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Abstract 
Computer s stem designers often use caches to solve performance problems. 
Caching in tie World Wide Web has been both the sub'ect of extensive research 
and the basis of a large and growing industry. Traditional Web caches store HTTP 
responses, in anticipation of a subsequent reference to the URL of a cached 
response. Unfortunately, experience with real Web users shows that there are limits 
to the performance of this simple caching model, because many responses are use- 
ful only once. Researchers have proposed a variety of more complex ways i n  
which HTTP caches can exploit locality in real reference streams. This article sur- 
veys several techniques, and reports the results of tracebased studies of a proposal 
based on automatic recognition of duplicated content. 

TTP accounts for most of the bytes flowing over 
the Internet backbone (up to 75 percent, in one 
study [l]). This bandwidth demand requires con- 
tinued investment in link and switch capacity, 

and leads to  congestion, which increases user-perceived 
latency. At the edges of the Internet, which are often band- 
width-constrained, every extra byte transferred adds incre- 
mental delay; this is a particular problem for home users, 
most of whom do not yet have a cost-effective means to  
increase bandwidth above 56 kbls. And every round-trip 
through the Internet adds delay, often several hundred mil- 
liseconds. 

Almost any computer system that suffers from latency or 
bandwidth problems can benefit from caching. The Web is no 
exception, and caching mechanisms have been part of HTTP 
almost since its inception. Caching is perhaps the one aspect 
of the Web most easily amenable to academic studies, and 
many research papers have been published. Web caching is 
also sufficiently useful to have led to the creation of a rapidly 
growing industry. 

Caching works when a reference stream has locality. Tem- 
poral locality exists when an item is referenced more than 
once - a cache can store the item on the first reference, and 
then return it for subsequent references. Traditionally, Web 
caches have exploited temporal locality, with a URL as the 
granularity of reference. Such a cache stores a response to a 
request for a URL, and then a subsequent request for the 
same URL yields a cache hit. 

Other  caches in computer systems, such as CPU data  
caches, often reach hit rates approaching 100 percent, but 
numerous studies of actual Web reference streams report 
much lower hit rates, often 50 percent or less. Indeed, recent 
studies have shown intrinsic limits to the hit rates achievable 
with URL-granularity temporal locality: no matter how large 
the cache or user population, many references will never be 
cache hits. 

This article surveys some of the techniques proposed to 

extend the effectiveness of HTTP caches, by exploiting other 
forms of locality or ensuring coherency requirements without 
having to defeat caching. These techniques include coopera- 
tive caching, prefetching, support for partial transfers, differ- 
ential cache updates (also known as delta encoding), HTML 
macros. The article also surveys several methods that have 
been used to evaluate these techniques, and presents recent 
results suggesting that a proposal for automatic duplicate sup- 
pression can improve cache utility. 

Reasons for H7lP Caching 
Web caches have proved useful for three purposes: 

Latency reduction: A cache can often deliver content to a 
client faster than the origin server (HTTP's term for the 
original source of the content). 
Bandwidth conservation: Whenever a cache'avoids the 
transmission of bytes to  or  from the origin server, this 
reduces bandwidth requirements on that portion of the net- 
work, resulting in cost savings and lower congestion. 
Reduced congestion can also improve overall latency. 
Disconnected operation: A cache can provide access to 
information when the origin server is unavailable, due to 
either network disconnection or server failure. 

Subsequent sections of this article, describing various tech- 
niques for improving HTTP caching, will indicate how each 
approach affects the first two of these metrics. 

Web caches do not yet support fully disconnected opera- 
tion, because this would require anticipating all (or almost 
all) of a user's future requests. While several projects have 
demonstrated impressive results using caches to  support 
disconnected or weakly connected distributed file system 
access [2 ,  31, these results may prove hard to transfer to the 
HTTP protocol. (Web caches designed for  latency and 
bandwidth reduction can still, as a side effect, reduce the 
likelihood that a cachable resource is perceived as inacces- 
sible.) 
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Cost and Benefit Synergies and Trade-offs 

Sometimes the motivations for caching conflict: the ultimate 
user might prefer reduced latency, while a corporate accoun- 
tant might prefer reduced bandwidth charges. A 
reduce latency by avoiding network round-trips, av 
use of low-bandwidth links, or prefetching content. 
ing imposes a trade-off a successful prefetch pleases 
body (reducing latency for the user without m 
unnecessary bytes), but most prefetching mechanisms often 
fetch unnecessary bytes as well, increasing the overall band- 
width requirements. 

All caching mechanisms also impose a trade-off between 
the idealized benefits of caching, and the practical costs of 
building and operating a computer system. These costs 
include CPU cycles, RAM, disk storage, and other hardware 
costs; software costs, especially as implementation complexity 
increases; and operational costs, particularly when cache algo- 
rithms require expert intervention to maintain effectiveness. 
These costs are not limited to the caches themselves; many 
HTTP mechanisms intended to support caching impose addi- 
tional costs on origin servers, and some impose added costs 
on clients. 

