PROPELIANES-XXXVI

RFACTIONS OF BRIDGED [IO]ANNULENES WITH
 4-SUBSTITUTED-1.2.4-TRIAZOIINE-3.5-DIONES ${ }^{\dagger}$

P. Ashkenazl and D. Ginsblrg*
Department of Chemistry. Isracl Institute of Technology. Haifa. Istacl

and
F. Voxim

Institut für Organsche C'hemie. C'niversitāt Kön, Giermany
(Reccited in : K 27 September 1996. Accepled for publicution 16 , Nowember 1976)

Abstract

Methano-. 1,6-0xa-, 1,6-imino- and 1.6 -methylimino[10]annulene as well as several derivatives of the first-named compound react with + substituted-1.2.4-triazoline-3. - diones to give mono- andior bis-adducts. Altack apparently occurs from the side anti. to the bridging atom. Mass spectral results are reported for certain mixed di-adducts.

Since we appreciate the fact that bridged [10]annulenes are "open" [4.4.1]propellanes and that [4.4.1]propellanes are "closed" bridged [10]annulenes, we have decided to embark on a joint venture which would utilize these respective substrates for the benefit of increased understanding of both. Thus it has been possible with tetraenic propellanes to obtain bis-adducts with certain dienophiles. The fact that la is attacked by the dienophile cited in the title from above whilst II is attacked by the same dienophile from below has been explained by involving secondary orbital effects, interaction of carbonyl orbitals of la with lone pair orbitals of the dienophile, which stabilizes the transition state for attack from above.' Related methylimides are also attacked, apparently for the same reason, exclusively from above.' Meanwhile we have found also that Ib and III are attacked exclusively from above. 'The second equivalent of dienophile usually

attacks from above (in la with a selectivity of $3: 1$ in favor of attack from above; in II exclusively from above). No propellane substrate has as yet been found in which both equivalents of dienophile attack from below.

It might be expected that in 1,6 -methano(10)annulene steric hindrance exerted by the CH : hydrogens may cause attack by both moles of dienophile from below, if a bis-adduct could in fact be formed. The behavior of 1.6-imino and 1.6 -methylimino[10]annulene cannot be predicted with the same degree of certainty. Perhaps

[^0]certain 11.11-disubstituted-1.6-methano(10)annulenes may interact through secondary orbital effects with the dienophile and attack in wach cases may occur from above.
Bridged [10]annulenes have been shown to undergo Diels-Alder reaction with one mole of dienophile. ${ }^{\text {W We }}$ report herein our results employing 4 - phenyl - 1,2.4triazoline - 3.5-dione as a dienophile of rather higher reactivity. Since the adducts had rather low solubility we used as an additional dienophile the 4 -methyl analog: indeed the respective products had relatively greater solubility
We report herein our results with the parent compounds in the bridged [10]annulene series. i.e. 1. 4 and 6 containing a CH , bridge. the oxa-analog 9 and the iminoand methylimino compounds. 11 and 14 , respectively. Scheme I summarizes the results with respect to the carbocyclic starting materials.

It should be noted that in both bis-adducts 2a and 2 b the two cyclopropane protons exhibit a singlet in their NMR spectrum. Furthermore, there is one triplet corresponding to 4 vinylic protons rather than 2 triplets corresponding to 2 pairs of such protons. Similarly there is only one triplet, rather than two. corresponding to 4 allylic $\mathrm{C} \underline{\underline{N}} \mathrm{~N}$ protons. It is difficult to conceive of altack of 1 by either of the two dienophiles from above, syn-to the sterically hindering methylene bridge. But we are aware that difficulty in conception does not rule out occasional pregnant results. Thus, although we present some evidence below regarding this confgurational matter we shall eventually report X-ray structural results which will constitute unequivocal proof. Chemical proof has established the structure of the mono-adduct of 1 with maleic anhydride. ${ }^{4}$ The dienophile in that case attacks from below but at this juncture this supplies only support by analogy rather than absolute certainty. It is certain, however. that attack of 1.4, and 6 occurs from the same direction and that all of the mono-adducts represented as $\mathbf{3 , 5}$ and 7. respectively, are members of the same configurational family. This was shown by reduction of each of these to afford the same perhydro compound 8. They are in this wise represented

2

2a: $\mathrm{R}=\mathrm{Ph} \quad 33 \%$
b: R-Mc 7%
c: $\mathbf{R}=\mathbf{M c}, \mathrm{Ph}$

3a: $\mathrm{R}=\mathrm{Ph} \quad 20 \% \% \quad 45 \%$ PH: ${ }_{|c|}^{\mathrm{H}_{2}}$

8.: $R=P h$
b: $R=M c$

7a: R - $P h$
b: R • Mc

Scheme 1.
based on the logic which states: If 2 moles of dienophile attack from below then the first mole must also have attacked from below.

