CRYSTAL AND MOLECULAR STRUCTURE OF 1,1-BIS(HYDROXYPHENYL)-3-KETOISOINDOLINE.
S. V. Lindeman, S. A. Siling, Yu. T. Struchkov, and S. V. Vinogradova

The structure of the condensation product of phthalonitrile and phenol is found by x-ray structure analysis. The structure of a new class of polyheteroarylenes, polhydroxyphenylisoindazenes, is defined using the data obtained.

Earlier we demonstrated [1] that polymers with hydroxyphenyl substituents on the chain, polyhydroxyphenylisoindazenes (PHI) are formed by polycondensation of tetranitriles of tetracarboxylic acids and weakly basic $\left(\mathrm{pK}_{a} \leq 2.7\right)$ diamines in phenol.

It can be assumed from the literature [2] that the hydroxy groups are located in the
 was investigated to define the structure of the PHI. In particular, the first step is condensation of phthalonitrile with phenol.

(I)

However, it is very difficult to isolate 1,1-bis(hydroxyphenyl)isoindoline from the reaction mixture since it self-condenses as soon as it forms, according to the scheme

The hydrolysisis of I, I, l-bis(hydroxyphenyl)-3-ketoisoindoline (II), could be isolated as single crystals by reacting phthalonitrile with phenol containing traces of water. It was identified by x-ray structure analysis (XSA).

EXPERIMENTAL

1,1-Bis(hydroxypheny1)-3-ketoisoindoline. A solution of phthalonitrile (0.5 g) in phenol (10 ml) was kept for 10 h at $175^{\circ} \mathrm{C}$. A mixture of benzene:petroleum ether ($1: 1$ by volume)

[^0]TABLE 2. Bond Lengths (\AA) and Angles (deg)