Server and cache operators often resist spending more on 
hardware and software. However, hardware capacities are still 
increasing at exponential rates (for CPU speeds, RAM sizes, 
and disk capacity), while the speed of light (and hence round- 
trip time) remains constant. Bandwidth, unlike latency, is not 
intrinsically limited, although it is not universally improving 
(especially not on wireless links). Almost any caching mecha- 
nism that promises to eliminate round-trips will therefore 
become cost-effective at some time in the future, and caching 
mechanisms that improve bandwidth without harming latency 
should also pay off at  some point. On the other  hand, a 
caching system that adds much complexity or network com- 
munication in order to avoid CPU or storage costs is not like- 
ly to be useful in the long term. 

We can encapsulate these considerations into four princi- 
ples to guide the evaluation of HTTP caching proposals: 

Exploit Moore’s law to avoid having to change the speed of 

Avoid round-trips, unless the payoff is significant 
Use extra header bytes, sparingly, to gain efficiency 
Use hints to improve the payoff of speculative approaches 

Later we summarize how the various proposals described in 
this article address these trade-offs. 

In addition, any realistic proposal must take into account 
the difficulty of deploying protocol changes in an installed 
base that already includes tens of millions of users. A protocol 
that can be incrementally deployed may have significant prac- 
tical advantages over a theoretically superior protocol that 
does not prove useful until significant numbers of systems are 
upgraded. 

light 

Alternatives to Caching 
Caching is not the only way to avoid sending bytes over a net- 
work; content simplification and data compression can also 
pay off. 

Content simplification works, to a point. For example, Web 
designers can use common sense to reduce page complexity, 
or special software tools to optimize image coding (e.g., [4]), 
but the desire for richer user experiences usually prevails over 
such pragmatism. New content formats, such as cascading 
style sheets [5], can increase coding efficiency without reduc- 
ing expressiveness. But some content, such as medical images, 
broadcast-quality video, and executable software, cannot be 
simplified without loss of meaning. And other emerging for- 

mats, such as MPEG-1 layer 3 (MP3) audio [6], provide new 
bandwidth challenges. 

Data  compression directly targets the transmission of 
redundant bits within a single transfer. Existing general-pur- 

ssion algorithms provide significant size reduc- 
ly reducing text file sizes by a factor of three or 
ver, the bulk of Web-related bytes transferred 
ontent-types such as images, video, and audio, 

which are already heavily compressed using highly efficient 
content-specific compression algorithms; so the net benefit of 
applying general-purpose compression to  all Web traffic 
would be relatively small [7]. The trend toward increased use 
of nontext media further reduces the potential for general- 
purpose compression in HTTP. 

h the increased transmission of new data types (e.g., 
yte codes and other software), one can expect to see 

ress on new type-specific compression techniques. For 
ple, general-purpose algorithms can be tuned for 

improved compression of binaries [8], and special-purpose 
compression algorithms based on parse trees can do even bet- 
ter [ 9 ] .  Even so, compression has its limits, and data types 
such as program binaries inevitably gain complexity with time. 

Other Proxy functions 
HTTP supports the use of caches directly integrated with the 
end client (e.g., a browser), closely associated with a particular 
server (server accelerator), or integrated with a proxy server. 
Many proxy systems serve other functions, such as security 
protection (i.e., as a firewall), censorship, and transcoding [lo] 
(a non-end-to-end form of content  simplification). These 
functions are not intrinsically related to caching, and are out- 
side the scope of this article. 

Proxy systems set up as server accelerators operate on very 
different reference streams than do other HTTP caches; 
therefore, server accelerators are also outside the scope of 
this article. 

Methods for Evaluating HTTP Caching 
Mechanisms 
Because caching exploits locality in a reference stream, we can 
evaluate the potential performance of various caching designs 
by obtaining a reference stream, and then either analyzing the 
stream or simulating the performance of a caching design on 
this stream. 

The input reference stream can be either a real stream, 
captured by tracing the references of actual users, or a stream 
generated by a model of user activity. Several workload gener- 
ators have been devised either for use in benchmarking proxy 
caches [ll] or for more general uses [12]. 

Trace-based studies require more effort to capture and 
store the trace logs, but they avoid the simplifying assump- 
tions made when parameterizing a workload generator (and, 
in any case, the parameters for a realistic workload generator 
must be based on some set of traces.) While a few studies 
have been able to capture the reference stream generated by 
instrumented browsers [13], almost all interesting traces have 
been captured by either logging at proxies, or capturing net- 
work packets and then reassembling the TCP streams. 

Inaccuracies are possible even when using traces to drive 
simulations or performance measurements, because this still 
requires certain simplifying assumptions. In particular, a cache 
may alter the response time seen by users, who in turn might 
alter their behavior. One can test the modified system under a 
live load, but because of unpredictable variations in usage pat- 
terns, this might mean giving up the repeatability provided by 
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traces or load generators. Consequently, it may be hard to dis- 
cern whether a change in the system under test leads to a sig- 
nificant performance improvement. 

