. Mummert, M. R. Ebling, and M. Satyonorayanan, "Exploiting Weak
Connectivity for Mobile File Access," Proc. 15th Symp. Op. Sys. Principles,
Copper Mountain, CO, Dec. 1995, pp. 143-55.

(41 Equjlibrium, DeBabelizer Product Informotion page, http://www.
equili brium.com/Productlnfo/Prodlnfo, html

[5] H. Lie and B. Bos, "Cascading Style Sheets, level 1 ," Rec. REC-CSSl , W3C,
Dec. 1 996, http://www.w3.org/pub/WWW/TR/REC-CSS1

[6] ISO/IEC, 1 1 172-3, "Information Technology - Coding of Moving Pictures
and Associated Audio for Digital Storage Media at Up to About 1.5 Mbitls
- Part 3: Audio," 1993.

[7] J. Mogul et a/., "Potential Benefits of Delta Encoding and Data Compression
for HllP," Proc. SIGCOMM '97, Cannes, France, Sept. 1997, pp. 181-94.

(81 T. L. Yu, "Data Compression for PC Software Distribution," Software - Prac-
tice and Experience, vol. 26, no. 1 1, 1 996, pp. 1 1 81 -95.

191 J. Ernst et al., "Code Compression," Proc. ACM SIGPMN '97 Conf. Prog.
Lang. Design and Implementation, Los Vegos, NV, June 1997, pp.
358-65.

[lo] A Fox et al., "Adapting to Network and Client Variation via On-Demand Dynam-
ic Tronding," Proc. ASPLOS WI, Cambridge, MA, Oct. 1996, pp. 160-70.

[l 11 J. Almeida and P. Coo, "Measuring Proxy Performance with the Wisconsin
Proxy Benchmark," Proc. 3rd Int'l. WWW Caching Wksp., Manchester, Eng-
land, June, 1998.

[12] P. Barford and M. Crovella, "Generating Representative Web Workloads
for Network and Server Performance Evaluation," Proc. Joint Int'l. Conf.
Meas. and Modeling of Comp. Sys. (SlGMETRlCS '98/PERFORMANCE '981,
Madison, WI, June, 1998, pp. 151-60.

[13] P. Barford et al., "Changes in Web Client Access Patterns: Characteristics
and Caching Implications," World Wide Web, Special Issue on Characteri-
zation and Performance Evaluation, vol. 2, no. 1, Jan. 1999, pp. 15-28.

[14] B. Duska, D. Marwood, and M. Feeley, "The Measured Access Characteris-
tics of World-Wide-Web Proxy Caches," Proc. USENIX Symp. Internet Tech.
and Sys., Monterey, CA, Dec., 1997, pp. 23-35.

[15] 1. Fan et al., "Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol," Proc. SIGCOMM '98, Vancouver, BC, Sept. 1998, p

[16] NLANR Hierarchical Caching System Usage Statistics, f;tp://www.
ircache.net/Cache/Statistics

[17] L. Breslau et al., "Web Caching and Zipf-like Distributions: Evidence and
Implications," Proc. INFOCOM '99, New York, NY, Mar. 1999, ~ p . 124-34.

[l B] NLANR, Cache Popularity Index, http://www.ircache.net/Cac e/Statistics/

21 3-25.

254-65.

Popularit-Index , ' .

&china," Proc. 17th SOSP, Kiawah Island, SC, Dec. 1999, DD. 16-31.
[191 G. Voel er et a / , "On the Scale and Performance of Cooperative Web Proxy

[20] F. Douglis et al., "Rate of Change and Other Metrics:'A Live Study of the
World Wide Web," Proc. USENIX Symp. Internet Tech. and Sys., Monterey,
CA, Dec. 1997, p 147-58.

[21] S. Williams et a["Removal Policies in Network Caches for World-Wide Web
kumenk," Proc. SIGCOMM '96, Stonford, CA, Aug. 1996, pp. 293-305.

[22] P. Coo and S. Irani, "Cost-Aware WWW Proxy Caching Algorithms," Proc.
USENIX Symp. Internet Tech. and Sys., Monterey, CA, Dec. 1997, pp.
193-206.