Bond	${ }^{d}$	Bond	${ }^{1}$	Angle	φ	Angle	\%	Angle	${ }^{*}$
$\mathrm{O}^{1-\mathrm{C}}$	1.237 (7)	C^{16} - C^{221}	1,379(8)	$\mathrm{O}^{1} \mathrm{CO} \mathrm{N}^{2}$	125,6(5)	$\mathrm{C}^{4} \mathrm{C}^{9} \mathrm{C}^{8}$	122,3(6)	$\mathrm{C}^{29} \mathrm{C}^{29} \mathrm{C}^{21}$	120,9
$\mathrm{C}^{1} \cdot \mathrm{~N}^{2}$	1.331 (2)	$\mathrm{Ca}^{17}-\mathrm{O}^{17}$	1,392 (7)	$0^{\prime} \mathrm{C}^{1} \mathrm{C}^{9}$	128.2 (5)	$\mathrm{Ca}^{3} \mathrm{C}^{19} \mathrm{C}^{11}$	121,0(5)	$\mathrm{C}^{16} \mathrm{C}^{21} \mathrm{C}^{20}$	120,1
$\mathrm{C}^{1}-\mathrm{C}^{3}$	1,477 (8)	$\mathrm{C}^{17}-\mathrm{C}^{18}$	1,366(9)	$\mathrm{Na}_{2} \mathrm{C}^{1} \mathrm{C}^{8}$	106,2 (5)	$\mathrm{C}^{3} \mathrm{C}^{19} \mathrm{C}^{515}$	120,4(5)		112,0
$\mathrm{N}^{2}-\mathrm{C}^{3}$	1.189(7)	$\mathrm{O}^{17}-\mathrm{H}^{1017}$	1,25(1)	$\mathrm{C}^{1} \mathrm{~N}^{2} \mathrm{C}^{3}$	116,2 (5)	$\mathrm{C}^{14} \mathrm{C}^{10} \mathrm{C}^{15}$	118,4(5)	$0^{1 A} \mathrm{C}^{1 A} \mathrm{C}^{2 A}$	122,3
$\mathrm{N}^{2}-\mathrm{H}^{\mathrm{Na}}$	0.92 (5)	$\mathrm{C}^{18} \ldots \mathrm{C}^{19}$	1,377 (9)	$\mathrm{C}^{1} \mathrm{~N}^{2} \mathrm{H}^{\mathrm{N}}$	120 (3)	$\mathrm{C}^{19} \mathrm{C}^{4} \mathrm{C}^{12}$	120,8(5)	$0^{14} \mathrm{C}^{1 \Lambda} \mathrm{C}^{6 \Lambda}$	115,7
$\mathrm{C}^{3}-\mathrm{C}^{\text {a }}$	1,541(8)	$\mathrm{C}^{19}-\mathrm{C}^{20}$	1,377 (9)	$\mathrm{C}^{3} \mathrm{~N}^{2} \mathrm{I}^{\text {N2 }}$	124 (3)	$\mathrm{C}^{48} \mathrm{C}^{12} \mathrm{C}^{13}$	118,7(5)	$\mathrm{C}^{2 A} \mathrm{C}^{\text {A }}$, ${ }_{\text {a }}{ }^{\text {a }}$	122,0
$\mathrm{Ci}^{3}-\mathrm{C}^{10}$	1,535 (8)	$\mathrm{C}^{20}-\mathrm{C}^{\text {ar }}$	1,367(9)	$\mathrm{N}^{2} \mathrm{C}^{3} \mathrm{C}^{4}$	98,0(4)	$\mathrm{C}^{22} \mathrm{C}^{13} \mathrm{O}^{13}$	120,8(5)	$\mathrm{C}^{1 A} \mathrm{c}^{2 \lambda} \mathrm{C}^{3 A}$	117,5
$\mathrm{C}^{3}-\mathrm{C}^{16}$	1,561 (8)	$0^{1 A} \ldots \mathrm{C}^{1 \Lambda}$	1,405(8)	$\mathrm{N}^{2} \mathrm{C}^{3} \mathrm{C}^{10}$	109,9(4)	$\mathrm{C}^{12} \mathrm{C}^{31} \mathrm{C}^{14}$	122,3(5)	$\mathrm{C}^{2 A} \mathrm{C}^{33} \mathrm{C}^{\text {A }}$	121,3
$\mathrm{C}^{4}-\mathrm{C}^{5}$	1,391 (8)	$\mathrm{O}^{14}-\mathrm{HI}^{\mathrm{O}^{\text {A }}}$	1,34(5)	$\mathrm{N}^{2} \mathrm{C}^{3} \mathrm{C}^{16}$	108,5(4)	$0^{13} \mathrm{C}^{13} \mathrm{C}^{14}$	116,9(5)	$\mathrm{C}^{3 \lambda} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}$	117,5
$\mathrm{C}^{4}-\mathrm{C}^{9}$	1,376(8)	$\mathrm{Cl}^{14}-\mathrm{C}^{\text {g }}$	1,366(9)	$\mathrm{C}^{4} \mathrm{C}^{9} \mathrm{C}^{10}$	111.2 (5)	$\mathrm{C}^{19} 0^{13} 1^{1013}$	$114(3)$	$\mathrm{C}^{4 \wedge} \mathrm{C}^{5 /} \mathrm{C}^{81}$	123,7
$\mathrm{CF}^{5}-\mathrm{C}^{6}$	1.388 (8)	$\mathrm{C}^{14} \ldots \mathrm{C}^{6 \lambda}$	1,386(9)	$\mathrm{C}^{6} \mathrm{C}^{3} \mathrm{C}^{19}$	115,0(5)	$\mathrm{C}^{12} \mathrm{O}^{11} \mathrm{C}^{15}$	119,4(5)	$\mathrm{C}^{1 A} \mathrm{C}^{6} \mathrm{C}^{5} \mathrm{C}^{5 A}$	117,6
$\mathrm{CB}^{8}-\mathrm{C}^{7}$	1,387 (9)		1,39(1)	$\mathrm{C}^{10} \mathrm{C}^{3} \mathrm{C}^{16}$	113,1(5)	$0^{10} \mathrm{c}^{4} \mathrm{c}$	120,7(5)	$\left.\mathrm{C}^{18}\right)^{13} \mathrm{I}^{\text {O1B }}$	122,0
$\mathrm{Cl}^{7}-\mathrm{C}^{8}$	1,385 (8)	$\mathrm{C}^{\text {A }}$ - $\mathrm{Cl}^{\text {A }}$	1,38(1)	$\mathrm{C}^{3} \mathrm{C}^{4} \mathrm{C}^{5}$	127,2(5)	$\mathrm{C}^{3} \mathrm{C}^{1 / \mathrm{C}} \mathrm{C}^{17}$	120.3(5)	$\mathrm{o}^{18} \mathrm{C}^{18} \mathrm{C}^{23}$	119,7
$\mathrm{C}^{8}-\mathrm{C}^{3}$	1,378(8)	$C^{4.1}-C^{54}$	1,35(1),	$\mathrm{C}^{3} \mathrm{C}^{4} \mathrm{C}^{9}$	110,9(5)	$\mathrm{C}^{2} \mathrm{C}^{18} \mathrm{C}^{21}$	121,3(5)	$0^{18} \mathrm{C}^{18} \mathrm{C}^{6 B}$	116,9
$\mathrm{C}^{10}-\mathrm{C}^{11}$	1,384 (8)	$\mathrm{C}^{5,}$ - $\mathrm{C}^{6 A}$	1,339 (9)	$\mathrm{C}^{6} \mathrm{C}^{6} \mathrm{C}^{9}$	121,9(5)	$\mathrm{C}^{17} \mathrm{C}^{16} \mathrm{C}^{24}$	118,4(5)	$\mathrm{C}^{2 \mathrm{~B}} \mathrm{C}^{18} \mathrm{C}^{6 \mathrm{~B}}$	123,3
$\mathrm{C}^{\prime \prime}-\mathrm{C}^{15}$	1,395 (8)	(1) ${ }^{18} \mathrm{C}^{18}$	1,103(8)	$\mathrm{CO}^{4} \mathrm{Cb}$	115,9(5)	$\mathrm{C}^{18} \mathrm{C}^{7} \mathrm{Cl}^{17}$	117.3(6)	$\mathrm{C}^{18} \mathrm{C}^{28 \mathrm{~B}} \mathrm{C}^{31}$	116,2
$\mathrm{C}^{11} \ldots \mathrm{C}^{12}$	1,394(8)	$0^{18} \ldots \mathrm{H}^{\mathrm{OXB}}$	0,34(5)	$\mathrm{C}^{6} \mathrm{C}^{6} \mathrm{C}^{7}$	121,9(6)	$\mathrm{C}^{16} \mathrm{C}^{17} \mathrm{C}^{18}$	121,8(5)	$\mathrm{C}^{2 \mathrm{~B}} \mathrm{C}^{3 \mathrm{~B}} \mathrm{C}^{4 \mathrm{~B}}$	123,5
$\mathrm{C}^{12}-\mathrm{C}^{13}$	1,349(8)	$\mathrm{C}^{18}-\mathrm{C}^{2 \mathrm{~B}}$	1,35(1)	$\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8}$	121,6(6)	$0^{17} \mathrm{C}^{17} \mathrm{C}^{18}$	121,0(5)	$\mathrm{C}^{3 \mathrm{~B}} \mathrm{C}^{4 \mathrm{~B}} \mathrm{C}^{58}$	117,9
$\mathrm{C}^{13}-0^{13}$	1,367(7)	$\mathrm{C}^{1 \mathrm{~B}}-\mathrm{C}^{6 \mathrm{~B}}$	1,38(1)	$\mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{9}$	116,4(6)	$\mathrm{C}^{17} \mathrm{O}^{17} \mathrm{I}^{1017}$	$97(2)$	$\mathrm{C}^{4 \mathrm{~B}} \mathrm{C}^{5 \mathrm{~B}} \mathrm{C}^{6 B}$	121,9
$\mathrm{C}^{13}-\mathrm{C}^{16}$	1,372 (8)	$\mathrm{C}^{2 \mathrm{~B}}-\mathrm{C}^{3 \mathrm{~B}}$	1,33(1)	$\mathrm{C}^{1} \mathrm{C}^{9} \mathrm{C}^{4}$	108,5(5)	$\mathrm{C}^{17} \mathrm{C}^{18} \mathrm{C}^{19}$	118,9(6)	$\mathrm{C}^{18} \mathrm{C}^{68} \mathrm{C}^{5 B}$	117,2
$0^{13}-\mathrm{H}^{013}$	0,83(5)	$\mathrm{C}^{3 \mathrm{~B}} \ldots \mathrm{C}^{14}$	1,35(1)	$\mathrm{C}^{1} \mathrm{C}^{9} \mathrm{C}^{8}$	$129.2(5)$	$\mathrm{C}^{18} \mathrm{C}^{19} \mathrm{Can}$	120,0(6)		
$\mathrm{C}^{16}-\mathrm{C}^{45}$	1,370(9)	$\mathrm{C}^{4 \mathrm{~B}}-\mathrm{C}^{5 \mathrm{~B}}$	1,36(1)						
$\mathrm{C}^{16-\mathrm{C}^{17}}$	1,301 (7)	$\mathrm{C}^{5 \mathrm{~B}}$ - $\mathrm{CbB}^{\text {b }}$	1,33(1)						