One can bypass the repeatability problem when comparing 
two or more implementations by running them simultaneous- 
ly, and randomly splitting the incoming reference stream 
among the systems under test. In principle, this should elimi- 
nate most of the variation in load, so any difference in perfor- 
mance can be attributed to the implementation differences. In 
practice, it might be difficult to achieve truly random load 
splitting, and also to split the load without affecting locality 
properties. 

Limits of Simple Approaches to H T P  
Caching 
Most studies of Web reference streams and proxy caches 
report the hit ratio (HR) per resource and the byte hit ratio 
(BHR), weighted by the size of the response body (also some- 
times called the weighted hit ratio, WHR). The bandwidth 
reduction ratio should be similar to the BHR, although the 
BHR does not account for protocol header overheads. Simu- 
lation studies have reported HRs ranging from 30-49 percent 
and BHRs ranging from 14-36 percent (assuming an infinite 
cache size) [14, 151; the variations may be due to differences 
in user community, geography, or  when the traces were 
obtained. Reports generated from in-service measurements of 
the National Laboratory for Applied Network Research 
(NLANR caches [16] show actual BHRs vary tremendously 
over short timescales. 

It seems impossible to significantly increase HRs and BHRs 
above a (fuzzy) threshold, because of several intrinsic aspects 
of Web reference streams: 

Uncachable Resources - Some responses cannot be cached; 
for example, stock quotes, query results, o r  e-commerce 
“shopping baskets.” Other responses could be provided from 
a cache, save for the server site’s desire to gather demograph- 
ic information or advertising revenue. 

Particular causes of cache misses include: 
Coherency misses: Any system where data items are fre- 
quently updated, caching is employed, and use of an out- 
of-date value could lead to erroneous behavior requires a 
mechanism t o  maintain cache coherency.  Various 
coherency mechanisms have been developed for dis- 
tributed systems, often using techniques such as callbacks 
o r  leases. HTTP,  however, has  n o  way t o  guarantee  
coherency for a resource except by disabling caching for 

Nonce UIUs: Some sites implicitly defeat caching by gener- 
ating a unique URL for each reference to a resource. For 
example, the same advertising banner may appear on mil- 
lions of pages, but each time the banner appears with a dif- 
ferent URL. 

. that resource. 

Zipf‘s Law - The Web is so large that many pages will never 
be referenced more than once in the reference stream seen by 
any one  cache. Most cache hits come from a small set of 
resources, but many references are made to resources outside 
this set. Studies have shown that page re-reference frequen- 
cies follow a distribution similar to Zipf‘s law, in which the 
relative probability for a reference to the kth most popular 
page is a proportional to llka, for some constant a [17-191. 
This implies that in a large universe of pages, most of these 
pages are extremely unlikely to be referenced twice in the 
same reference stream. The first reference via a given caching 

proxy to any given resource is a compulsory miss, since the 
value cannot possibly be in the cache. 

Hlgh Rate of Change - Many potentially cachable resources 
change fairly rapidly [20], which would lead to cache incoher- 
ence if responses for these resources were allowed to  be 
cached. If the semantics of the resource does not require 
absolute coherency, HTTP allows the origin server to limit 
the cachable lifetime of a response, in the hope that it will 
expire before the resource is updated (effectively a form of 
lease). But this trades improved latency against potential 
incoherency. 

Voelker et al. point out that most Web resources appear to 
change more rapidly than they are re-referenced, unless the 
reference stream comes from an enormous population [19]. 

Resource Size Distribution - Why is the byte hit ratio almost 
always lower than the simple hit ratio? Williams et al. [21] 
observed that most references in their traces were for small 
resources. Breslau et al. [17], working from several trace sets, 
showed that there is no strong correlation between resource 
size and access frequency, although the mean size of popular 
resources is smaller than the mean for unpopular ones. One 
possible explanation for these observations is that a small set 
of small resources accounts for most of the cache hits. 

Practical limits on HTTP Caches 
It is tempting to evaluate an H l T P  caching design by simulat- 
ing an idealized implementation of the design. However, this 
runs afoul of several practical constraints on HTTP caches. 

The most obvious one is cache capacity. Any real cache 
has finite storage, and once it fills up, it must evict old 
entries in order to store new ones, following some replace- 
men t  policy.  O n e  simple policy is Least Recently Used 
(LRU), but various studies (e.g., [21, 221) have proposed 
other policies that reduce the number of capacity misses, rel- 
ative to  LRU,  in some cases. A replacement policy also 
imposes implementation costs (including meta-data storage, 
update, and lookup costs), and some policies might not be 
feasible to implement. 

In current technologies, the working set of a large HTTP 
cache does not fit into an economically reasonable amount of 
RAM; some or all of the cached data must be stored on disk. 
Disk access adds latency: not only the disk’s average access 
time, on the order of 10 ms, but also queuing delays if the 
disk is the bottleneck. These queuing delays can be quite 
large. 

