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1. Introduction

Troels Jørgensen conjectured that the algebraic and geometric limits of an

algebraically convergent sequence of isomorphic Kleinian groups agree if there are no

new parabolics in the algebraic limit. We prove that this conjecture holds in ‘most ’

cases. In particular, we show that it holds when the domain of discontinuity of the

algebraic limit of such a sequence is non-empty (see Theorem 3.1). We further show,

with the same assumptions, that the limit sets of the groups in the sequence converge

to the limit set of the algebraic limit. As a corollary, we verify the conjecture for

finitely generated Kleinian groups which are not (non-trivial) free products of surface

groups and infinite cyclic groups (see Corollary 3.3). These results are extensions of

similar results for purely loxodromic groups which can be found in [4]. Thurston [32]

previously established these results in the case when the Kleinian groups are freely

indecomposable (see also Ohshika [24, 25, 27]). Using different techniques from ours,

Ohshika [26] has proven versions of these results for purely loxodromic function

groups.

2. Preliminaries

The purpose of this section is to describe the background material used in this

paper.

2.1. Con�ergence of Kleinian groups

A Kleinian group is a discrete subgroup of PSL
#
(C), which we view as acting either

on hyperbolic 3-space H$ via isometries or on the Riemann sphere C- via Mo$ bius

transformations. The action of Γ partitions C- into the domain of discontinuity Ω(Γ),

which is the largest open subset of C- on which Γ acts properly discontinuously, and

the limit set Λ(Γ). A Kleinian group is non-elementary if its limit set contains at least

three points, and is elementary otherwise. A Kleinian group is elementary if and only

if it is virtually abelian; recall that a group is �irtually abelian if it contains a finite

index abelian subgroup. We refer the reader to Maskit [22] for a more detailed

discussion of the theory of Kleinian groups.

It is often convenient to view a Kleinian group as the image of a discrete, faithful

representation of a group into PSL
#
(C). Given a finitely generated group G, let $(G)

denote the space of all discrete, faithful representations of G into PSL
#
(C). A sequence
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²ρ
j
´ in $(G) converges algebraically to ρ if ²ρ

j
(g)´ converges to ρ(g) for each g `G.

It is a fundamental result of Jørgensen [14] that $(G) is a closed subset of

Hom(G, PSL
#
(C)) when G is finitely generated and not virtually abelian.

An isomorphism α :ΦMNΘ between Kleinian groups Φ and Θ is type-preser�ing

if } is parabolic if and only if α(}) is parabolic for all } `Φ. More generally, an

algebraically convergent sequence ²ρ
j
´Z$(G) with limit ρ `$(G) is type-preserving

if ρ
j
a ρ−" :ρ(G)MN ρ

j
(G) is type-preserving for all j.

A sequence ²Γ
j
´ of Kleinian groups converges geometrically to a Kleinian group

Γ# if every element of Γ# is the limit of a sequence ²γ
j
`Γ

j
´ and if every accumulation

point of every sequence ²γ
j
`Γ

j
´ lies in Γ# . We make use of the following proposition,

which states that algebraically convergent sequences in $(G) have geometrically

convergent subsequences.

P 2.1 (Jørgensen and Marden [15, Proposition 3.8]). If G is not

�irtually abelian and ²ρ
j
´Z$(G) is an algebraically con�ergent sequence with limit ρ,

then there exists a subsequence ²ρ
jk

´ of ²ρ
j
´ so that ²ρ

jk

(G)´ con�erges geometrically to

a Kleinian group Γ# with ρ(G)ZΓ# .

A sequence of closed sets ²X
j
´ in C- con�erges in the Hausdorff topology to a closed

set X in C- if every point of X is the limit of a sequence of points ²x
j
`X

j
´ and if every

accumulation point of a sequence ²x
j
`X

j
´ is contained in X. With this topology, the

collection of non-empty closed subsets of C- is compact. Convergence of closed sets

is always assumed to be in the Hausdorff topology.

If ²ρ
j
´Z$ converges algebraically to ρ and ²ρ

j
(G)´ converges geometrically to

ρ(G), we say that ²ρ
j
´ converges strongly to ρ. It is conjectured that if G is not virtually

abelian and if ²ρ
j
´Z$(G) converges algebraically to ρ, then ²Λ(ρ

j
(G))´ converges to

Λ(ρ(G)) if and only if ²ρ
j
´ converges strongly to ρ. We make use of the following

partial result in the direction of this conjecture.

P 2.2 (Jørgensen and Marden [15, Proposition 4.2]). Let G be a

finitely generated group which is not �irtually abelian. If ²ρ
j
´Z$(G) con�erges

algebraically to ρ `$(G), Ω(ρ(G)) is non-empty, and ²Λ(ρ
j
(G))´ con�erges to Λ(ρ(G)),

then ²ρ
j
´ con�erges strongly to ρ.

The following lemma indicates the geometric significance, on the level of the

quotient manifolds, of the geometric convergence of a sequence of Kleinian groups.

(For a proof, see Canary, Epstein and Green [10, Theorem 3.2.9] and Benedetti and

Petronio [6, Theorem E.1.13, Remark E.1.19].) Let 0 denote a fixed choice of

basepoint for H$, and let B
R
(0) denote the ball of radius R centered at 0.

L 2.3. A sequence of torsion-free Kleinian groups ²Γ
j
´ con�erges geo-

metrically to a torsion-free Kleinian group Γ# if and only if there exists a sequence

²(R
j
,K

j
)´ and a sequence of maps fh

j
:B

Rj

(0)MNH$ such that

(1) R
j
!¢ and K

j
! 1 as j!¢ ;

(2) the map fh
j
is a K

j
-bilipschitz diffeomorphism onto its image, fh

j
(0)¯ 0, and for

any compact subset A of H$, ² fh
j
r
A
´ con�erges to the identity;

(3) if V
j
¯B

Rj

(0)}Γ
j
, then V

j
is a submanifold of N

j
¯H$}Γ

j
and fh

j
descends to a

map f
j
:V

j
MNNW , where NW ¯H$}Γ# ; moreo�er, f

j
is also a K

j
-bilipschitz diffeomorphism

onto its image.
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2.2. Types of Kleinian groups

Given a set XZH$eC- and a Kleinian group Γ, define the stabilizer of X in Γ

to be
stΓ(X )¯²γ `Γ :γ(X )¯X ´.

A component subgroup of Γ is the stabilizer in Γ of a component ∆ of Ω(Γ). A set

XZH$eC- is precisely in�ariant under a subgroup Φ of Γ if stΓ(X )¯Φ and if Xfγ(X )

is empty for all γ `Γ®Φ.

There are several classes of Kleinian groups of particular interest in our paper. A

quasifuchsian group is a finitely generated Kleinian group whose limit set is a Jordan

curve and which contains no element interchanging the components of its domain of

discontinuity, while an extended quasifuchsian group is a finitely generated Kleinian

group whose limit set is a Jordan curve and which does contain an element

interchanging the components of its domain of discontinuity. Note that an extended

quasifuchsian group contains a canonical quasifuchsian subgroup of index 2,

namely the component subgroup associated to either of the components of its domain

of discontinuity.

A degenerate group is a finitely generated Kleinian group whose domain of

discontinuity and limit set are both non-empty and connected. A web group is a

finitely generated Kleinian group whose domain of discontinuity contains infinitely

many components, and each component subgroup is quasifuchsian. A finitely

generated Kleinian group is a generalized web group if it is quasifuchsian,

extended quasifuchsian or a web group.