We had long looked forward to obtaining this type of propellane structure. For I and III had supplied us with bis-adducts with the dienophile rings syn. to the heterocyclic ring in the propellane precursor.' From II. and its sulfur analog' and from IV.' we had obtained bis-adducts in which one of the entering heterocyclic rings was disposed syn- with respect to the ether, thioether or cyclobutane ring, the others are anti-. In the present paper, apparently, we have for the first time two entering species anti- to the resulting cyclopropane ring. We have great expectations for such compounds, which we have already mentioned in print. ${ }^{\text {. }}$

Treatment of 3 b with 4 - phenyl-1.2.4-triazoline - 3.5 dione affords 2 c . However, the technical difficulties encountered in the purification of products were great in view of the type of experiment we wanted to do. We had observed in the mass spectral fragmentations of $\mathbf{2 a}$ and $\mathbf{2 b}$ fragments corresponding to $m / e 322$ and 198 , respectively (Scheme 2). We prepared $2 c$ hoping to obtain only the analogous fragment of $m / e 260$. The Table summarizes the results obtained for different samples of 2 c . It is not
surprising that 2 a exhibits only the ion $m / e 322$ as never in its history did it come into contact with 4 - methyl - 1,2,4triazoline - $\mathbf{3 . 5}$ - dione. Nor is it surprising that 2b exhibits only the ion $m / e 198$ as never in its history did it come into contact with 4 - phenyl - 1,2,4 - triazoline - 3,5-dione. Thus only ions of m/e 322 or 198, respectively, could be obtained from these whether by an intramolecular fragmentation mechanism or an intermolecular one.
But when we prepare $\mathbf{2 c}$ from $\mathbf{3 b}$, the product may be accompanied by some unreacted 3b which in turn was accompanied by $2 b$ and recovered 1 during its formation. It is conceivable that $2 c$ thus contains traces of $\mathbf{2 b}$ and traces of 2 a formed from 1 if this impurity remains in the 3b starting material. A similar situation may obtain when $2 c$ is prepared from 3a. The relative abundances of the ions $m / e 198,260$ and 322 shown in Table 1, as obtained from various samples of 2 c appear at first sight to indicate that an intermolecular mechanism accompanies the intramolecular one. We believe that despite difficulties in purification, no more than traces of 2 a and $\mathbf{2 b}$ can accompany 2c. Even though the statistical factor for intramolecular formation of ions of $m / e 198$ and 322 from $\mathbf{2 b}$ and 2 as . respectively is twice that operating of necessity in 2 c , to an ion $\mathrm{m} / \mathrm{e} 260$, we believe that purification was
$24 \rightarrow$ m/c $322(4) ; 177(6) ; 142(63) ; 141(87) ; 128(10) ; 119(100) ; 91$ (27).
$2 \mathrm{~b} \rightarrow \mathrm{~m} / \mathrm{e} 268$ (2.7); 254 (1.8); 198 (11):141 (100):128(9.8); 115 (35).
$2 x \rightarrow$ m/e M ${ }^{\cdot} 430(0.39) ; 322$ (2.9) 260 (10.4); 198 (3.8) 177 (11): 165
(1.1): 141 (27): 128 (9): 119 (100)

Relative abundances of ions from various samples of \boldsymbol{x}

m/e	198	260	322
	5.3	10	4.7
	6.3	10	2.8
	3.6	10	2.7
	5.5	10	3.5

Scheme 2.
efficient enough to exclude the possibility that relatively large amounts of $2 a$ and $2 b$ accompany $2 c$.

For the purely intermolecular reaction. unlikely though it is, one would expect the relative abundance of the ions $m / e 198.260$ and 322 to be in the ration of $1: 2: 1$. The table gives roughly, very roughly, the appearance of such a ratio. However, in view of the proximity of the triazolinedione rings in the structures, as represented, one would have expected a much higher relative abundance of the unsymmetrical ion, $m / e \mathbf{2 6 0}$. Thus these mass spectral results, though interesting. may be taken as proof for the existence of an intermolecular reaction rather than that for the configuration shown as evidenced by the expected intra molecular reaction. We do not exclude the possibility that some intramolecular reaction occurs but if it does it appears to be small. If the reaction had been mainly intramolecular we should have expected the data in the table to approximate not $1: 2: 1$ but rather $1: 10$ or more $: 1$.

One might explain the statistical ratio obtained by an even less reasonable sequence. The parent ion undergoes retro-Diels-Alder fragmentation to afford both excited N -methyl- and N -phenyl-triazolinedione and these react statistically in the mass spectrometer to give the ions, m/e 198, 160. 322. (We have in fact prepared the bicyclic diureide thermally. see Experimental). However, not only is this sequence of consecutive reactions less probable than a more direct allack by an excited ion-molecule of another species but this course is ruled out by other factors. The mono-Diels-Alder adducts clearly show fragmentation patterns (as do the bis-adducts) involving retro-Diels-Alder reaction. Thus excited and unexcited dienophile species are formed in the mass spectrometer by this route. Yet none of the bicyclic diureide ions is
formed. The same holds for the bis-adducts of other configurations, i.e. above-above (A), above-below (B). rather than below-below (C). No bicyclic diureide is formed.