If we are using a cache to reduce latency, we cannot simply 
evaluate it on the basis of HR. Instead, we must estimate its 
weighted access latency, using 

weighted-access-latency = 

miss-cost = retneval-latency + cache-check-latency 
HR * hit-cost + (1 - HR) * miss-cost 

where H R  is the mean hit ratio, hit-cost is the mean total cost 
of processing a cache hit, and miss-cost is the mean latency 
for a cache miss. The miss-cost is the sum of two terms: not 
just the retrieval-latency for retrieving the response from the 
origin server, but also the cache-check-latency to determine if 
the cache entry is present. (The hit-cost may also include 
cache-check-latency .) 

If the hit ratio is quite high and the cache-check-latency 
not too excessive, the weighted-access-latency will be better 
than the retrieval-latency (the latency without caching), and 
the cache will pay off. However, observed hit ratios are usual- 
ly well below 50 percent, and queuing delays at the disks of an 
overloaded proxy can be quite large. Therefore, the hit-cost 
may be significant, and one cannot simply assume that an 
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HTTP proxy cache will actually improve overall latency. In 
particular, the disk subsystem must be carefully designed to 
avoid imposing excessive latencies [23, 241. 

The cache-check-latency depends mostly on w 
data structures used for the cache lookup can 
RAM, or  whether the lookup even requires a d 
Also, if the data structure is stored on disk, loo 
compete with frequent updates for disk bandwidth. Unless the 
replacement policy has perfect future knowledge, it will store 
responses that will never be used for cache hits. Hence, the 
data structure might be updated almost as frequently as it is 
used for lookups. 

With modern large-capacity disks, it might be reasonable to 
configure a cache with sufficient disk storage that it almost 
achieves the H R  of an infinite cache. But it might not pay to 
increase the cache size beyond the point where the lookup 
data structure no longer fits in RAM, since capacity misses 
decline only slowly past a certain cache size. 

Storage capacities of RAM and disk are still growing expo- 
nentially. These growth rates could increase the effectiveness 
of HTTP caches; but will hardware improve fast enough, or 
will Web reference rates grow even faster? One study (of a 
very small and atypical user population) reported that “poten- 
tial for caching requested files in the network has declined” 
between 1995 and 1998 [13], but more extensive studies are 
warranted. 

Given that RAM size is increasing exponentially, but disk 
access times increase very slowly, and most cache hits come 
from a relatively small subset of the cachable content, at some 
point it might become feasible to build RAM-only HTTP 
proxy caches. That is, if the replacement policy does not justify 
storing a response in a large RAM, it might not be worth the 
cost of storing the response on disk: the extremely low chance 
that it would be useful in the future might not offset the cost 
of the disk write or of maintaining relevant meta-data. 

Cooperative Caching 
Since the HR of a Web cache is a function of the user popula- 
tion, perhaps by combining the efforts of several cooperative 
caches [25], we could improve overall performance. When a 
proxy P1 receives a request but has no corresponding valid 
cache entry, P1 could send a request to one or more cooperat- 
ing caches P2, P3, . . ., Pn, asking if they have a valid entry for 
the resource. This pays off if the entry is indeed in one of the 
cooperating caches, and if these caches are close enough that 
the intercache transfer has a latency or bandwidth advantage 
over direct retrieval from the origin server. 

One might expect cooperative caching to pay off for two 
reasons. First, the effective cache size is larger (reducing the 
probability of a capacity miss). Second, the cooperating caches 
see a combined reference stream from a larger set of users, 
which reduces the probability of a compulsory miss; a resource 
being referenced by a client of P1 might already have been 
referenced by a client of P2. 

Cooperative caching does have costs. The intercache mes- 
sages add more latency to a reference that ultimately misses 
in all the caches; these messages and their responses also 
increase bandwidth demands. If the cooperating caches are 
arranged in a hierarchy, as is common, the higher levels of the 
hierarchy may become bottlenecks (imposing queuing delays). 
Several recent proposals have greatly reduced these costs [ 15, 
261 but they cannot entirely be eliminated. 

Do the benefits of cooperative caching outweigh the 
costs? One recent study by Voelker et al. [19] suggests that 
cooperative caching is useful only in limited circumstances. 
The overall cache HR does increase with increasing popula- 
tion size, but as the population grows above a few thousand 

users, the additional benefits are very small. Voelker et al. 
state that the population size that can significantly benefit 
from cooperative caching “could easily be handled by a sin- 
gle proxy cache.” For larger populations, the benefits of 
cooperative caching appear to be minimal, given current 
access patterns. 

There might be administrative or geographical constraints 
that prevent the use of a single proxy for a set of small clus- 
ters of users, but these same constraints might also work 
against cooperative caching: separate administrations might 
have security concerns about shared caches, and between geo- 
graphically distinct clusters the network latencies and band- 
width might make the intercache protocol infeasible. 

In any case, a cooperative caching system serving a given 
set of users cannot provide a better HR than an idealized infi- 
nite cache. Studies have shown that even infinite caches could 
not provide especially good HRs, which suggests that we must 
look elsewhere for improved Web bandwidth and latency. 