The convex core C(N ) of a hyperbolic 3-manifold N¯H$}Γ is the quotient of the

convex hull CH(Λ(Γ)) of the limit set of Γ by Γ. (The convex core can also be defined

to be the smallest convex subset of N whose inclusion is a homotopy equivalence.) A

finitely generated Kleinian group is geometrically finite if its convex core has finite

volume. A torsion-free Kleinian group is topologically tame if its quotient 3-manifold

N¯H$}Γ is homeomorphic to the interior of a compact 3-manifold. We note that

geometrically finite Kleinian groups are topologically tame (see Marden [18]). A

theorem of Scott [29] guarantees that any hyperbolic 3-manifold with finitely

generated fundamental group contains a compact submanifold, called a compact core,

whose inclusion is a homotopy equivalence. It is conjectured (see Marden [18]) that

every hyperbolic 3-manifold with finitely generated fundamental group is homeo-

morphic to the interior of its compact core, and hence topologically tame.

2.3. Decompositions of Kleinian groups

In Section 3, we make use of two related decompositions, due to Abikoff and

Maskit [1], of a finitely generated, torsion-free Kleinian group. We first discuss how

a non-elementary, finitely generated, torsion-free Kleinian group with connected limit

set and non-empty domain of discontinuity can be built from generalized web groups

and degenerate groups without accidental parabolic elements. We then discuss the

decomposition of a finitely generated Kleinian group into groups with connected limit

sets and elementary groups.

We begin with a few definitions. Let Γ be a torsion-free Kleinian group, and let

γ `Γ be a parabolic element. A cusp region for γ is a closed Jordan domain D which

is precisely invariant under ©γª in Γ and intersects Λ(Γ) only at the fixed point of γ.

Note that this immediately implies that γ is primitive in Γ and that γ cannot lie in a
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rank 2 abelian subgroup of Γ. The interior of a cusp region descends to a punctured

disc neighborhood of a cusp on the Riemann surface Ω(Γ)}Γ.

As the choice of a cusp region is by no means canonical, we introduce a notion

of equivalence. Say that cusp regions D and D« for parabolic elements γ and γ« of Γ

are equi�alent if their images on Ω(Γ)}Γ are neighborhoods of the same cusp on

Ω(Γ)}Γ. This implies in particular that γ and γ« are conjugate in Γ ; we note that the

converse need not hold, as a single primitive parabolic element may stabilize two

inequivalent cusp regions.

Let Γ be a non-elementary, finitely generated, torsion-free Kleinian group with

connected limit set ; in particular, every component of Ω(Γ) is simply connected. Let

∆ be a component of Ω(Γ), and let Φ¯ stΓ(∆) be its component subgroup. By the

classical uniformization theorem for Riemann surfaces, there exists a conformal

homeomorphism f :∆MNH#. The elements of fΦf −" are conformal homeomorphisms

of H#, and so are necessarily Mo$ bius transformations. An accidental parabolic

element θ of Φ is a parabolic element whose conjugate fθf −" by f is a primitive

hyperbolic element of fΦf −". Denoting by l the line in H# joining the fixed points of

fθf −", we define the axis of θ to be cθ ¯ f −"(l ) and the full axis of θ to be the Jordan

curve Cθ ¯ cθefix(θ) ; for a detailed discussion of accidental parabolics, we refer the

reader to Maskit [22, particularly Chapter IX.D.10]. By construction, cθ is precisely

invariant under Θ¯©θª in Γ, and Cθ separates Λ(Φ), and hence separates Λ(Γ).

Before describing the decomposition of a Kleinian group along an accidental

parabolic element, we make a couple of remarks. First, a given parabolic element of

Γ may lie in several component subgroups, being accidental in some and not

accidental in others ; hence we use the convention that whenever we refer to an

accidental parabolic element of Γ, we actually refer to the parabolic element along

with the implicit choice for the component of Ω(Γ) containing its axis. Second, a

primitive parabolic element of a Kleinian group which keeps invariant a component

of the domain of discontinuity must either be accidental in that component or must

have a cusp region in that component. Third, a finitely generated, non-elementary

Kleinian group with connected limit set and non-empty domain of discontinuity

contains no accidental parabolic elements if and only if it is either a degenerate group

without accidental parabolics or a generalized web group (this follows immediately

from Maskit [20, Theorem 4]).

Given an accidental parabolic element θ of Γ with full axis Cθ, let P
"
and P

#
be the

two components of C- ®Γ(Cθ) which contain Cθ in their boundaries, and let Γ
m

be the

stabilizer of P
m

in Γ. Let E
"
and E

#
be the closed discs in C- determined by Cθ, labeled

so that Cθ separates the interior of E
m

from P
m
.

Suppose that P
"
and P

#
are not equivalent under Γ. In this case, we say that Cθ is

a separating full axis for θ, and we refer to Γ
"
and Γ

#
as the factor subgroups of this

decomposition. It is easy to show that Γ is generated by its factor subgroups Γ
"
and

Γ
#
, that both factor subgroups are non-elementary and finitely generated, that Γ

"
f

Γ
#
¯©θª, and that Cθ is precisely invariant under ©θª in Γ

m
for both m. The statement

of the Klein–Maskit combination theorem of type I given below, adapted from the

statement in Maskit [22], essentially states that this operation of decomposition can

be reversed.

Recall that a fundamental domain for a finitely generated Kleinian group Γ is an

open subset D of Ω(Γ) so that D is precisely invariant under the identity, every point

of Ω(Γ) is equivalent under the action of Γ to a point of Da and the boundary of D

is a finite collection of analytic arcs.
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T 2.4 (Klein–Maskit combination I). Let Γ
"

and Γ
#

be non-elementary,

finitely generated Kleinian groups whose intersection Γ
"
fΓ

#
is the parabolic cyclic

group ©θª. Let C be a Jordan cur�e in C- determining closed discs E
"
and E

#
, so that E

m

is a cusp region for θ in Γ
m
.

Then, the following hold. First, the group Γ¯©Γ
"
,Γ

#
ª is a Kleinian group

isomorphic to the amalgamated free product of Γ
"
and Γ

#
along ©θª. Second, if D

m
is

a fundamental domain for Γ
m

so that D
m
fE

m
is a fundamental domain for the action

of ©θª on E
m
, D

m
fE

$−m
has non-empty interior, and D

"
fCθ ¯D

#
fCθ, then D¯

(D
"
fE

#
)e(D

#
fE

"
) is a fundamental domain for the action of Γ. Third, e�ery cusp

region for Γ
m

which does not intersect any Γ
m
-translate of E

m
is a cusp region for Γ, and

e�ery cusp region for Γ is a cusp region for either Γ
"

or Γ
#
.

Suppose, on the other hand, that P
"

and P
#

are equivalent by ξ `Γ, so that

ξ(P
"
)¯P

#
. In this case we say that Cθ is a non-separating full axis for θ, and we refer to

Γ
#
and ©ξª as the factor subgroups of this decomposition. It is easy to show that Γ is

generated by its factor subgroups Γ
#
and ©ξª, that Γ

#
is finitely generated and non-

elementary, that Γ
#
fξ−"Γ

#
ξ¯©θª, and that Cθ is precisely invariant under ©θª in

Γ
#
(even though ξ(Cθ)fCθ may be non-empty if ξ and θ commute). The statement of

the Klein–Maskit combination theorem of type II, adapted from the statement in

Maskit [22], essentially states that this decomposition can be reversed.