Why should this be? We believe that there is probably more repulsion and discomfort between the two proximate ureide rings in \mathbf{C} as compared to the pair made up of one ureide ring and a double bond (B) and between two double bonds (A). We know that A undergoes [2+2]photocyc. loaddition with great ease.' We have also seen frequent intramolecular reactions at the centers under discussion in compounds having the B configuration.' Thus. C. in the case under discussion undergoes intermolecular reaction to relieve its steric and electrostatic discomfort; the formation of the ions corresponding to the bicyclic ureide is proof of this discomfort. One mole of nitrogen must (since we believe in the law of conservation of matter) needs accompany the bicyclic ureide in such an intermolecular reaction along with two moles of mono-Diels-Alder adduct (Scheme 3).
The intra molecular reaction which is not preferred (if it occurs at all) would give in the above case one mole of 1,6-methanol 10]annulene. one mole of bicyclic diureide and one mole of nitrogen. These bis-adducts appear to be quite sophisticated in their knowledge of thermodynamics. They must be in order to prefer, in the mass spectrometer under conditions far from optimal for bimolecular reactions. an intermolecular rather than the intramolecular reaction path. In summary therefore, we take the data in the table as evidence for the previous sentence. Finally, in view of the improbability of the bimolecular reactions discussed above in the mass spectrometer one must consider the possibility that the

A

B

C

Scheme 3
intermolecular reaction observed is the prosaic result of thermolysis in the mass spectrometer and not of an excited ion-molecule reaction. That this may indeed be the correct interpretation stems from submitting an equimolar mixture of 2 a and 2 b to electron impact. The ion m/e 198 (presumed to be more volatile) appeared earlier than its counterpart m/e 322 but none of the mixed ion $m / e 260$ was observed. When the same equimolar mixture was heated to the m.p. (some gas bubbles were observed) and the melt submitted to electron impact, all these ions were observed.

Obtention of unequivocal configurational proof through X-ray crystallography has been undertaken.

Scheme 4 summarizes the results of Diels-Alder reactions of the heterocyclic 1,6 -bridged(10]annulenes.

Here too, although we do not have the built-in probe extant in the two protons in a 1,6 -bridging CH_{2} group, the symmetrical NMR spectra of the bis-adducts indicate that attack has occurred from the same side, again presumed to be from below.
We have no explanation to offer for the observed difference in product distribution obtained from 11 with the dienophiles which differ only in their 4 substituent.

We conclude that the lone pairs on oxygen in 9 and on nitrogen in 11 and in 14 do not appear to change the direction of approach of dienophile as compared to the carbocyclic substrates 1, 4 and 6. We are studying 11 -substituted and 11.11 -disubstituted, both symmetrical and unsymmetrical, 1,6 -methano[10]annulene derivatives in order to discover if any of these are capable of exerting

Scheme 4
secondary orbital interactions with the altacking dienophile so as to potentially vary the direction of attack. Similarly we are studying various bridged (14]annulenes mindful of the same goal.

EXFETMMENTAL

IR spectra were measured on a Perkin Elmer model 257 grating spectrometer. XMR spectra were measured on a Varian T-60 spectfometer. Mass spectra were measured on a Varian 711 spectrometer using the direct inlet system. The electron energy was mainatined at 100 eV . Only the major fragments are listed. All m.ps are uncorrected.

Reaction of 1.t-meshano $10 \mid 0 n n u l e n e ~ a n d ~ i t s ~ r e d u c t i o n ~ p r o d u c t s ~$ with 4 -phenyl-1,2,4-1 na:oline-3,5-dione