Squeezing More Performance Out of HTTP 
- I  

Caches 
Given the apparent limits on the performance of simple 
caches, researchers and vendors have developed several tech- 
niques to extend the utility of Web caches. If the basic princi- 
ple of simple “reuse” caching is to exploit repeated references 
to  ent i re  cached responses, the basic principle of these 
extended mechanisms is to exploit partial information present 
in caches. 

There are at least three such kinds of partial information: 

Clues About Future References - Because a cache sees an 
entire reference stream, it can use the information in the ref- 
erence stream to make predictions about future references. 
This may allow the cache to more accurately prefetch data 
before it is actually referenced, potentially resulting in much 
lower latencies. It may also allow the cache to make better 
replacement decisions. 

Filling In or Replacing Gaps - A cached response might hold 
some, but not all, of the bits required to satisfy a subsequent 
request for the same URL. If the cache entry contains missing 
information, the gap could be filled in using a partial transfer. 
Or the underlying resource might have changed, but in such a 
way that it would be more efficient to transfer the differences 
between the cache entry and the current resource instance, 
rather than retrieving an entire new response. 

Alias Discovery - Frequently, the same content appears in the 
Web under more than one URL: there are multiple aliases for 
a given piece of data. If the cache can detect such aliasing, it 
might be able to avoid storing multiple copies, or retrieving 
data that it already has stored under another alias. 

Techniques that exploit partial information typically impose 
a trade-off. For example, they may require additional compu- 
tation or storage; within certain limits, this is usually worth- 
while if it reduces network bandwidth or  latency. Or a 
technique may improve latency at the expense of bandwidth, 
by either transferring a few additional HTTP header bytes in 
some cases, or transferring additional messages. Or one might 
be able to improve overall bandwidth by transferring a few 
additional bytes in carefully chosen cases. 

The rest of this article describes various proposals to  
exploit partial information in order to increase the utility of 
HTTP caches. For each proposal, I will try to evaluate the 
trade-offs involved. 
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Prefetch ing and Replacement Hints 

If a cache can predict a user's future references, and if there 
is spare bandwidth, the cache can prefetch the expected 
resources. When the prediction is correct and timely, this can 
increase the BHR and reduce user-perceived latency [27-291, 
but inevitably increases bandwidth requirements (because of 
false prefetches). False prefetches also consume cache space, 
and might displace useful cache entries. Prefetching forces a 
cache operator to choose between improving latency and min- 
imizing bandwidth. 

Successful prefetching therefore requires solution of two 
problems: making accurate predictions, and deciding whether 
sufficient extra bandwidth exists. 

Prefetch prediction algorithms use the reference stream, 
usually on a per-user-session basis, in two ways. First, they 
observe the stream over relatively long periods in order to con- 
struct a model of the conditional probabilities of observing cer- 
tain references given a set of previous references. Second, they 
use the recent behavior of the stream (sometimes just the most 
recent reference) as input to this model, which may then gen- 
erate a prediction of some set of future references. For exam- 
ple, if the most recent reference is to http://ieee.org/index.html, 
the model might predict a reference to http://ieee.org/about/ 
with probability 0.2, and a reference to http://ieee.org/confer- 
ences/ with probability 0.6. 

The first proposals for Web prefetch prediction employed 
first-order Markov models [30, 311. Other model-based mech- 
anisms, with better prediction performance or storage require- 
ments, have since been described [32]. 

Regardless of the particular prediction algorithm, such a 
prefetching system cannot predict every reference: many ref- 
erences will never have appeared before in the reference 
stream, or involve parameters (as in a POST-based form) that 
are not visible to a proxy cache. Also, since a prefetch delivers 
data in advance of the actual reference, a response that can- 
not be cached (e.g., due to coherency requirements) cannot 
be prefetched. Kroeger et al .  report a trace-based study 
demonstrating that, with infinite cache capacity and infinite 
bandwidth, at best one can get a 60 percent latency reduction 
from any prefetching mechanism that obeys reasonable 
causality constraints [28]. In other words, at least 40 percent 
of the latency in this trace was due to  compulsory and 
coherency misses. Any real prefetching proxy would be further 
constrained by both cache size and bandwidth. 

Alternatively, a proxy can parse the HTML responses it 
forwards, extract the link URLs from these, and then prefetch 
the link targets [33, 341. This approach, however, has limits: it 
cannot on its own distinguish between likely and unlikely 
prefetch targets, and it depends on parsing HTML docu- 
ments. 

Prefetching makes sense only if sufficient unused band- 
width exists; otherwise, the extra transfers for unnecessary 
prefetches would cause network congestion. In a few special 
cases, one can readily determine that extra bandwidth is avail- 
able (e.g., when a home user's dialup modem is idle), but in 
the general case this is a difficult problem, with little available 
research. Maltzahn et al. were able to show that a diurnal vari- 
ation in demand-fetch bandwidth requirements leaves capaci- 
ty, during the early morning, for some prefetching, but their 
work made several simplifymg assumptions [35]. 