T 2.5 (Klein–Maskit combination II). Let Γ! be a non-elementary, finitely

generated Kleinian group, and let ©θ
"
ª and ©θ

#
ª be parabolic cyclic subgroups of Γ!. Let

C
"

and C
#

be Jordan cur�es in C- so that, for both m, C
m

determines a closed disc E
m

which is a cusp region for ©θ
m
ª in Γ!. We also require that E

"
and E

#
are inequi�alent

cusp regions for Γ!. Let ξ be a MoX bius transformation so that ξθ
"
ξ−"¯ θ

#
, ξ(C

"
)¯C

#
,

and the image of the interior of E
"

under ξ is disjoint from the interior of E
#
.

Then, the following hold. First, the group ©Γ!, ξª is a Kleinian group isomorphic to

the HNN extension of Γ! by ξ. Second, if D! is a fundamental domain for Γ! so that

D!fE
m

is a fundamental domain for the action of ©θ
m
ª on E

m
and ξ(D

"
fC

"
)¯

D
#
fC

#
, then D¯D!fA is a fundamental domain for Γ, where A¯C- ®(E

"
eE

#
).

Third, e�ery cusp region for Γ! which does not intersect any Γ!-translate of E
"
or E

#
is

a cusp region for Γ, and e�ery cusp region for Γ is a cusp region for Γ!.

Abikoff and Maskit [1] showed that given a finitely generated, non-elementary

Kleinian group Γ with connected limit set and non-empty domain of discontinuity,

one can produce a finite collection ²Γ
"
,…,Γ

k
,Γ

k+"
,… ,Γ

l
´ of subgroups of Γ, where

Γ
i

is either a generalized web group or a degenerate group without accidental

parabolic elements for i%k, and Γ
i
is a cyclic group for i"k, so that Γ can be built

from ²Γ
"
,…,Γ

l
´ by repeatedly performing Klein–Maskit combinations of types I and

II. Specifically, set Γ"¯Γ
"
; for j%k, form Γj from Γj−" and Γ

j
by using a

Klein–Maskit combination of type I along a common parabolic cyclic subgroup of

Γj−" and Γ
j
, and for j"k, form Γj from Γj−" and Γ

j
by a Klein–Maskit combination

of type II, where the generator of Γ
j
pairs inequivalent cusp regions of Γj−". The final

result of this process Γl is the original group Γ.

Abikoff and Maskit [1] also showed that any torsion-free, finitely generated

Kleinian group with non-empty domain of discontinuity can be constructed from a

finite collection of elementary groups and groups with connected limit set by a finite
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number of applications of the Klein combination theorem. We recall the statement of

the Klein combination theorem below for reference, and refer the reader to Maskit

[22] for a complete discussion.

T 2.6 (Klein combination theorem). Let Γ
"

and Γ
#

be Kleinian groups

with non-empty domains of discontinuity, and suppose there exist fundamental domains

D
"

and D
#

for Γ
"

and Γ
#

so that each contains the exterior of the other. Then, Γ¯
©Γ

"
,Γ

#
ª is a Kleinian group isomorphic to the free product Γ

"
nΓ

#
, and D¯D

"
fD

#
is

a fundamental domain for Γ.

2.4. Relati�e compact cores and ends of Kleinian groups

A horoball in H$ is an open Euclidean ball (or half-space) B in H$ whose

(Euclidean) closure in H$eC- intersects C- in a single point, which is the center of the

horoball. A precisely in�ariant system of horoballs ( for a Kleinian group Γ is a Γ-

invariant collection of disjoint horoballs centered at parabolic fixed points of Γ, such

that there is one based at every parabolic fixed point. It is a consequence of the

Margulis lemma (see Benedetti and Petronio [6] or Maskit [22]) that every Kleinian

group has a precisely invariant system of horoballs. Given a precisely invariant

system of horoballs ( for Γ, set N( ¯ (H$®()}Γ.

A relati�e compact core of N( is a compact submanifold M of N( so that the

inclusion of M into N( is a homotopy equivalence and so that ¦M intersects every

non-compact component of ¦N( in an incompressible annulus and contains every

toroidal component of ¦N(. (Results of McCullough [23] or Kulkarni and Shalen [17]

guarantee that N( has a relative compact core whenever π
"
(N ) is finitely generated.)

Set P¯ ¦Mf¦N(. The ends of N( are in one-to-one correspondence with the

components of ¦M®P (see Bonahon [7]). An end E of N( is geometrically finite if it

has a neighborhood U such that UfC(N )¯W, and is geometrically infinite

otherwise. We also refer to the corresponding components of ¦M®P as geometrically

finite or geometrically infinite.

The following generalization of Thurston’s covering theorem [32] appears in [9].

T 2.7. Let N¯H$}Γ be a topologically tame hyperbolic 3-manifold which

co�ers another hyperbolic 3-manifold NW by a local isometry π :NMNNW , and suppose

that Ω(Γ) is non-empty. If E is a geometrically infinite end of N(, then E has a

neighborhood U such that π is finite-to-one on U.

The relative compact core encodes much of the structure of the Kleinian group.

For example, a finitely generated, torsion-free Kleinian group Γ with associated

relative compact core (M,P) has connected limit set if and only if every geometrically

finite component of ¦M®P is incompressible. In this language, an accidental

parabolic gives rise to an essential annulus A in M which has one boundary

component in P and the other in a geometrically finite component of ¦M®P. If Γ has

connected limit set, then the non-cyclic subgroups in the Abikoff–Maskit de-

composition of Γ are simply the fundamental groups of the components of M®!,

where ! is a maximal collection of disjoint, non-parallel essential annuli associated

to accidental parabolics. If Γ has disconnected limit set, the non-cyclic subgroups in

an Abikoff–Maskit decomposition of Γ into groups with connected limit set and
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elementary groups arise as fundamental groups of components of M®#, where # is

a maximal collection of disjoint, non-parallel compressing discs for (M,P) whose

boundary curves lie in geometrically finite components of ¦M®P.

3. The main results

In this section we prove our main result, namely that a type-preserving sequence

converges strongly, under the assumption that the domain of discontinuity of the

algebraic limit is non-empty.

T 3.1. Let G be a finitely generated, torsion-free group, and let ²ρ
j
´Z

$(G) be a type-preser�ing sequence con�erging algebraically to ρ `$(G). If Ω(ρ(G)) is

non-empty, then ²ρ
j
´ con�erges strongly to ρ and ²Λ(ρ

j
(G))´ con�erges to Λ(ρ(G)).

Before beginning the proof, we recall the statement of [4, Theorem F].

T 3.2 [4, Theorem F]. Let G be a finitely generated, torsion-free, non-

abelian group and let ²ρ
j
´ be a sequence in $(G) con�erging to ρ. If Λ(ρ(G))¯C- and

G is not a non-tri�ial free product of (orientable) surface groups and cyclic groups, then

²ρ
j
´ con�erges strongly to ρ. Moreo�er, ²Λ(ρ

j
(G))´ con�erges to Λ(ρ(G))¯C- .

Combining Theorem 3.1 with the above theorem yields the following immediate

corollary.

C 3.3. Let G be a finitely generated, torsion-free group, and let ²ρ
j
´Z

$(G) be a type- preser�ing sequence con�erging algebraically to ρ. If G is not a (non-

tri�ial ) free product of (orientable) surface groups and infinite cyclic groups, then ²ρ
j
´

con�erges strongly to ρ and ²Λ(ρ
j
(G))´ con�erges to Λ(ρ(G)).