Fig. 1. Structure of II. The intramolecular H -bond is shown by a dashed line.
was then added. The precipitate was filtered off. Crystals of II were separated from the blue precipitate.

The crystals are monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}, a=9.717(1)$, $\mathrm{b}=10.084(1), \mathrm{c}=$ $27.066(1) \AA, \beta=95.82(1)^{\circ}, Z=4\left(I I \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right), \mathrm{V}=2638.4(8) \AA^{3}, \mathrm{~d}_{\mathrm{calc}}=1.279 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The unit-cell constants and intensities of reflections were measured on a Hilger-Watts Y-290 automatic four-circle diffractometer (λ Mo $\mathrm{K} \alpha$, graphite monochromator, $\theta / 2 \theta$-scanning, $\theta_{\max }=$ 27°). The structure was solved by direct methods (MULTAN programs) and refined by blockdiagonal anisotropic least squares (LS) for the nonhydrogen atoms. The H atoms in the benzene rings were assigned geometrically. Their positions were not refined but were readjusted after each LS cycle and included in the calculation of $F_{\text {calc }}$ with $B_{i s o}=5.0 \AA^{2}$. The H atoms of hydroxyl and imino groups were found in a difference Fourier synthesis and were included in the LS refinement with fixed $B_{\text {iso }}=5.0 \AA^{2}$. The final $R=0.042$ and $R_{w}=0.031$ for 1184 unique reflections with $I \geq 2 \sigma$.