[23] C. Maltzahn, K. J. Richardson, and D. Grunwald, "Reducin the Disk 1/0
of Web Proxy Server Caches," Proc. 1999 USENIX Annu3 Tech. Conf.,
Monterey, CA, June 1999, pp. 225-38.

[24] E. P. Markatos et al., "Secondary Storage Management far Web Proxies,"
Proc. 2nd USENlX Symp. Internet Tech. and Sys., Boulder, CO, Oct. 1999,
pp. 93-104.

[25] A. Chankhunthod et al., "A Hierarchical Internet Object Cache," Proc.
I996 USENIX Tech. Conf., San Diego, CA, Jan. 1996, pp. 15343.

IEEE Network May/June 2000 13

http://www
http://www.w3.org/pub/WWW/TR/REC-CSS1
http://www.ircache.net/Cac

[26] R. Tewari et al., Design Considerations for Distributed Caching on the Inter-
net," Proc. 19th IEEE Int'l. Conf. Dist. Comp. Sys., Austin, TX, May 1999,
pp. 273-84.

(271 A. Bestavros and C. Cunha, "A Prefetching Protocol Using Client Specula-
tion for the WWW," Tech. rep. TR-95-01 1, Boston Univ., CS Dept., Boston,
MA, Apr. 1995.

[28] T. Kroeger, D. Long, and J. Mogul, "Exploring the Bounds of Web Latency
Reduction from Caching and Prefetching," Proc. USENIX Symp. Internet
Tech. and Sys., Monterey, CA, Dec. 1997, pp. 13-22.

[29] T. Loon and V. Bharghavan, "Alleviating the Latency and Bandwidth Prob-
lems in W W W Browsing," Proc. USENIX Symp. lnternet Tech. and Sys.,
Monterey, CA, Dec. 1997, pp. 21 9-30.

[30] A. Bestavros, "Using Speculation to Reduce Server toad and Service Time
on the WWW," Proc. 4th Inf'l. Con[Info. and Knowledge Mgmt, Baltimore,
MD, Nov. 1995.

[31] V. Padmanabhan and J. Mogul, "Using Predictive Prefetching to Improve
World Wide Web Latency," Comp. Commun. Rev., vol. 26, no. 3, 1996,
pp. 22-36.

[32] J. Pitkow and P. Pirolli, "Mining Longest Repeated Subsequences to Predict
World Wide Web Surfing," Proc. 2nd USENIX Symp. Internet Tech. and
Sys., Boulder, CO, Oct. 1999, pp. 139-50.

[33] CacheFlow, Inc. Active Web Caching Technology, http://www.cacheflow.
com/technology/wp/activecaching. html, 1 999.

[34] K. Chinen and S. Yamaguchi, "An Interactive Prefetching Proxy for
Improvement of WWW Latency," Proc 7th Annual Con[Internet Soc., Kuala
Lumpur, June, 1997.

[35] C. Maltzahn et al., "On Bandwidth Smoothing," Proc. 4th Int'l. Web
Cochin Wksp., San Diego, CA, Mar. 1999.

[36] E. C o en, B. Krishnamurthy, and J. Rexford, "Evaluating Server-Assisted
Cache Replacement in the Web," Proc. Euro. Symp. Algorithms, Venice,
Italy, August, 1998, pp. 307-1 9.

[37] J. Mogul, "Hinted Caching in the Web," Proc. 7th ACM SIGOPS Euro.
wksp., Connemara, Ireland, Sept. 1996, pp. 103-8.

[38] R. Fielding et al., "Hypertext Transfer Protocol - HTTP/l .l," RFC 2616,
H l lP Working Group, June 1999.

[39] G. Banga, F. Douglis, and M. Rabinovich, "Optimistic Deltas for WWW
Latency Reduction," Proc. I 9 9 7 USENfX Tech. Conf., Anaheim, CA, Jan.
1997, pp. 289-303.

[40] B. House1 and D. Lindquist, "WebExpress: A S stem for 0 timizing Web
Browsing in a Wireless Environment," Proc. 2n lAnnua l f n t f Conf. Mobile
Comp. and Networking, Rye, New York, Nov. 1996, pp. 108-1 6.