We further note that we obtain the same conclusion if we replace the group-

theoretic assumption in the statement of the corollary with the weaker topological

assumption that the relative compact core of the algebraic limit is not a relative

compression body. For a discussion of the relation between the group-theoretic and

topological conditions, we refer the reader to [4, Section 11].

Proof of Theorem 3.1. The proof divides naturally into three steps. In Step 1, we

show that Theorem 3.1 holds in the case when ρ(G) is a generalized web group,

a degenerate group without accidental parabolics or an elementary group. In Step 2,

we show that Theorem 3.1 holds in the case when ρ(G) has connected limit set, using

the result of Step 1 and the Abikoff–Maskit decomposition of ρ(G) into generalized

web groups, degenerate groups without accidental parabolic elements and elementary

groups. In Step 3, we pass from the case of connected limit set to the general case,

making use of the Abikoff–Maskit decomposition of a torsion-free finitely generated

Kleinian group into groups with connected limit sets and elementary groups.

Step 1: We recall that Thurston [32] and Kerckhoff and Thurston [16] established

Theorem 3.1 in the case when the algebraic limit is a degenerate group without

accidental parabolic elements. One can obtain this by combining [32, Theorem

9.6.1] (Thurston) with [16, proof of Corollary 2.2] (Kerckhoff and Thurston) ; see

also Ohshika [27, Corollary 6.1].
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We next establish Theorem 3.1 for generalized web groups.

P 3.4. Let G be a finitely generated, torsion-free, non-abelian group,

and let ²ρ
j
´Z$(G) be a type-preser�ing sequence con�erging algebraically to ρ. If ρ(G)

is a generalized web group, then ²ρ
j
´ con�erges strongly to ρ and ²Λ(ρ

j
(G))´ con�erges

to Λ(ρ(G)).

Proof. Let Γ! be a geometrically finite subgroup of ρ(G). Since each ρ
j
a ρ−" is

type-preserving, Marden’s quasiconformal stability theorem [18, Proposition 9.1]

implies that Γ!
j
¯ ρ

j
a ρ−"(Γ!) is geometrically finite and quasiconformally conjugate

to ρ(G) for sufficiently large j. In particular, there exists a sequence ²φ
j
´ of k

j
-

quasiconformal maps of C- converging to the identity map, with ²k
j
´ converging to 1,

so that ρ
j
a ρ−"(γ)¯φ

j
a γ aφ−"

j
for all γ `Γ!. One sees immediately that ²Γ!

j
´ converges

geometrically to Γ! and that ²Λ(Γ!
j
)´ converges to Λ(Γ!). Hence Theorem 3.1 holds

whenever ρ(G) is geometrically finite, and in particular for ρ(G) quasifuchsian or

extended quasifuchsian.

Suppose now that ρ(G) is a web group. Proposition 2.2 implies that it suffices to

prove that ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)). If ²Λ(ρ

j
(G))´ does not converge to

Λ(ρ(G)), then there exists a subsequence of ²ρ
j
´, again called ²ρ

j
´, so that ²Λ(ρ

j
(G))´

converges to a set Λ# which contains Λ(ρ(G)) as a proper subset. In particular, there

must exist a quasifuchsian component subgroup of ρ(G) whose limit set separates Λ# .
Proposition 2.1 implies that we may pass to a further subsequence of ²ρ

j
´, still called

²ρ
j
´, such that ²ρ

j
(G)´ converges geometrically to a Kleinian group Γ# . The definitions

of geometric and Hausdorff convergence imply that Λ(ρ(G))ZΛ(Γ# )ZΛ# .
Let x `Λ# ®Λ(ρ(G)), let ∆ be the component of Ω(ρ(G)) which contains x, and set

Φ¯ stρ(G)
(∆), so that Λ(Φ) separates Λ# . Set Φ

j
¯ ρ

j
a ρ−"(Φ). Since ρ(G) is a web

group, Φ is quasifuchsian, and hence geometrically finite. Let ²φ
j
´ be the sequence of

quasiconformal maps conjugating Φ
j
to Φ produced in the first paragraph of this

proof. Since Λ(Φ) separates Λ# , ²Λ(ρ
j
(G))´ converges to Λ# , and ²φ

j
´ converges to

the identity map, we see that Λ(Φ
j
)¯φ

j
(Λ(Φ)) separates Λ(ρ

j
(G)) for all sufficiently

large j.

Recall that a spanning disc for the quasifuchsian subgroup Φ of the Kleinian

group ρ(G) is a properly embedded open disc D in H$ which is precisely invariant

under Φ in ρ(G) and which extends to a closed disc Da in H$eC- with boundary Λ(Φ).

Let N¯H$}ρ(G) and N# ¯H$Γ## , and π :NMNNW and pW :H$MNNW be the associated

covering maps. It is shown in the proof of [4, Proposition 6.1] that, for any

algebraically convergent sequence in $(G) whose algebraic limit is a web group, such

as ρ(G), and for any component subgroup of ρ(G), such as Φ, there exists a spanning

disc D for Φ and a compact core M for N such that π is an embedding restricted to M,

pW (D) is a properly embedded surface in NW , and π(M ) is disjoint from pW (D).

Set N
j
¯H$}ρ

j
(G). Let ²V

j
ZN

j
´ and ² f

j
:V

j
MNNW ´ be the sequence of

submanifolds and K
j
-bilipschitz diffeomorphisms produced by Lemma 2.3. Since

π(M ) lies in f
j
(V

j
) for all sufficiently large j, the submanifold M

j
¯ f−"

j
(π(M )) of N

j
is

defined. In [4, Corollary C], we observe that M
j
is a compact core for N

j
for all

sufficiently large j.

One may extend each φ
j

to a L
j
-bilipschitz diffeomorphism ψ

j
:H$MNH$

conjugating the action of Φ to the action of Φ
j
(see Douady and Earle [11], Reimann

[28] or Tukia [33]) in such a way that ²L
j
´ converges to 1 and ²ψ

j
´ converges to the
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identity map. Let D
j
¯ψ

j
(D), and note that D

j
is a properly embedded open disc in

H$ which is invariant under Φ
j
and which extends to a closed disc in H$eC- with

boundary Λ(Φ
j
). However, D

j
need not be a spanning disc for Φ

j
, as it need not be

precisely invariant under Φ
j
in ρ

j
(G).

We next show that p
j
(D

j
) is disjoint from M

j
for sufficiently large j, where

p
j
:H$MNN

j
is the covering map. Choose δ" 0 so that min

x`π(M)
inj

N
W (x)" 3δ. Since

f
j
:V

j
MNNW is K

j
-bilipschitz and ²K

j
´ converges to 1, we see that min

x`Mj

inj
Nj

(x)" 2δ

for sufficiently large j.

Let XZD denote the set of points for which there exists a non-trivial γ `Φ such

that d(x, γ(x))! δ, and let Y¯D®X. Consider the subsets Y
j
¯ψ

j
(Y ) and X

j
¯

ψ
j
(X ) of D

j
. For each x `X

j
, there exists a non-trivial γ

j
`Φ

j
so that d(x, γ

j
(x))!

L
j
δ. Since L

j
δ!min

x`Mj

inj
Nj

(x) for sufficiently large j, p
j
(X

j
) is disjoint from M

j
.