(a) To a soln of 1 ($46 \mathrm{mg}: 0.32 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl},(5 \mathrm{ml})$ was added at room temp. a soln of the dienophile ($112 \mathrm{mg}: 0.64 \mathrm{mmol})$ in the same solvent (9 m). The red color disappeared completely after 15 min giving the bis-adduct 2 m quantitatively, m.p. 239-241 (chloroform). (Found: C. 65.31; H. 3.92: N. 16.64. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C, 65.84: H, 4.09: N. 17.07\%). IR (KBr): 1700, 1490. $1390 \mathrm{~cm}{ }^{\prime}$ NMR (CDCl $)$: $2.50(\mathrm{~s}, 10$ arom H$): 3.53(\mathrm{t} .4$ vinylic H): 4.30 (t. 4 allylic (HN): 8.90 (s .2 cyclopropyl H). MS 322 (4): 177 (6): 142 (63): 141 (87): 128 (10): 119 (100): 91 (27).
To a win of 102 mg .0 .5 mmolin $(\mathrm{CH}, \mathrm{Cl},(5 \mathrm{ml})$ was added at room temp. the dienophise ($87 \mathrm{mg}: 0.5 \mathrm{mmol}$) in $\mathrm{CH}, \mathrm{Cl}, 5 \mathrm{ml}$). The color disappeared after 10 min . After removal of solvent 2 a (66 mg) was precipitated by the addition of chloroform. The residue after evaporation of the mother liquor was dissolved in a small volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane was added The mono-adduct $30(32 \mathrm{mg})$ precipitated The mother liquor still contained starting material 1 (16 mg).
At 0° relatively more bis-adduct was obtained In CHCl, as solvent, relatively more mono-adduct was oblained.
Compound 3a had m.p. $58-60^{\circ}$ (CH (Cl, hexanel). (Found: M.W. 317. $\mathrm{C}_{1} \mathrm{H}_{1}, \mathrm{~N}, \mathrm{O}$: requires: 317.33). IR (CHCl$): 1710.1410 \mathrm{~cm}$) NMR (CDCl): $+2.55\left(\mathrm{~s} .5\right.$ arom H): $3.65^{\circ} \mathrm{t} .2$ vinylic H$) .3 .80$ (d. 4 dienic H): 4.75 (I. 2CHN): 8.1910 .08 (ABq, 2 cyclopropane H J-6 H7). MS. M• 317 (0.6): 141 (100): 128 (7.5): 119 (6): 115 (36).
(b) To 4 ($102 \mathrm{mg}: 0.78 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{Cl}_{:}(2 \mathrm{ml})$ was added dienophile (13. mg: 0.78 mmol in $(\mathrm{CH}, \mathrm{Cl}: 6 \mathrm{ml})$ as above. The reaction was instantaneous. Removal of solvent gave the product 50 quantitatively. m.p. $172-173^{\circ}$ ($\mathrm{CH}, \mathrm{Cl}_{2}$-hexane). (Found: C .
 71.45: H. 4.93: N. 13.16\%: MW. 319.1311). IR (CHCl): 1700,
 H): $430(\mathrm{~m} .2$ vinylic $H) ; 5.55(\mathrm{t}, 2(\mathrm{HN}): 7.40(\mathrm{~s}, 4$ ally lic H$): 9.27$.
 143 (4)): 142 (25): 141 (23): 129 (100): 128 (66): 119 (47): 91 (32).
(c) To a soln of $6(94 \mathrm{mg}: 0.64 \mathrm{mmol})$ in $(\mathrm{CH},(\mathrm{C},(2 \mathrm{ml})$ was added as above dienophile ($114 \mathrm{mg}: 0.64 \mathrm{mmol}$) in $\mathrm{CH}, \mathrm{Cl},(4 \mathrm{ml})$. After instantancous reaction the solvent was removed, affording 7n quantitatively, m.p. 182-183 $\left(\mathrm{CH}_{2} \mathrm{Cl},-\right.$ hexanc). (Found: C .71 .17 : H. 6.08: N. 12.46; M.W. 321. (CoH, ${ }^{\circ} \mathrm{N}, \mathrm{O}$) requires: C. 71.01: H. $5.96, N .13 .089 \%$, M. W 321.37) IR (CHCW) $1690,1480 \mathrm{~cm}$ ' NMR (CDCI, : $2.50(\mathrm{~s} .5$ arom H$): 388(\mathrm{t} .2$ vinslic H$): 510(\mathrm{t} .2(\mathrm{HN})$; $7.60-8.90\left(\mathrm{~m}, 8 \mathrm{CH}_{2}\right)=9.39 .9 .60(\mathrm{q} .2$ cyclopropane $\mathrm{H}, \mathrm{J} \quad 6.5 \mathrm{~Hz}$). MS. M- $321(99) ; 190$ (26): 186 (16): 199 (32): 146 (83): $145(100):$ 131 (100); 119 (98): 91 (100)

Reaction with 4-methy-1.2.4 inazoline-3. 3 -dione

(a) A mixture at room temp of $156 \mathrm{mg}: 0.5 \mathrm{mmol})$ in $(\mathrm{CH}, \mathrm{Cl}$: $(10 \mathrm{ml})$ to which was added the N -methyl dienophile $\mathbf{1} 140 \mathrm{mg}$: $1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was allowed to stand at room temp. for 6 hr. Evaporation of solvent gave crude product (198 mg). Fxtraction with hexane gave unreacted 1. Extraction with benzene gave mono-adduct $36(67 \mathrm{mg}$) and the insoluble bis -adduct $2 \mathrm{~b}(27 \mathrm{mg})$ (see helow). The mono-adduct was purified on a preparative silica plate using chloroform as cluant. It had m.p. 239° (henzene-hexane) (Found: C, $6513, \mathrm{H}, 513$: X, $16.37, \mathrm{M} . \mathrm{W}$. 255.0994 . $\mathrm{C}_{1}, \mathrm{H}_{1}, \mathrm{~N}, \mathrm{O}$, requires: $\mathrm{C}, 6587, \mathrm{H}, 513, \mathrm{~N}, 16.38 \%$;
M.W. 25s.1007) IR (CHCl_{1} : $1705.16^{\circ} 0.1460 \mathrm{~cm}$: NMR (CDCl $)$: $9.75(\mathrm{t}, 2$ vinylic H$) ; 378(\mathrm{~s} .4$ diene H$): 4.80(\mathrm{t}, 2(\mathrm{HNO})$ 700 (s, 3 NCH): 8.25 , 10.12 (q. 2 cyclopropane H , J-6 Hz). MS. M. 255 (6): 141 (100), 128 (11)

The mono-adduct (11 mg) and dienophice (8 mg) in (H, Cl, (5 ml) pave after 24 hr the bis-adduct quantitatively, m.p. $252-2.94^{3}$ identical with that described below