[41] J. Hunt et al., "An Empirical Study of Delta Algorithms," IEEE Soft. Config.
and Maint. Wksp., Berlin, Germany, Mar. 1996.

[42] M. C. Chon and T. Woo, "Cache-based Compaction: A New Technique far
Optimizing Web Transfer," Proc. /€E€ INFOCOM '99, New York, NY, Mar.

[43] T Welch, "A Technique for High Performance Data Compression," IEEE
1999, pp. 1 17-25.

Comp., vol. 17, no. 6, 1984, pp. 8-1 9.

[44] F. Douglis, A. Ham, and M. Rabinovich, "HPP: HTML Macro-Preprocessing
to Support Dynamic Document Caching," Proc. USENIX Symp. fnfernet Tech.
and Sys., Monterey, CA, Dec. 1997, pp. 83-94.

[45] R. Rivest, "The MD5 Message-Digest Algorithm," RFC 1321, Network
Working Group, Apr. 1992.

[46] M. Robshaw, "On Recent Results for MD2, MD4 and MD5," RSA Lobs bul-
letin, vol. 4, no. 12, Nov. 12, 1996, pp. 1-6.

[47] National Institute of Standards and Technology, Secure Hash Standard, FlPS
pub. 180-1, U.S. Dept. of Commerce, Apr. 1995, http://csrc.nist.gov/
fips/fipl80-1 .txt

[48] B. Preneel, A. Bosselaers, and H. Dobbertin, "The Cryptographic Hash
Function RIPEMD-160," CryptoByfes, vol. 3, no. 2, Autumn 1997, pp. 9-14.

[49] A. van Hoff et al., "The Hl lP Distribution and Replication Protocol," Techni-
cal Report NOTE-DRP, W3C, Aug. 1997, http://w.w3.org/TR/NOTE-
drp-19970825.html

[50] J. Mogul and A. van Hoff, "Duplicate Suppression in http," Internet-Draft
draft-mogul-http-dupsup-00, IETF, A r 1998; work in progress.

[51] Inktomi Corporation, "Inktomi TragcServer Product Info," http://www.ink-
tomi.com/products/nehvork/traff ic/product. html, 1 999.

[52] J. Santos and D. Wetherall, "Increasing Effective Link Bandwidth by Sup-
pressing Replicated Data," Proc. USENIX I998 Annual Tech. Conf., New
Orleans, LA, June 1998, pp. 21 3-24.

[53] Y. Goland et al., "HllP Extensions far Distributed Authoring - WEBDAV,"
RFC 251 8, IETF, Feb. 1999.

[54] J. MO uI, "A Trace-Based Analysis of Duplicate Suppression in http,"
Researcl re 99/2, Compaq Comp. Corp. Western Research Lab., Nov.
1 999, http:~~.research.digital.com/wrl/techreports/abstracts/~9.2.html

[551 P. Coo, J. Zhang, and K. Beach, "Active Cache: Caching Dynamic Contents
on the Web," Proc. Middleware '98, Lake District, England, Sept. 1998, pp.
373-88.

[561 B. Krishnamurthy and C. E. Wills, "Stud of piggyback Cache Validation
for Proxy Caches in the World Wide Wei," Proc. USi" Symp. Internet
Tech. and Sys., Monterey, CA, Dec. 1997, pp. 1-1 2.

Biography
JEFFREY C. MOGUL (mogul@pa.dec.com) received an S.B. from the Massachusetts
Institute of Technology in 1979, an M.S. from Stanford University in 1980, and
his Ph.D. from the Stanford Universi Computer Science Department in 1986.
He has been an active participant in i e Internet communi and is the author or
co-author of several Internet standards; most recently, hekas contributed exten-
sively to the HllP/1.1 specification. Since 1986, he has been a researcher at
the Compaq (formerly Digital) Western Research Laboratory, working on net-
work and operating systems issues far high-performance computer systems, and
on improving performance of the Internet and the World Wide Web. He i s a
member of ACM, Sigma Xi, and CPSR, and was Program Committee Chair for
the Winter 1994 USENIX Technical Conference, and for the IEEE TCOS Sixth
Workshop on Hot Topics in Operating Systems.

14 IEEE Network May/June 2000