Moreover, since pW (Y ) is compact and is disjoint from π(M ), and since both ² f
j
´ and

²ψ
j
´ converge to the identity map, p

j
(Y

j
) is disjoint from M

j
for sufficiently large j. This

completes the proof that p
j
(D

j
) is disjoint from M

j
for sufficiently large j.

We now assume that we have chosen j large enough so that Λ(Φ
j
) separates

Λ(ρ
j
(G)), M

j
is a compact core for N

j
, and p

j
(D

j
) is disjoint from M

j
. Since Λ(Φ

j
)

separates Λ(ρ
j
(G)) and since pairs of fixed points of loxodromic elements of ρ

j
(G) are

dense in Λ(ρ
j
(G))¬Λ(ρ

j
(G)) (see [22, Proposition V.E.5]), there exists a hyperbolic

element γ
j
` ρ

j
(G) whose fixed points are separated by Λ(Φ

j
). If C

j
is the closed

geodesic in N
j
which is the projection of the axis of γ

j
, then every curve homotopic

to C
j
must intersect p

j
(D

j
). However, since M

j
is a compact core for N

j
which is

disjoint from p
j
(D

j
), there exists a curve in M

j
which is homotopic to C

j
and disjoint

from p
j
(D

j
). This contradiction establishes the result. *

We note the following corollary of the proof of Proposition 3.4.

C 3.5. Let G be a finitely generated, torsion-free, non-abelian group, and

let ²ρ
j
´Z$(G) be a type-preser�ing sequence con�erging algebraically to ρ. Suppose

that ρ(G) is a generalized web group, and let Φ be a component subgroup of ρ(G). Then

Φ
j
¯ ρ

j
a ρ−"(Φ) is quasifuchsian and is a component subgroup of ρ

j
(G) for all sufficiently

large j.

We complete Step 1 by establishing Theorem 3.1 for torsion-free elementary

groups, under the additional assumption that the limit representation ρ is discrete

and faithful.

L 3.6. Let G be a free abelian group of rank at most 2, and let ²ρ
j
´ be a

type-preser�ing sequence in $(G) con�erging algebraically to ρ `$(G). Then ²ρ
j
´

con�erges strongly to ρ.

Proof. Suppose there exists a sequence of non-trivial elements ²g
j
´ of G so that

²ρ
j
(g

j
)´ converges to a Mo$ bius transformation γ. We wish to show that γ ` ρ(G). We

begin by noting that fix(γ)¯Λ(ρ(G)), for otherwise, the fixed point set fix(ρ
j
(g

j
)) of

ρ
j
(g

j
) would be distinct from Λ(ρ

j
(G)) for all sufficiently large j, which cannot occur.

Suppose that G¯©gª is infinite cyclic and that ρ(g) is loxodromic. As G is cyclic,

we may write g
j
¯gnj for n

j
`Z. Since ²ρ

j
(g)´ converges to ρ(g), and since ρ

j
(g) is

loxodromic for all j and ρ(g) is loxodromic, there exists a sequence of Mo$ bius

transformations ²β
j
´ converging to the identity so that the axis of β

j
ρ
j
(g) β−"

j
in H$ is
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equal to the axis l of ρ(g) in H$ for all j. Since ²β
j
´ converges to the identity,

²β
j
ρ
j
(g

j
) β−"

j
´ converges to γ, and so the translation length of β

j
ρ
j
(g

j
) β−"

j
along l

converges to the translation length of γ.

If ²n
j
´ is not bounded, there exists a subsequence of ²n

j
´, again called ²n

j
´,

converging to either ¢ or ®¢. Since the translation length of ρ
j
(g

j
) is n

j
times the

translation length of β
j
ρ
j
(g) β−"

j
, we see that the translation length of β

j
ρ
j
(g) β−"

j
along

l converges to zero, and so ρ(g) fixes l pointwise. In particular, ρ(g) is either the

identity or elliptic. However, ρ(g) cannot be the identity, as this would contradict the

faithfulness of ρ. Also, ρ(g) cannot be elliptic, as this would contradict either the

faithfulness of ρ if ρ(g) has finite order or the discreteness of ρ(G) if ρ(g) has infinite

order. This contradiction gives that ²n
j
´ is bounded. If ²n

j
´ is not eventually constant,

there exist two subsequences with limits m1 n, and so there are two subsequences

of ²ρ
j
(g

j
)´ whose limits are ρ(g)m and ρ(g)n, which cannot occur. Hence ²n

j
´ is

eventually constant, and so γ ` ρ(G).

The proof in the case that ρ(G) is a parabolic subgroup is similar. Suppose that

G is infinite cyclic and ρ(g) is parabolic. Since ²ρ
j
(g)´ converges to ρ(g), and since ρ

j
(g)

is parabolic for all j and ρ(g) is parabolic, there exists a sequence of Mo$ bius

transformations ²β
j
´ converging to the identity so that β

j
ρ
j
(g) β−"

j
¯ ρ(g) for all j.

Normalizing so that ρ(g) (z)¯ z­1 and writing g
j
¯ gnj for n

j
`Z, we see that

β
j
ρ
j
(g

j
) β−"

j
(z)¯ z­n

j
. Since ²β

j
ρ
j
(g

j
) β−"

j
´ converges to a Mo$ bius transformation γ,

it is easy to see that ²n
j
´ must eventually be constant, and so γ ` ρ(G).

In the case when G has rank 2, choose generators a and b. Since ρ
j
(a) and ρ

j
(b)

are parabolic for all j, and since ρ(a) and ρ(b) are parabolic, there exists a sequence

of Mo$ bius transformations ²β
j
´ converging to the identity so that β

j
ρ
j
(a) β−"

j
¯ ρ(a)

for all j. Normalizing so that ρ(a) (z)¯ z­1, we see that β
j
ρ
j
(b) β−"

j
(z)¯ z­τ

j
and

ρ(b) (z)¯ z­τ, where ²τ
j
´ converges to τ and τ has non-zero imaginary part. Write

g
j
¯ anjbmj for n

j
, m

j
`Z, so that β

j
ρ
j
(g

j
) β−"

j
(z)¯ z­n

j
­m

j
τ
j
. Since ²β

j
ρ
j
(g

j
) β−"

j
´

converges to a Mo$ bius transformation γ, it is easy to see that both ²n
j
´ and ²m

j
´

must eventually be constant, and so γ ` ρ(G). *

Step 2: In this step, we establish Theorem 3.1 in the case in which the algebraic

limit ρ(G) has connected limit set. As we have already shown that Theorem 3.1 holds

for elementary groups, generalized web groups, and degenerate groups without

accidental parabolics, it will suffice to show that it is preserved by Klein–Maskit

combination along a parabolic cyclic subgroup.

In order to cleanly handle comparisons of cusp regions of the limit of a convergent

sequence and of the approximates, we use the fact that we are working with type-

preserving sequences to make a convenient normalization. Let ²ρ
j
´Z$(G) be a type-

preserving sequence converging algebraically to ρ, and let ρ(h) be a primitive

parabolic element of ρ(G). Since ²ρ
j
(h)´ is a sequence of parabolic Mo$ bius

transformations converging to ρ(h), there exists a sequence ²β
j
´ of Mo$ bius

transformations converging to the identity so that β
j
ρ
j
(h) β−"

j
(z)¯ ρ(h) for all j. Since

²β
j
´ converges to the identity, the modified sequence ²β

j
ρ
j
β−"

j
´ has the same algebraic

limit as the original sequence ²ρ
j
´, namely ρ, and the geometric limit of ²β

j
ρ
j
(G) β−"

j
´

is equal to the geometric limit of the original sequence ²ρ
j
(G)´ if the geometric limit

exists. Hence, we may replace the original sequence with the modified sequence

without effect. We refer to this process as normalizing the sequence about ρ(h).