To a soln of 1 ($101 \mathrm{mg}: 0.7 \mathrm{mmol})$ in ($\mathrm{H}, \mathrm{Cl}, 110 \mathrm{ml}$) was added as above dienophile (188 mg . 1.4 mmol in ($\mathbf{~ H}$. $(\mathrm{C})(10 \mathrm{ml}$). After 30 min the red solution assumed a purple color which disappeared after 2 hr . Evaporation of whent afforded bis -adduct $2 \mathrm{bl}(263 \mathrm{mg}$). m.p. 253-254 (ethyl acetate) (Found C. 54.73: H. 4.53, N. 22.51:
 22.81\%: M.W. 368.1232) IR (CHCO, 1710.160 cm : SMR
 9.05 (5, (H) MS M. 3.68 (2.8); 254 (1): 198 (11): 141 (100); 115 (39)
(b) Instantaneous reaction of 412 mg) in ($(\mathrm{H}, \mathrm{Cl},(5 \mathrm{mb})$ with dienophile (25 mg) in ($\mathrm{H},\left(\mathrm{Cl}, 15 \mathrm{ml}\right.$) gave $5 \mathrm{~b}(57 \mathrm{mg}) \mathrm{mp} .218$ - 219^{6} (hexane-benzene) (Found: C,6542: H. ©83: N. 1639; MW
 M.H. 257.1165 . IR (CH(1) : $1700.1665 .1460 \mathrm{~cm}: ~ X M R$
 CHN): 7.00 (s. 3 N(H.): 7.40 (m. 4 allylic H): 9.32. 9.47 (q. 2 cyclopropane H.J 6H7) MS M• 257(14): 143 (56): 142(48): 141 (33): 129 (100): 128 (70).
(c) Instantaneous reactoon of $6(31 \mathrm{mg})$ in $\mathrm{CH}, \mathrm{Cl},(\varsigma \mathrm{m})$ with dienophile (25 mg) in ($\mathrm{H},\left(\mathrm{Cl}, 15 \mathrm{ml}\right.$) gave $7 \mathrm{fo}(58 \mathrm{mg})$. m.p. $16^{-}-16 \mathrm{x}^{\circ}$ (hexanc) (Found: (. 65.49, H. 6.A8: N. 15.62: M.W. 2591280.

 9.39.9.6d (ABq. 2 cyclopropane H.J-6Hノ) MS M ${ }^{-}$259(30). 144 (100): 131 (92): 128 (4))

Correlaton of configurations

(a) Reduction of 7a (35 mg) in EiOAc (10 ml using PiO. 13 mg) at m.p. during 3 hr followed by removal of catalyst and solvent afforded the crude product. (hromatography on a preparative silica plate using (H, Cl, as eluant. afforded the perhydrocompound sa (31 mg). m. p . $164-170^{\circ}(\mathrm{CH}$ (C),-he rane). (found: C .
 70.56: H. $6.55:$ S. 13.06% M.W. 323.1641. IR (CHCl, 16×0.
 $7.50-9.00$ (m. 12 (H.); 8.95. 9.42 (4. 2 cyclopropane K.J-6. (H7). MS. M• 323 (14): 268 (100): 149 (19): 119 (5).
(b) Similar reduction of 5 a and similar workup gave 8a. m.p. 168-169 identical by mixed m.p. and spectroscopically with the above authentic sample. However. the crude reduction product had the following MS $\mathrm{M}^{-}+2,32 \leq(26) ; \mathrm{M}^{-}, 323$ (+0); $281(22)$ 268(84): 149 (62): 147 (27): 119 (42): 107 (18): 104 (37): 43) 118): 91 (68). After purification as above the molecular peak, were $325(3)$ and 323 (100).
(c) Similar reduction of 3 a and similar workup gare 8a. m.p. 165°. m.m.p. with above product 169. identical spectroscopically with the authentic specimen. Here too the product of m/e 329 was present.
(d) Altempted hydrogenolysis of etther hond of the sychopropane ring in 8 using the same reduction conditon gave no product of m/e 325 Compound ga was recovered unchanged
(c) Similar reduction of 7 b (42 mg) and workup (CHCl, as elvant) gave 8 (40 mg), m.p. 93° (he rane). (Found: $\mathbf{C}, 6416 ; \mathrm{H}$.
 7.33: N. 1608% M. M. 261.14?) IR (CHC1, $1550,16^{\circ} 0$.
 $8.00-890(\mathrm{~m} .14(\mathrm{H}, \mathrm{CH}) 8.95 .9 .4 \mathrm{ta} .2$ cydopropane H . J-7Hz). MS M $2 x 1$ (14): 219 (12): 206 (100): 149 (18).
(f) Similar reduction of 5 b and workup gave 8b. m.p. $9 \mathbf{z a}^{\mathrm{c}}$ identical by m.m.p. and spectroscopically with the abuve authentic sample. MS (M- • 2) 263(6), M ${ }^{\text {• }}$ 261 (37): 219(33): 206 (100): 149 (52): 147 (18).
(g) Similar reduction of 36 and workup afforded 8b. m.n. 920 similarly identeal with the authentic specimen MS . (M - 2). 263 (10); M', 261 (14); 219 (14): 206 (100); 149 (17), 147 (12).