All calculations were performed on an Eclipse S/200 computer using INEXTL programs [3]. The atomic coordinates are given in Table l; geometric parameters, in Table 2. The molecular structure of II is shown in Fig. 1.

RESULTS AND DISCUSSION

The x-ray structure investigation found that II is 1-(4-hydroxypheny1)-1-(2-hydroxy-pheny1)-3-ketoisoindoline, which crystallizes as the molecular complex with phenol (1:2).

The bond lengths and angles in II (Table 2) are close to their usual values [4]. The bicyclic isoindoline backbone is in fact planar. The deviations of its atoms from the leastsquares plane are less than 0.047 (6) \AA. The observed orientation of the 2 -hydroxypheny 1 substituent, which is characterized by torsion angles $C^{4}-C^{3}-C^{16}-C^{17} 159.7(8)^{\circ}$, is controlled by the formation of an intramolecular H-bond $\mathrm{N}^{2}-\mathrm{H}^{2} \ldots \mathrm{O}^{17}$ [$\mathrm{N} \ldots \mathrm{O}$ 2.716(6), H...O2.27(5) \AA, angle $\mathrm{N}-\mathrm{H} \ldots \mathrm{CO} 110(4)^{\circ} \mathrm{J}$. The other 4 -hydroxyphenyl substituent is oriented perpendicular to the neighboring aromatic systems. It forms dihedral angles 86.2° with the isoindoline fragment and 81.6° with the 2 -hydroxyphenyl group. Apparently this minimizes intramolecular steric hindrances.

A chain along the Y axis in the crystal of II is formed by intermolecular H-bonds
 by H -bonds $\mathrm{O}^{17}-\mathrm{H}^{\mathrm{O}^{17}} \ldots .01^{\prime \prime}\left[0 \ldots \mathrm{O} 2.686(6) \AA, \mathrm{H} \ldots \mathrm{O} 1.53(5) \AA\right.$, angle $0-\mathrm{H} \ldots \mathrm{O}$ 138(5) ${ }^{\circ}$]. Phenol molecules are bonded to each other $\left[0^{1 \mathrm{~A}} \ldots 0^{1 B} 2.790(7) \AA\right]$ and to 0^{13} of the hydroxyl group of II [$0^{1 \mathrm{~A}} \ldots 0^{13} 2.650(6) \AA$], forming double chains of II. A six-membered heterocycle is formed by H -bond $\mathrm{H}^{\mathrm{N}^{2}} \ldots \mathrm{O}^{17}$ and not $\mathrm{N}^{2} \ldots \mathrm{H}^{\mathrm{O}^{17}}$. This indicates that the unshared electron pair of N^{2} is conjugated in the isoindoline.

The results obtained enabled the structure of the polycondensation products of tetranitriles of tetracarboxylic acids and weakly basic diamines to be defined. The PHI are thought to have the structure

We have found that the luminescence quantum yield of a solution of PHI based on pyromellitonitrile and 2,7-dimethyl-3,6-diaminoacridine is 50%, i.e., it seems anomalously high for a polymer with flexible side groups. The data obtained in the present work suggest that the reason for the high luminescence quantum yield is the decrease of intramolecular flexibility in the polymeric chain owing to formation of intramolecular H-bonds and the limited flexibility of the hydroxyphenyl side groups.

The presence of hydroxy groups in the o-position enables the PHI to be viewed as macromolecular ligands and makes them promising as starting materials for synthesizing macromolecular metal complexes.

LITERATURE CITED

1. S. A. Siling, S. V. Vinogradova, B. N. Feofanov, et al., Dokl. Akad. Nauk SSSR, 299, No. 3, 633 (1988).
2. K. K. Bartlett, L. V. Renny, and K. K. Chan, J. Chem. Soc. C, No. 1, 129 (1969).
3. R. G. Gerr, A. I. Yanovskii, and Yu. T. Struchkov, Kristallografiya, 28, No. 5, 1029 (1983).
4. F. H. Allen, 0. Kennard, D. G. Watson, et al., J. Chem. Soc., Perkin Trans. 2, No. 12, S1 (1987).

[^0]: A. N. Nesmeyanov Institute of Organoelemental Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 27922796, December, 1991. Original article submitted September 18, 1990; revision submitted April 4, 1991.