We now wish to describe what we mean by cusp regions persisting in the

approximates. Let ²ρ
j
´Z$(G) be a type-preserving sequence converging to ρ and let
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DZΩ(ρ(G)) be a cusp region for ρ(h). We say that D persists in the approximates if,

whenever ²ρ
j
´ is normalized about ρ(h) to obtain a new sequence ²ρ!

j
´, D is a cusp

region for ρ!
j
(h) for all sufficiently large j.

In order to show that the conclusions of Theorem 3.1 are preserved under the

application of the Klein–Maskit combination theorems, we need to carry along the

information about the persistence of cusp regions. We begin by showing in

Proposition 3.7 that cusp regions persist in the approximates for degenerate groups

without accidental parabolic elements and for generalized web groups. In Proposition

3.9, we show that if ρ(G) is obtained from ρ(G
"
) and ρ(G

#
) by Klein–Maskit

combination along an accidental parabolic element, and if ²Λ(ρ
j
(G

m
))´ converges to

Λ(ρ(G
m
)) and all cusp regions of ρ(G

m
) persist in the approximates for both m, then

²Λ(ρ
j
(G))´ converges to Λ(ρ(G)), ²ρ

j
´ converges strongly to ρ, and all cusp regions of

ρ(G) persist in the approximates. Combining these two propositions, we construct an

inductive proof of Theorem 3.1 in the case when ρ(G) has connected limit set.

P 3.7. Let G be a finitely generated, torsion-free group, and let ²ρ
j
´Z

$(G) be a type-preser�ing sequence con�erging algebraically to ρ `$(G). Suppose that

ρ(G) is degenerate without accidental parabolics, generalized web, or elementary. Then,

cusp regions persist in the approximates.

Proof. We begin by noting that we have already shown that ²ρ
j
´ converges

strongly to ρ and that ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)). Let D be a cusp region for the

primitive parabolic ρ(h). We assume that the sequence ²ρ
j
´ is normalized about ρ(h).

In the case when ρ(G) is elementary, there is nothing to prove. Hence we may assume

that ρ(G) is either degenerate without accidental parabolics or generalized web.

Let c¯ ¦DfΩ(ρ(G)). The first key observation is that c lies in Ω(ρ
j
(G)) and is

precisely invariant under ©ρ
j
(h)ª in ρ

j
(G) for sufficiently large j. As this argument is

used later, we state it as a lemma.

L 3.8. Let G be a finitely generated, torsion-free, non-abelian group, and let

²ρ
j
´Z$(G) be a type-preser�ing sequence con�erging strongly to ρ such that ²Λ(ρ

j
(G))´

con�erges to Λ(ρ(G)). Suppose that D is a cusp region for ρ(G) associated to the

primiti�e parabolic element ρ(h), that ²ρ
j
´ is normalized about ρ(h), and set c¯

¦DfΩ(ρ(G)). Then, for sufficiently large j, c lies in Ω(ρ
j
(G)) and is precisely in�ariant

under ©ρ
j
(h)ª in ρ

j
(G).

Proof. We may assume that ρ(h) (z)¯ z­1. Choose a point z on c, and let c
f
be

the closed arc in c joining z to z­1, so that the interior of c
f
is a fundamental domain

for the action of ©ρ(h)ª on c. Since c
f
is compact and since ²Λ(ρ

j
(G))´ converges to

Λ(ρ(G)), we see that c
f
lies in Ω(ρ

j
(G)) for sufficiently large j, and hence that c lies in

Ω(ρ
j
(G)) for sufficiently large j.

In order to show that c is precisely invariant under ©ρ
j
(h)ª in ρ

j
(G), we need to

make use of a standard con�ergence property for Mo$ bius transformations, which we

describe here. Let K be a compact set in C- and let ²M
j
´ be a sequence of distinct

Mo$ bius transformations so that KfM
j
(K ) is non-empty for all j. Then there exists

a subsequence of ²M
j
´, again called ²M

j
´, so that either there exists a sequence of

points ²x
j
`fix(M

j
)´ converging to a point in K or ²M

j
´ converges to a Mo$ bius

transformation (see Marden [19] or Gehring and Martin [13]).
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If c is not precisely invariant under ©ρ
j
(h)ª in ρ

j
(G) for all sufficiently large j, there

exists a sequence ²g
j
´ of elements of G®©hª so that cfρ

j
(g

j
) (c) is non-empty for

infinitely many j. We may pre- and post-multiply each g
j
by appropriate powers of h

to produce a sequence ²g!
j
´ of elements of G®©hª so that c

f
fρ

j
(g!

j
) (c

f
) is non-empty

for infinitely many j. The convergence property for Mo$ bius transformations implies

that there exists a subsequence of ²ρ
j
(g!

j
)´, again called ²ρ

j
(g!

j
)´, for which either there

exist points ²x
j
`Λ(ρ

j
(G))´ converging to a point in c

f
, or ²ρ

j
(g!

j
)´ converges to a

Mo$ bius transformation γ. In the latter case, note that c
f
fγ(c

f
) is necessarily non-

empty.

The former case cannot occur, as ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)), which is

disjoint from c
f
. The latter case cannot occur, as the precise invariance of c under

©ρ(h)ª in ρ(G) and the strong convergence of ²ρ
j
´ to ρ together imply that γ¯ ρ(hn)

for some n1 0; [15, Lemma 3.6] (Jørgensen and Marden) then implies that g!
j
¯ hn for

all sufficiently large j, contradicting our assumption that g!
j
does not lie in ©hª. *

We now show that D persists in the approximates. Suppose first that ρ(G) is a

degenerate group without accidental parabolics. As each isomorphism ρ
j
a ρ−" :

ρ(G)MN ρ
j
(G) is type-preserving and Ω(ρ

j
(G)) is non-empty for all large enough j,

Maskit [21, Theorem 6] gives that, for all large enough j, ρ
j
(G) does not contain

accidental parabolic elements. However, since c is precisely invariant under ©ρ
j
(h)ª

in ρ
j
(G) for all sufficiently large j, by Lemma 3.8, we see that either D is a cusp region

for ρ
j
(h) in ρ

j
(G), or C¯ cefix(ρ(h)) separates Λ(ρ

j
(G)), in which case ρ

j
(h) is an

accidental parabolic element of ρ
j
(G). As the latter case cannot occur, it must be that

D is a cusp region for ρ
j
(h) in ρ

j
(G) for all sufficiently large j.

Suppose now that ρ(G) is a generalized web group, let ∆ be the component of

Ω(ρ(G)) containing D, and let Φ¯ stρ(G)
(∆). By Lemma 3.8, we know that c lies in

Ω(ρ
j
(G)) and is precisely invariant under ©ρ

j
(h)ª for all sufficiently large j. By

Corollary 3.5, Φ
j
¯ ρ

j
a ρ−"(Φ) is a quasifuchsian component subgroup of ρ

j
(G),

stabilizing the component ∆
j
of ρ

j
(G). Since ²Λ(Φ

j
)¯ ¦∆

j
´ converges to Λ(Φ)¯ ¦∆,

we see that c is contained in ∆
j
for j sufficiently large. Since quasifuchsian component

subgroups cannot contain accidental parabolic elements (see Maskit [20, Theorem

4]), the Jordan curve C¯ ¦D cannot separate Λ(ρ
j
(G)), and so D is a cusp region for

ρ
j
(h) in ρ

j
(G) for all sufficiently large j. *

The following proposition shows that the conclusions of Theorem 3.1 are

preserved by Klein–Maskit combination along a cyclic parabolic subgroup.