Reduction of 2 tb

The bis-adduct 2 b (100 mg) in $\mathrm{FlOH}(1000 \mathrm{ml})$ was reduced using $\mathrm{P}(\mathrm{O},(20 \mathrm{mg})$ at atm. p . for 24 hr . Workup as above afforded the tetrahydro derivative (100 mg). m.p. 269° ($\mathrm{F} . \mathrm{OH}$). (Found C. 54.93; H, 4.98; N. 22.60; M.W. 372.1531. C $\mathrm{C}_{1}: \mathrm{H}_{26} \mathrm{~V}_{4} \mathrm{O}_{4}$ requires: C. $54.83 ;$ H, $5.41 ;$ N. $22.57 \% ;$ M.W. 372.1545). NMR (CDClı): т 5.20 (m. 4 CHN); 7.00 (s. 3NCH, $) ; 8.15$ (m. 8 CH2); 8.55 (m. 2 syclopropane H). MS. M ${ }^{*} .372$ (22); 202 (9); 198 (4); 141 (100); 128 (12).

Preparation of $2 \boldsymbol{c}$

(a) Treatment of 36 $(47 \mathrm{mg})$ with 4phenyltriazolinedione $(27 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ overnight at room temp. gave $2 \mathrm{c}(73 \mathrm{mg})$. m.p. 233-234 (cthanol). (Found: MW. 430.1374. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires: 430.1389). NMR (CDCl_{3}): $\mathbf{~} 2.45$ (br. 5 arom H): $3.65(2 \mathrm{t}, 4$ vinylic H); 4.40 (2t, 4 CHN); 7.00 (s. $3 \mathrm{N(H)}$): 9.00 (s. CH2). MS. M ${ }^{\bullet} .430$ (0.4): 322 (2.85); 260 (10.35); 198 (3.8); 177 (11); 141 (27); 128 (9): 119 (100).
(b) Treatment of $3 .(8 \mathrm{mg})$ with 4 -methyltriazolinedione (6 mg) in $\mathrm{CH}_{2}\left(\mathrm{Cl}_{2}(4 \mathrm{ml})\right.$ as above. gave an identical product.

Thermolysis of 4-methyl-1,2.4-1ria:oline-3.5-dione

Heating under reflux of 44 mg in 1.2 -dichlorobenzene (20 ml) during 2 hr followed by cooling, removal of the solid product by filtration and washing with EtOH gave the bicyclic ureide (5 mg) m.p. 308° (lit." 303-3040). (Found: M.W. 198.0377 . C.H,N, O.
 (100); 168 (88); 167 (30); 141 (38).

Thermolysis of 4-pheny/-1.2.4-1riazoline-3.5-dione

Heating as above of the 4 -phenyl derivative (59 mg) and workup gave the bicyclic ureide (5 mg) , m.p. $348-350^{\circ}$. (Found: M.W.
 (br. arom H). MS M'. $322(22): 119(53) ; 57(100)$. The ion m/e 322 was observed earlier."

Diels-Alder reactions of 1,6-oxal(0]annulene. 9

(a) With the N -phenylfriawline-dione. The annulene 9 ($\mathbf{3 0 \mathrm { mg } \text {) }) ~}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was treated with dienophile ($73 \mathrm{mg}: 1: 2$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. Product begins to precipitate after 3 hr . After 24 hr the solid was removed. Only bis-adduct 10e was obtained, m.p. 242-243 ${ }^{\circ}$ (Et()H). Changing reaction conditions did not afford ans mono-adduct. (Found: C. 62.82; H. 3.84; $\mathrm{X}, 16.47$. $\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$. requires: $\mathrm{C}, 63.15 ; \mathrm{H}, 3.67$; N, 17.00%). IR (CHCl_{1}): 1760, 1720. 1400 cm '. NMR (DMSO-d.): 2.50 (br. 10 arom H): $3.50(\mathrm{t} .4$ vinylic H); 4.30 (t. 4 CHN). MS. 322 (7.3); 319 (15); 177 (17); 172 (5): 157 (5): 144 (4): 132 (12): 128 (3); 119 (100).
(B) With the N -methyl dienophile. The annulene $9(350 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was treated with the dienophile ($\left.274 \mathrm{mg}: 1: 1\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and allowed to stand overnight until the color disappeared. After removal of solvent, hexane extracted starting annulene (176 mg). The bis-adduct 10t was obtained (458 mg), m.p. 235-236 ${ }^{\circ}$ (EtOH). (Found: C. S1.64; H. 3.90 , N, 22.74; M.W. 370.1018. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$, requires: C. S1.89; H. 3.81: N. 22.70\%\%: M.W. 370.1025). IR (CHCl_{1}): $1770,1710,1650 \mathrm{~cm}{ }^{\prime}$. NMR (CDCl_{3}): $9.75(\mathrm{t}, 4$ vinylic H$) ; 6.45(\mathrm{t}, 4 \mathrm{CHN}) ; 7.00\left(\mathrm{~s}, 6 \mathrm{~N}\left(\mathrm{CH}_{2}\right)\right.$. MS. M ${ }^{*} 370(37) ; 257$ (100); 198(34); 172 (27); 165 (14); 157 (12); 144 (51); 128 (20).