Predictions about future references can also be useful in 
making replacement decisions. Caches typically make such 
predictions by applying an algorithm, such as LRU, to their 
own reference streams (for HTTP caches, better algorithms 
than LRU have been developed [ 2 2 ] ) .  However, because of 
the Zipf's law distribution of references, a cache will seldom 

have sufficiently precise information about most of its entries. 
A server could supply hints, in the HTTP headers, about the 
appropriate replacement strategy for a response [36, 371. 
Hint information could include both the expected frequency 
of future references, and the  expected cost of a future 
retrieval. 

Partial Transfers, Delta Encoding, and Macros 
An HTTP transfer can terminate in midstream because of a 
network error, because the user clicks the stop button, or 
because the user clicks on a link before the entire page is 
loaded. In HTTPf1.0, the result of a partial transfer is not 
worth caching, but in HTI'Pfl.1, a cache can fill in the missing 
data using a range retrieval request [28]. The ability to retrieve 
ranges of a response makes partial cache entries useful: 
although the proxy cannot avoid an  additional HTTP 
requestlresponse round-trip, it can avoid transferring bytes 
that have already been sent over the network. Unfortunately, 
there are no published statistics for the prevalence or size dis- 
tribution of partial transfers, but anecdotal evidence suggests 
they are not uncommon. 

The use of range retrievals in HTTP/1.1 imposes a minimal 
trade-off, limited to the transmission of one or  two extra 
request header lines. Since the requesting cache knows that it 
has partial content and wants the full response, the only 
uncertainty is whether the server is able to generate a partial 
response. 

Partial content as the result of a truncated transfer repre- 
sents a special case of a more general situation: a cache entry 
already contains some arbitrary subset of the bits of the 
desired response. Proposals intended to exploit these bits 
include delta encoding, cache-based compaction, and HTML 
macros. 

The motivation behind delta encoding [39,40] is the obser- 
vation that, although many frequently referenced Web 
resources change too frequently to allow for useful caching, 
the changes are often minor. Instead of sending the entire 
current instance of a resource, the server sends just the differ- 
ence (or delta) between the cached and current instances. 
With careful encoding [41], these differences can be quite 
small. The potential savings vary by content-type, because 
much Web content, such as images and continuous media, 
tend to change more radically than HTML text, but one trace- 
based study [7] showed potential overall bandwidth savings of 
8.5 percent and latency savings of 5.6 percent, and significant- 
ly greater improvements in text content. 

The use of delta encoding in HTTP requires relatively little 
protocol overhead and no extra round-trips, but it does 
require the origin server to either store previous instances of a 
changing resource, or be able to dynamically recreate these 
instances. It also requires a modest amount of computation to 
create and decode the deltas. 

Woo and Chan proposed cache-based compaction [42], 
which they describe as a further generalization of delta encod- 
ing, combined with the use of dictionary-based compression. 
Dictionary-based compression algorithms, such as Lempel- 
Ziv-Welch [43], use a dictionary to map between input sym- 
bols and compressed codes. In  order t o  decompress the 
output, the receiver must have the dictionary, which means 
that it is normally transmitted (in some form) as part of the 
compressed file. 

Whereas delta encoding transmits the difference between 
the current instance of a resource and one older cached 
instance of (usually) the same resource, cache-based com- 
paction uses a larger set of cached older instances, possibly 
from a variety of different resources. This set of older 
instances functions as a large compression dictionary; the new 
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instance is compressed using this effective dictionary, which 
does not itself have to be transmitted (because both cache and 
server are using the same set of older instances). 

Cache-based compaction should improve on the perfor- 
mance of delta encoding (because it includes delta encoding 
as a special case). However, the protocol is more complex, 
because the mechanism must choose an appropriate subset 
of cache entries (it would be infeasible for the cache to  
inform the server of its entire state), and because the cache 
and server need to agree on which set of older instances is 
employed. So far, the proposal has not been extensively eval- 
uated, but it appears to  have advantages mostly for low- 
bandwidth links. 

The approaches described previously in this section operate 
independent of the syntax and semantics of the data being 
transferred (although delta encoding algorithms for images 
may require some specialization). They function by decompos- 
ing responses at the bit or byte level into currently cached and 
need-to-be-transferred components. One can also do this 
decomposition at a higher level. Douglis et al. [44] describe an 
HTML macro mechanism in which a set of similar HTML 
pages is decomposed into a constant component (akin to a 
macro body) and a variable component (akin to macro argu- 
ments). In many cases, the variable component can be quite 
small; this means that once the constant component is in a 
cache, references to similar pages require fetching only the 
small variable component, at a significant cost savings over 
transferring a monolithic response. 

The main drawback to the HTML macro approach is that it 
requires direct involvement by the designer (or software) 
when generating the Web pages, including some careful atten- 
tion to the decomposition of a set of similar pages. It might 
also require some additional language-level standardization, 
although this perhaps could be obviated through the use of 
Java-based macros. 

Alias Discovery and Automatic Duplicate 
Suppress ion 
The techniques for extending cache utility discussed above do 
not exploit one possible mechanism for exploiting existing 
cache entries: if two distinct resources generate exactly identi- 
cal responses, a cache entry for one of them could be used to 
provide a cache hit for a request referencing the other.1 This 
technique is called duplicate suppression, and in principle 
could avoid a lot of data transfer and related latency. 