P 3.9. Let G be a finitely generated, torsion-free, non-abelian group,

and let ²ρ
j
´Z$(G) be a type-preser�ing sequence con�erging algebraically to ρ with

Ω(ρ(G)) non-empty. Suppose that Θ¯©ρ(h)ª is an accidental parabolic subgroup of

ρ(G), and that ρ(G
"
) and ρ(G

#
) are the factor subgroups of the Klein–Maskit

decomposition of ρ(G) along Θ. If ²Λ(ρ
j
(G

m
))´ con�erges to Λ(ρ(G

m
)) for both m and

if all cusp regions for ρ(G
m
) persist in the approximates, then ²ρ

j
´ con�erges strongly to

ρ, ²Λ(ρ
j
(G))´ con�erges to Λ(ρ(G)), and all cusp regions for ρ(G) persist in the

approximates.

Proof. We begin by showing that ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)). Proposition

2.2 then implies the strong convergence of ²ρ
j
´ to ρ. In order to show that the limit
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sets converge, we first show that the approximates are also Klein–Maskit

combinations along (the same) cyclic parabolic subgroup. We use this to construct

explicit fundamental domains for the approximates which can be used to show that

the limit sets converge. We then show that the cusp regions for ρ(G) persist in

the approximates. The details for the two Klein–Maskit combinations are similar ;

we give full details for the case of a Klein–Maskit combination of type I, and briefly

sketch the argument for a Klein–Maskit combination of type II at the end of the

proof.

If ²Λ(ρ
j
)´ does not converge to Λ(ρ(G)), we may pass to a subsequence so that

²Λ(ρ
j
(G))´ converges to a closed set Λ# containing Λ(ρ(G)) as a proper subset. Without

loss of generality, we may assume that ²ρ
j
´ is normalized about ρ(h) and that ρ(h) (z)¯

z­1. Let c be the axis of ρ(h) and let C¯ ce²¢´ be the full axis of ρ(h). Let E
"

and E
#

be the two closed discs in C- determined by C, labeled so that E
m

is a cusp

region for ρ(h) in ρ(G
m
).

Since cusp regions persist in the approximates for both ρ(G
m
), we have that E

m
is

a cusp region for ρ
j
(h) in ρ

j
(G

m
) for both m and for all sufficiently large j. Therefore,

ρ
j
(G) is formed from ρ

j
(G

"
) and ρ

j
(G

#
) by a Klein–Maskit combination of type I along

C for all sufficiently large j.

Choose a point z on c and consider the open vertical band V in C whose two

bounding lines pass through z and z­1. For both m, we can choose a fundamental

domain Fm for ρ(G
m
) which lies in V and contains VfE

m
. Since ρ(G) is formed from

ρ(G
"
) and ρ(G

#
) by Klein–Maskit combination of type I along C, Theorem 2.4 assures

us that F¯F "fF # is a fundamental domain for ρ(G). Choose a point x `Λ# ®Λ(ρ(G))

which lies in the interior of F (noting that one may need to alter the choice of F to

guarantee that x lies in F rather than on its boundary). Let K be a compact set which

contains an open neighborhood of x and which is contained entirely in the interior

of F. Since K lies in F, it is precisely invariant under the identity in ρ(G).

By construction, K lies in the strip V. Combining the convergence property for

Mo$ bius transformations (see the proof of Lemma 3.8) with the assumptions that

²ρ
j
(G

m
)´ converges to ρ(G

m
) and ²Λ(ρ

j
(G

m
))´ converges to Λ(ρ(G

m
)), we see that K

lies in Ω(ρ
j
(G

m
)) and is precisely invariant under the identity in ρ

j
(G

m
) for sufficiently

large j. Moreover, since E
m

is precisely invariant under ©ρ
j
(h)ª in ρ

j
(G

m
) for

sufficiently large j, we may construct a fundamental domain Fm

j
for ρ

j
(G

m
) containing

both VfE
m

and K for sufficiently large j ; in particular, F"
j
fc¯F#

j
fc. Since ρ

j
(G) is

formed from ρ
j
(G

"
) and ρ

j
(G

#
) by Klein–Maskit combination of type I along C,

Theorem 2.4 implies that F
j
¯F"

j
fF#

j
is then a fundamental domain for ρ

j
(G) for

sufficiently large j.

Since ²Λ(ρ
j
(G))´ converges to Λ# , there exists a sequence of points ²x

j
`Λ(ρ

j
(G))´

converging to x. This implies that x
j
`KZF

j
ZΩ(ρ

j
(G)) for sufficiently large j, a

contradiction. Hence ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)), and so ²ρ

j
´ converges strongly

to ρ.

In order to complete the proof in the case of a Klein–Maskit combination of type

I, it remains only to argue that cusp regions for ρ(G) persist in the approximates. Let

D« be a cusp region for a primitive parabolic element ρ(g) of ρ(G). After suitably

normalizing, we first use Theorem 2.4 and our assumption that cusps persist in the

approximates of the factors to show that a cusp region D§ contained in D« (and

missing all translates of one of the cusp regions we are combining along) does persist

in the approximates. We then use the convergence property and the fact that limit sets

converge to show that D« itself must persist in the approximates.
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Let ²β
j
´ be a sequence of Mo$ bius transformations converging to the identity so

that β
j
ρ
j
(g) β−"

j
¯ ρ(g) for all j. Set ρ!

j
¯ β

j
a ρ

j
a β−"

j
, and let c

j
¯ β

j
(c) and Ej

m
¯ β

j
(E

m
)

for all j and for both m. Notice that, for all large enough j, Ej

m
is a cusp region for

ρ!
j
(h) in ρ!

j
(G

m
) and ρ!

j
(G) is a Klein–Maskit combination of type I of ρ!

j
(G

"
) and ρ!

j
(G

#
)

along ©ρ!
j
(h)ª with associated axis c

j
. Moreover, ²ρ!

j
´ converges strongly to ρ and

²Λ(ρ!
j
(G))´ converges to Λ(ρ(G)).

Let ξ be the fixed point of ρ(g), and let d «¯ ¦D«®²ξ ´. Lemma 3.8 implies that d «
is precisely invariant under ©ρ

j
(g)ª in ρ

j
(G) for sufficiently large j. By Theorem 2.4,

every cusp region for ρ(G) is a cusp region for either ρ(G
"
) or ρ(G

#
), and so we may

assume that D« is a cusp region for ρ(G
"
). Since we have assumed that cusp regions

for ρ
j
(G

"
) persist in the approximates, we see that D« is a cusp region for ρ!

j
(G

"
) for

all sufficiently large j. Moreover, since E
"
is not a cusp region for ρ(G), we see that D«

and E
"

are inequivalent cusp regions for ρ(G
"
), and hence that D« and E"

j
are

inequivalent cusp regions for ρ
j
(G

"
) for all sufficiently large j.