Reduction of this bis-adduct 106 (100 mg) in F.tOH (1000 ml) using $\mathrm{PtO},(20 \mathrm{mg})$ at atm. pressure gave the perhydro-derivative. m.p. 210° (F.tOH). (Found: M.W. 374.1302. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{s} \mathrm{O}$, requires:
 8.10 (m. $8\left(\mathrm{CH}_{2}\right)$. MS M $\mathrm{M}^{\cdot}, 374$ (100): 259 (5): 166 (23): 145 (41).

Diels-Alder reacfions of 1.6 -imino[10]annulene 11

(a) With iv-phenyl dienophile. A soln of 11 (52 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ was treated at room temp. with dienophile ($62 \mathrm{mg}: 1: 1$) in $\mathrm{CH:} \mathrm{Cl},(4 \mathrm{ml})$. The red color disappeared after 1 hr . The bis-adduct 12 precipitated from the mixture ($78 \mathrm{mg}: 43 \%$). Adding hexane to the mother liquor afforded the crude monoadduct 13 a (8 mg ; 7\%). The mother liquor afforded recovered 11 (50%). 12 was obtained quantitatively when 11 was treated with the dienophile in a ratio of $1: 2$, after $\mathbf{2 4} \mathrm{he}$ standing and removal of solvent.
The bis-adduct 120 had m.p. 233-234 ${ }^{\circ}$ (EtOH). (Found: C. 62.80;
H. 4.17: $N .19 .27 . \mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}, \mathrm{O}$, requires: $\mathrm{C}, 63.28$; H. 3.88 ; N . 19.87\%). IR (KBr): $3320.1700 .1500,1400 \mathrm{~cm}{ }^{1}$ NMR (CDCl $)_{1}$: 9 2.40 (br, 10 arom H); 3.70 (t. 4 vinvlic H): 4.45 (t. 4 CHN). MS. 322 (26): 177 (41); 169 (7); 143 (9); 128 (4); 119 (100).

Compound 130 remained as an oil with IR (CHCl,): 1720. $1400 \mathrm{~cm}{ }^{1}$. NMR (CDCI,): 2.50 (br. 5 arom H): 3.70 (m. 6 vinylic H); 4.30 (m. 2 allylic H) MS. (M- - NH), 303 (5); 227 (9); 177 (50); 169 (16); 143 (53); 128 (85); 119 (73); 93 (100).
(b) With N -methyl dienophile. A soln of 11 (50 mg) in $\left(\mathrm{H}_{2} \mathrm{Cl}_{3}\right.$ $(10 \mathrm{ml})$ was treated with dienophice ($79 \mathrm{mg}: 1: 2$) in $\mathrm{CH}_{3} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The color disappeared after 24 hr . After removal of solvent the residue was extracted with hexane which dissolved 11 (10 mg : 20\%). The insoluble material was treated with FiOAc which dissolved the mono-adduct (21 mg). leaving insoluble bis-adduct (80 mg).
The bis-adduct 12b had m.p. 223-225 (EtOAc-hexane) (Found: M.W. 369.1170 . $\mathrm{C}_{12} \mathrm{H}_{1}, \mathrm{~N}, \mathrm{O}$, requires: M.W. 369.1184). IR $\left(\mathrm{CHCl}_{1}\right): 3300,1710,1670,1460 \mathrm{~cm}{ }^{1}$. NMR (CDC. $)_{3}$) : $3.70(\mathrm{t}, 4$ vinylic H); 4.45 (t. 4 CHN); 7.0 (s. 6 NCH): 8.50 (br, NH. disappears in $\mathrm{D}_{2} \mathrm{O}$). MS. M ${ }^{*}$, 369 (3.2): 256 (8): 198 (40): 143 (56); 129 (100).
The mono-adduct 136 had m.p. 175-176 (EtOAc-hexane). (Found: MW. 256. $\mathrm{C}_{1}, \mathrm{H}_{1}: \mathrm{N}_{\mathbf{\prime}} \mathrm{O}$, requires: 256.09). IR (CHCl_{3}): 1760.1710. 1460 cm '. NMR (CDCl): $53.40-4.00(\mathrm{~m} .6$ vinylic H$)$: 4.70 (m. 2CHN): 7.00 (s. 3 N(는). MS. M•, 256 (6); 143 (45). 128 (60); 114 (100).