A simple and efficient way to detect exact duplication 
A simple and efficient HTTP protocol extension to carry 
the necessary meta-information 
A sufficient rate of duplication to justify deploying the pro- 
tocol extension 
The first requirement is met by the use of a digest (or 

checksum) algorithm, such as MD5 [45], for which it is diffi- 
cult to generate identical digest values (“collisions”) for two 
different inputs. However, there is some suspicion that MD5 
is not collision-proof [46], and if an attacker could generate a 
carefully chosen collision, this would create a security hole. 
Other more secure digest algorithms, such as SHA-1 [47] or 
RIPEMD-160 [48], could increase security but at the cost of 
increased H?TP header sizes and computational costs. 

Several protocols have been proposed to address the sec- 

In practice, its utility depends on: 

Cache-based compaction can do this in principle, but only if the two 
resources have similar URLs; this is often not true in practice. 

ond requirement. The first such design, the Distribution and 
Replication Protocol (DRP) [49], proposed creating a special 
Universal Resource Name (URN) out of the MD5 or SHA 
digest for a resource. A later refinement of this proposal 
retains the traditional HTTP URL mechanism for naming 
resources, and transmits the digest in a new HTTP header 
field [50]. We present a simplified description of this proposal 
below; it involves sending hint information from servers to 
clients, and other hint information from clients to caches, in 
the hope that the caches can avoid requesting duplicated 
responses directly from the servers. 

Finally, we need to evaluate whether the rate of duplication 
is high enough that it justifies the extra protocol overhead, 
computational overhead, and implementation complexity of 
the proposal. We summarize the results of a trace-based study 
that addresses this question. 

Related Work 
Several other techniques also use digests to exploit exact data 
equality. If duplication is indeed common, a caching proxy 
could end up storing multiple copies of many response bodies. 
By computing a digest of every cachable response body and 
maintaining an index keyed by the digest results, the proxy 
can detect this situation and arrange to store only one copy of 
the duplicated body. Inktomi’s Traffic Server [51] uses this 
technique. 

Given that duplication of HTTP bodies is common, one 
might also expect to see exact duplication at the packet level. 
Santos and Weatherall [52] describe a router-based tech- 
nique which detects when a packet body is a duplicate, and 
sends its digest value instead of the entire body. This mecha- 
nism requires the sending router to  have fairly accurate 
information about the state of the receiving router’s packet 
cache. Santos and Weatherall report bandwidth savings of 
about 20 percent, with relatively little overhead. They also 
report an HTTP-specific packet duplication ratio of about 26 
percent. 

Proposed Duplicate Suppression Protocol 
This section presents a simplified duplicate suppression exten- 
sion to HTTP in order to make the rest of the article more 
concrete. Complete specifications for several protocols are 
available [49, 501. 

Although users occasionally load Web pages by typing a 
URL, in most cases an HTTP transfer is initiated when the 
browser software follows a link. Except in the relatively infre- 
quent case where a link leads to another server, the source of 
the linkage information is also the source of the linked-to 
resource; that is, the same server often controls both the link 
information and its target. 

This allows the server to provide meta-information about 
the link target as part of the linkage information. (For exam- 
ple, HTML supports the HEIGHT and WIDTH attributes of 
an IMG tag, allowing the browser to reserve screen space for 
an image before loading it.) To support duplicate suppression, 
the server would include in this meta-information an MD5 (or 
similar) digest of the link target. 

As an alternative to  using a new HTML attribute, the 
digest value could be transmitted in a structured type. DRP 
introduces a new “index” content-type to provide meta-infor- 
mation for a consistent set of link targets [49]; similarly, 
WEBDAV [53]  specifies a similar “collection” resource, 
whose state consists of a list of member URLs and an extensi- 
ble set of properties. 

Assume then that a client, about to  make a request for 
URL U, has a server-supplied hint that the proper response 
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has an MD5 digest value D. The client can check its cache not 
only for an existing entry for U, but also for an existing entry 
with a digest value of D. Either cache entry should therefore 
be a satisfactory substitute for getting a response from the 
actual server. 

If the client’s local cache does not contain the target, it 
could send its request via a proxy cache that might. This 
request would be, in essence, “please send me either a 
response for URL U, or a response with MD5 digest value 
D.” If the proxy cache has a response cached under either 
key, it can return the cache hit rather than forward the 
request to the server. Thus, once the client knows the proper 
MD5 digest value, it can use both its own cache and a proxy’s 
cache to find a duplicate with the same digest, rather than 
waiting for a response from the actual server. 

The complete specification of a duplicate suppression pro- 
tocol would require attention to a number of other issues, 
such as whether HTTP header information for a cached 
response (e.g., authentication information) can properly be 
associated with a duplicate suppression response for a differ- 
ent resource, and whether the cache entries discovered by 
duplicate suppression hints are timely with respect to the 
requested URL. 
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Figure 2. Daily ratios, weighted by response size in bytes. 