Let D§ZD« be a cusp region for ρ(g) in ρ(G
"
) which does not intersect any ρ(G

"
)-

translate of E
"
, and suppose that there exists a ρ!

j
(G

"
)-translate of Ej

"
which intersects

D§ for infinitely many j. Since D§ and Ej

"
are inequivalent for all sufficiently large j,

D§ cannot contain or be contained in any translate of Ej

"
. Hence d§¯ ¦D§fΩ(ρ!

j
(G

"
))

must intersect some ρ!
j
(G

"
)-translate of e§¯ ¦Ej

"
fΩ(ρ!(G

"
)) for infinitely many j.

This, however, can be ruled out by the argument in the proof of Lemma 3.8. Hence,

for all sufficiently large j, D§ does not intersect any ρ!
j
(G

"
)-translate of Ej

"
, and so

Theorem 2.4 guarantees that D§ is a cusp region for ρ!
j
(G) for sufficiently large j. That

is, D§ persists in the approximates of ρ(G).

Suppose that D« itself does not persist in the approximates of ρ(G). Then, for

infinitely many j, there exists g
j
`G®©gª such that ρ!

j
(g

j
) (D«) intersects D«. Since d «

is precisely invariant under ©ρ
j
(g)ª in ρ

j
(G) for sufficiently large j, this implies that

ρ
j
(g

j
) (ξ ) is contained in the interior of D« for infinitely many j. However, the

argument in the proof of Lemma 3.8 shows that D«®D§ZΩ(ρ
j
(G)) for all sufficiently

large j. (The key point is that there is a compact fundamental domain for the action

of ©ρ(g)ª on D«®int(D§), where int(D§) is the interior of D§.) Since D§ is a cusp region

for ρ
j
(G) for all sufficiently large j, we see that the interior of D« must be contained

in Ω(ρ
j
(G)) for all sufficiently large j, a contradiction. Hence D« is a cusp region for

ρ!
j
(G) for all sufficiently large j, and we have completed the proof of Proposition 3.9

in the case when ρ(G) is formed from ρ(G
"
) and ρ(G

#
) by a Klein–Maskit combination

of type I.

The proof in the case of Klein–Maskit combination of type II is quite similar.

Suppose that the factor subgroups of the decomposition are ρ(H ) and ©ρ(g)ª. Let C
"
,

C
#
, E

"
, E

#
, θ

"
¯ ρ(h

"
) and θ

#
¯ ρ(h

#
) be as in the statement of the Klein–Maskit

combination theorem of type II. We may assume that our sequence is normalized

about ρ(h
"
). Let c

m
¯C

m
fΩ(H ). Let c j

"
¯ c

"
, Ej

"
¯E

"
, c j

#
¯ ρ

j
(g) (c

"
) and Ej

#
¯

ρ
j
(g) (E

#
). By assumption, for sufficiently large j, Ej

m
is a cusp region for ρ

j
(h

m
) in ρ

j
(H ).

As before, we see that ρ
j
(G) is a Klein–Maskit combination of type II with factor

subgroups ρ
j
(H ) and ©ρ

j
(g)ª, for sufficiently large j, and that ²Λ(ρ

j
(G))´ converges to

Λ(ρ(G)). This again implies that ²ρ
j
´ converges strongly to ρ. The proof that cusp

regions persist in the approximates is also much as above. *

We are now prepared to establish Theorem 3.1 in the case when ρ(G) has

connected limit set. We suppose that ²ρ
j
´Z$(G) is a type-preserving sequence

converging algebraically to ρ, that Ω(ρ(G)) is non-empty, and that Λ(ρ(G)) is
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connected. Let ²Γ
"
,…,Γ

k
,Γ

k+"
,… ,Γ

l
´ be the Abikoff–Maskit decomposition of ρ(G)

as described in Section 2.3, so that each Γ
i

is degenerate without accidental

parabolics, generalized web or cyclic. Let H
i
¯ ρ−"(Γ

i
). By the results of Step 1, each

of the restricted sequences ²ρ
j
r
Hi

´ converges strongly to ρr
Hi

and ²Λ(ρ
j
(H

i
))´ converges

to Λ(ρ(H
i
)). Proposition 3.7 implies that all cusp regions of ρ(H

i
) persist in the

approximates. We set Γ"¯Γ
"
, and recall that Γi is formed from Γi−" and Γ

i
by

Klein–Maskit combination along a parabolic cyclic subgroup of type I for 1% i%k

and of type II for k! i, and ρ(G)¯Γl. Let H i ¯ ρ−"(Γi). Applying Proposition 3.9

inductively shows, for all i, that ²ρ
j
r
H

i´ converges strongly to ρr
H

i, that ²Λ(ρ
j
(H i))´

converges to Λ(ρ(H i)), and that all cusp regions of ρ(H i) persist in the approximates.

This completes the proof in the case when ρ(G) has connected limit set.

Step 3: We conclude the proof of the theorem by considering the case in which

ρ(G) has disconnected limit set. In this case we may decompose ρ(G) into a finite

collection of subgroups, each of which either has connected limit set or is elementary,

so that ρ(G) is built up from the subgroups by repeatedly applying the operation of

Klein combination. One may then complete the proof of the theorem by applying the

following result from [4] finitely many times. *

P 3.10 [4, Proposition 10.2]. Let G be a finitely generated, torsion-free

group, and let ²ρ
j
´Z$(G) be a type-preser�ing sequence con�erging algebraically to

ρ `$(G). Suppose that Ω(ρ(G)) is non-empty and ρ(G) is obtained from ρ(G
"
) and ρ(G

#
)

by Klein combination. If ²Λ(ρ
j
(G

m
))´ con�erges to Λ(ρ(G

m
)) for both m, then ²ρ

j
´

con�erges strongly to ρ and ²Λ(ρ
j
(G))´ con�erges to Λ(ρ(G)).

4. Generalizations

One may use Selberg’s lemma (see Selberg [30]) and results of Jørgensen

and Marden to remove the assumption that G is torsion-free in the statement of

Theorem 3.1.

T 4.1. Let G be a finitely generated group and let ²ρ
j
´Z$(G) be a type-

preser�ing sequence con�erging algebraically to ρ `$(G). If Ω(ρ(G)) is non-empty, then

²ρ
j
´ con�erges strongly to ρ and ²Λ(ρ

j
(G))´ con�erges to Λ(ρ(G)).

Proof. Selberg’s lemma guarantees that there exists a finite index, torsion-free

subgroup H of G. Theorem 3.1 implies that ²ρ
j
r
H
´ converges strongly to ρr

H
and that

²Λ(ρ
j
(H ))´ converges to Λ(ρ(H )). Since Λ(ρ

j
(G))¯Λ(ρ

j
(H )) for all j and Λ(ρ(G))¯

Λ(ρ(H )), we see that ²Λ(ρ
j
(G))´ converges to Λ(ρ(G)). If G is not virtually abelian,

then Proposition 2.2 implies that ²ρ
j
´ converges strongly to ρ. If G is virtually abelian,

we may prove that ²ρ
j
´ converges strongly to ρ by extending the arguments given in

the proof of Lemma 3.6. *

We can similarly generalize Corollary 3.3 to obtain the following.

C 4.2. Let G be a finitely generated group and let ²ρ
j
´Z$(G) be a type-

preser�ing sequence con�erging algebraically to ρ. If G contains a finite index, torsion-
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free subgroup which is not a (non-tri�ial ) free product of (orientable) surface groups and

infinite cyclic groups, then ²ρ
j
´ con�erges strongly to ρ and ²Λ(ρ

j
(G))´ con�erges to

Λ(ρ(G)).
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