Alkynylic S_{RN}1 Reaction: Feasible or Not?

Carlo Galli* and Patrizia Gentili

Dipartimento di Chimica and Centro CNR Meccanismi di Reazione, Università La Sapienza, P.Ie A. Moro 5, 00185 Roma, Italy

A comparison of the relative propensity of aryl-, vinyl-, and ethynyl-halides towards a S_{RN}1 reaction is made possible by an investigation of some nucleophilic reactions with bromophenylethyne.

Our recent quest for a S_{RN} 1-like nucleophilic reaction of vinyl halides¹ has prompted an extension of the study to the less investigated ethynyl halides. The reduction potentials of the ethynyl halides favour the S_{RN} 1 pathway, as can be seen from the series PhBr, -2.9; PhCH=CHBr, -2.27; PhC=CBr, -2.11 V (vs. SCE);² this suggests a relatively easy reduction of bromophenylethyne 1 in the S_{RN} 1 initiation step.

To check this expection, 1 was synthesised³ and treated with a threefold excess of the enolate ion of pinacolone 2 in Me₂SO under either photostimulation or iron(π) ion catalysis.⁴ In both cases, and after a short reaction time (10 min) at room temp., 1 disappeared to yield PhC=CH (3, 60–80%), along with smaller amounts of 4 (10–20%) and 5 (6–10%) [eqn. (1)].

$$PhC \equiv CBr + {}^{-}CH_{2}COCMe_{3} \rightarrow PhC \equiv CH + 1 2 3$$

$$PhC \equiv C-C(Me)CMe_{3} + |$$

$$OH 4$$

$$PhCH = CHCH_{2}COCMe_{3} 5$$

$$(1)$$

In the analogous reaction with 2, β -bromostyrene has already been reported to give 3 by a α , β -elimination (Scheme 1);¹ subsequent addition of the conjugate base of phenylacetylene to the ketone and protonation gives 4, while addition of 2 to 3 and protonation affords 5. However, the latter compound is also formed by the competing S_{RN}1 reaction.¹

It is therefore conceivable that, following formation of 3 from 1 [eqn. (1)], partial conversion of it into 4 and 5 can occur, according to Scheme 1. Analogous reactions [see eqn. (1)] of 1 with either $(EtO)_2PO^-$ or $PhCOCH_2^-$ 6 as nucleophiles under iron(11) catalysis or photostimulation gave instead only 3, in quantitative yield.

A better appreciation of the origin of 3 comes from other reactions carried out on 1 with 6, instead of 2. Partial incorporation (15%) of deuterium in 3 occurred when the reaction was conducted in (CD₃)₂SO while a moderate increase (30%) of incorporation was obtained in the presence of small amounts of a radical scavenger. It appears therefore that photostimulated or iron(II) induced ET from the nucleophile Y⁻ to 1 (a step inhibited by the scavenger) does occur to produce 1^{-} , which fragments to PhC=C·; abstraction of hydrogen (or deuterium) from the solvent leads to 3 in a ECC process. However, interception and reduction of PhC≡ C by further ET may afford PhC \equiv C, which protonates to 3 in a ECEC process. In addition, a blank reaction with ButOalone, which is the base used in slight excess to generate the anions (Y-), shows that 1 can suffer efficient Br+-abstraction to produce PhC= C^- , which protonates to give 3 (ca. 75% in 10) min); this ionic pathway, which is unaffected by the electronscavenger, is not available to the enolate ion, or at least not with comparable efficiency (Scheme 2).

In no cases was the $S_{RN}1$ substitution product (*i.e.* PhC=CY) observed from 1. This finding is in sharp contrast to the fact that an aryl halide such as PhBr gives only $S_{RN}1$ substitution and no reduction of the halogen.⁵ Consistently, also vinyl halides other than β -bromostyrene, *i.e.* structurally unable to any competing α,β -elimination and ensuing pathways thereafter (Scheme 1), did give unambiguous $S_{RN}1$ substitution as the major pathway, accompanied by minor amounts of hydrodehalogenation.^{1b} In comparison to this behaviour of the aryl and vinyl halides, the X+-abstraction step by the base, as also the 'two-electron' reduction occurring with the ethynyl halide, both processes affording the carbanion PhC=C⁻, can reflect the relative stability (pK_a) of the conjugate base of the parent hydrocarbons Ph⁻ and PhCH=CH⁻ (*ca.* 42–44),⁶ PhC=C⁻ (28.7).⁷

In conclusion, the initial ET-induced dehalogenation of 1 is followed by further reduction of the alkynylic radical intermediate to PhC=C⁻, the latter deriving also from a competing X⁺-removal step due to the slight excess of the base (ButO⁻).

Received, 23rd May 1994; Com. 4/03062A

References

- (a) C. Galli and P. Gentili, J. Chem. Soc., Chem. Commun., 1993, 570; (b) C. Galli, P. Gentili and Z. Rappoport, submitted to J. Org. Chem.
- 2 P. Gentili, work in progress; E^{p} values at 500 mV s⁻¹ in THF.
- 3 H. Hofmeister, K. Annen, H. Laurent and R. Wiechert, Angew. Chem., Int. Ed. Engl., 1984, 23, 727.
- 4 C. Galli and P. Gentili, J. Chem. Soc., Perkin Trans. 2, 1993, 1135. 5 J. F. Bunnett, Acc. Chem. Res., 1978, 11, 413.
- 6 A. Streitwieser, Jr., P. J. Scannon and H. M. Niemeyer, J. Am. Chem. Soc., 1972, 94, 7936; M. J. Maskornick and A. Streitwieser, Jr., Tetrahedron Lett., 1972, 1625.
- 7 F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.