Potential Benefits of Duplicate Suppression . .  
Duplicate suppression can be evaluated by simulating its 
effect on a reference stream trace, such as one taken from a 
proxy server; the trace would have to include the digest value 
of every response body. However, without actual deployment 
of a duplicate suppression protocol, one cannot know how 
often clients would actually receive server-supplied digest 
hints. For this reason, a trace-based simulation of current ref- 
erences can provide only an upper bound on the potential 
improvements. 

I obtained a 23-day trace from a noncaching proxy at Com- 
paq Computer Corporation. The raw trace includes 29 million 
entries, although only about 19 million are useful for this 
study. The trace was then fed to a simulator, which modeled 
an infinite cache; this avoids any capacity misses, and thus 
reduces the apparent advantage of duplicate suppression. The 
simulation also models a “perfect coherency” cache, since the 
MD5 digests allow the simulator to know for sure whether a 
coherency miss would be necessary or not. 

Space permits only a brief summary of the simulation 
results; more detail is available in [54]. 

The infinite perfect-coherency cache simulation, without 
duplicate suppression, yielded an HR of 50.4 percent and a 

BHR of 32.2 nercent. 
Duplicate supprcssion 
“hits” always takc the place 
of cachc misscs, not cachc 
hits, so thcir bcnefit always 
adds to that of simple 
caching. Had the duplicate 
supprcssion mechanism 
been applied to every eligi- 
ble request, it would have 
avoided an additional 5.4 
percent of the retrievals in 
the trace. Weighted by 
bytes transferred, duplicate 
supprcssion would have 
saved an additional 6.2 pcr- 
cent of the scrver response 
bytes. 

Figure I shows the 
unweighted cache H R  and 
duplicate suppression 
ratios, sampled at 24-hr Table 1 . A cotnparisori of H 7 T P  caching ~echniques. 
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intervals. The curves trend upward because the simulations 
start with an empty ("cold") cache. The figure also shows the 
unweighted "total" ratio (including both cache hits and dupli- 
cate suppression "hits"). Figure 2 shows the corre 
byte-weighted ratios. 

The weighted cache HR is much lower than the U 
cache HR, but the weighted duplicate suppression 
higher than the unweighted duplicate suppression r 
Therefore, the net bandwidth improvement due to dupli 
suppression is more significant than one would expect from 
the unweighted ratios. 

The unweighted duplication ratio never gets much above 
6 percent on a daily basis, which implies that it might not 
be worth the extra protocol overhead. This statistic is calcu- 
lated over all responses in the trace, but one might expect 
that some sets of resources are far more likely than others 
to be subject to duplication. If so, one could limit the pro- 
tocol overhead of duplicate suppression to these contexts, 
and concentrate the effort where the benefits justify the 
costs. For example, "audio/midi" content (relatively rare in 
this trace) yields a duplication ratio of 15 percent and a 
weighted ratio of 15.5 percent. Other content-types with 
relatively high ratios include Java byte codes, other pro- 
gram binaries, GIF and JPEG images, and some video for- 
mats. 

Almost 84 percent of the URLs in the trace were never 
involved in duplication; 16 percent were duplicated exactly 
once, and 0.15 percent were duplicated exactly twice. In other 
words, very few URLs are duplicated more than once, but 
some highly duplicated URLs account for most of the duplica- 
tion. In fact, half of all duplicate responses come from URLs 
that give rise to at least 406 different duplicate responses (i.e., 
the median of the nonzero duplication counts is 406). Also, 
most duplication is limited to a very small subset of the server 
hosts in the trace. 

These results and others suggest that one could predict, 
based on content-type, server host, or other factors, whether a 
response is likely to experience duplication. This would allow 
the server to avoid sending digest hints except in cases where 
they would probably pay off. 

Summary 
This article has surveyed a number of techniques for better 
exploiting the bits in HTTP caches. How do these techniques 
compare? Table 1 summarizes the trade-offs for each tech- 
nique on five metrics: latency, bandwidth requirements, cache 
coherency, CPU time (on servers, proxies, and clients), and 
proxy RAM requirements. The last column lists the contexts 
in which each approach appears to be most applicable. The 
table entries are guesses, at best, pending more extensive 
studies. 

Note that most of the entries in Table 1 do not affect cache 
coherency. Several techniques to  improve HTTP cache 
coherency have been proposed [55, 561. Because current 
methods for avoiding incoherency often disable caching, these 
new techniques may enable improvements on other metrics. 
For example, if more cache entries are known to be coherent, 
this should provide more opportunities for delta encoding and 
partial transfers. 

Conclusions 
HTTP caching remains a fertile area for both research and 
development of commercial products and services. Web 
caching researchers initially focused on replacement policies 
and cooperative caching, but these lines of research may be 

nishing returns. The wide variety of recent pro- 
rove the effectiveness of Web caches suggests 

that the space of possible solutions has not yet been fully 
explored. Even for the techniques described in this article, we 
still lack sufficient understanding of their utility, and how best 
to implement and deploy them. 
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