Diels-Alder reactions of 1,6-methylimino(10]annulene. 14
(a) With N -phenyldienophile. The annulene $14(30 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was treated with dienophile ($33.5 \mathrm{mg} 1: 1$) in $\mathrm{CH}_{3}\left(\mathrm{Cl}_{2}\right.$ (10 ml) at room temp. The red color disappeared after 1 hr . The mono-adduct 16 was obtained quantitatively, m.p. $140-142^{\circ}$ ($\mathrm{CH}, \mathrm{Cl}_{2}$-hexane). (Found: C. 68.37; H. 4.88: N. 16.93: M.W. 332.1269. $\mathrm{C}_{12} \mathrm{H}_{1,} \mathrm{~N} . \mathrm{O}$, requires: C. 68.66 ; H. $4.85: \mathrm{N} .16 .86 \%$: M.W. 332.1272). IR (CHCl_{1}): $1720,1410 \mathrm{~cm}{ }^{1}$. NMR (CDCl $)$: r $2.60(\mathrm{~s}, 5$ arom H$): 3.70(\mathrm{t}, 2$ vinylic H): $3.35,3.90$ ($\mathrm{m}, 4$ dienic H): $3.70(\mathrm{t} .2$ vinylic H$) ; 4.75(\mathrm{t} .2 \mathrm{CHN}) ; 8.55(\mathrm{~s}, 3 \mathrm{NCH}) \mathrm{MS} . \mathrm{M}^{\cdot} 332$ (46); 177 (1); 157 (10); 128 (100).

Reaction of $14(21 \mathrm{mg})$ with dienophik ($47 \mathrm{mg}: 1: 2$) as above in $\mathrm{C}_{2}\left(\mathrm{C}_{2}\right.$ gave after 72 hr bis-adduct $15 \mathrm{~m}(39 \mathrm{mg}: 53 \%$) which ppted from the reaction mixture. Hexane precipitated mono-adduct 16 ($22 \mathrm{mg}: \mathbf{4 3 \%}$) from the mother liquor, identical with above.

The bis-adduct 15a had m.p. 11S-117 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The compound is thermally very sensitive. IR (CHCl): $1720.1400 \mathrm{~cm}{ }^{\prime}$. NMR $\left(\mathrm{CDCl}_{3}\right):+2.55(10 \operatorname{arom} \mathrm{H}) ; 3.65(\mathrm{t} .4$ vinylic H$): 4.35(\mathrm{t} .4 \mathrm{CHN})$: 7.35 (s, 3 NC.H.). MS. 322 (12); 177 (46); 128 (11); 119 (100).
(b) With N-methyl dienophile. The annuiene $14(30 \mathrm{mg})$ and dienophile ($43 \mathrm{mg}: 1: 2$) in $\left(\mathrm{H}_{2} \mathrm{C}\right)$: gave the crude product after 6 days. when the color disappeared. after removal of solvent. Treatment with ethyl acetate gave insoluble bis-adduct 15b (5 mg : 7\%). The solvent was removed and the residue taken up in benzene. Hexane was added and the ppt was removed. The mono-adduct 16b ($47 \mathrm{mg} ; 93 \%$) was obtained from the mother liquor.

The bis-adduct 15b had m.p. 183-184 (EtOAc-hexane). It is very sensitive thermally: XMR (CDCI, : 3.80 (1.4 vinylic H); 4.55 (t. 4 CHN); 7.05 (s. 6 NCH, $) ; 7.30$ (s. 3 NCH, MS. M ${ }^{*}$ of mono-adduct. 270 (4); 198 (3); 197 (11); 144 (7); 143 (5): 142 (9); 128 (100).

The mono-adduct 16b was an oil. (Found: M.W. 270.1103. $\mathrm{C}_{1} \mathrm{H}_{1,1} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: 270.1116). IR $\left(\mathrm{CHCl}_{1}\right): 1720.1460 \mathrm{~cm}{ }^{\prime}$. NMR (CDCI) : $+3.20-4.00$ (m. 6 vinylic H); $4.85(\mathrm{t} .2$ CHN); 7.00
 169 (2); 165 (3); 157 (84); 144 (49); 143 (35); 142 (38); 128 (100).
When a ratio of $1: 1$ is used between the reactants only recovered annulene and mono-adduct could be obtained after 24 hr .

Acknowiedpement-Particulas thanks are duc to Mrs. Miriam Karni for mass spectral measurements.

REFERENCES
'M. Korat. D. Tatarsk; and D. Ginsburs. Tetrahedron 28. 2315 (1972): D. Ginsturg. Ibid. 30. 1487 (1974); D. Ginsburg, Accounts Chem. Res. 7. 286 (1974).
'C. Amith and D. (iinsburg. Tetrahedron 30. 3415 (1974).
'J. Kalo and D. Ginsburg, unpublished results.
${ }^{\circ} \mathrm{G}$. Grün. Doctoral Dissertation. Köln (1971).
${ }^{\prime}$ J. Kalo. J. M. Photis. I. A. Paquette. F. Vogel and D. Ginsburg.
Telrahedron 32. 101? (1976).
${ }^{*}$ D) Ginsburg. Propellanes. p. 1ss. Verlag (hemic. Weinheim (1975).
'M. Korat and D. (iinsburg. Tetrahedron 29. 2373 (1973).
${ }^{\text {R R F F F Smith. S. P. Kaldon. E. D. I apanis and R. F. (Jot. J. Ong. }}$ Chem. 40. 1854 (1975).
${ }^{*}$ R. A. Izydore and S. Mclean. J. Am. Chem. Soc. 97. 5611 (1975).

[^0]: ${ }^{\dagger}$ Pant XXXV: Z. Bernstein and D. Ginsturg. Heterncycles in press

