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Abstract: Various 5'f-saccharides of pyridoxine, namely the mannosi@daagoside,
arabinoside, maltoside, cellobioside and glucureniavere synthesized chemically
according to KENIGSKNORR conditions using4,3-O-isopropylidene pyridoxine and the
respective acetobromo glycosyl donors with AgOTD @g.) and NIS (3.0 eq.) as promoters
at 0 °C. Furthermore, B-[**Cg]-labeled pyridoxine glucoside (PNG) was prepatedisg
from [**Cg]-glucose and pyridoxine. Additionally, two straies) were examined for the
synthesis of 55-pyridoxal glycoside (PLG).

Keywords: Glycosylation, Chemical Synthesis, Labeled, Glycgegates, Pyridoxine,
Pyridoxal, Vitamin B, PNG, PLG.

1. Introduction

The formation of glycoconjugates belongs to the tmogportant mechanisms of
post-translational modification and takes placeanous species and cell types.[1-9] Hence,
it is highly relevant to a number of medical figldgy.topics regarding the nervous[10, 11] or
immune system[12-14], alcoholism[15], inflammatib8], apoptosis[17] and cancer[12, 18,
19]. Fascinatingly, merely ten nucleotides sufisébuilding blocks in the manufacturing of
the mammalian glycome in its plethora of substrf2e20]

Although glycoconjugates find purpose in a manifofdifferent aspects of biological
processes, the knowledge about the full spectrutmenfimpact still resides in its infancy. In
plants, glycosylation fulfills not only a functiaf storage, but shows a significant influence
on the signaling processes in cells, where the taxtp of the information transfer results
from the structural variety of glycans.[21-29]

When glycosylations are carried out in plants thantribute to the human diet,
glycoconjugates become a subject of food-relatedwmers’ health.[30-33] Wheat, infected
with fungi of the genug-usarium was found to detoxify the mycotoxin deoxynivaleno

(DON) by converting it into the less toxic deoxyalenol-3-glucoside (D3G).[34, 35] The
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assessment of the mycotoxin contamination in faberefore, must include the modified
mycotoxin D3G, since cleavage of the glycosidic daluring digestions releases the free
toxin DON.[31-33, 36-41] What is crucial for theadytics of toxic substances also applies to
beneficial secondary metabolites. Micronutrierke Witamins occur in glycosylated forms,
as well, which affects the bioavailability in tharhan body.[30] The group of vitamins B
constitutes an interesting example hereby, sincensists of sixn vivointerconvertible[42,
43] vitamers, namely pyridoxine (PN), pyridoxal (Plpyridoxamine (PM) and their
respective phosphorylated compounds pyridoxine hésphate (PNP), pyridoxal
5'-phosphate (PLP) and pyridoxamine 5'-phosphat#P{Pand an additional glucosylated
derivative, pyridoxine-55-D-glucoside (55-PNG, Figure 1), which can be found as a major
part of the B content (5 - 70 %) in plants.[44-49]

OH N
]
(@)
”ﬂoéwo N
OH OH
OH

Pyridoxine-5'- f-glucoside (PNG)

Figure 1. Plants store vitamin gas pyridoxine-55-D-glucoside.

PNG was first identified in 1977 after its isolatibrom rice bran and later prepared by
chemical synthesis according to OEKNIGSKNORR conditions implementing
04,3-0-isopropylidene pyridoxine, 2,3,4,6-tet@acetylo-D-glucopyranosyl bromide and
silver carbonate.[50] Other strategies regardiegctiemical preparation of this molecule are
scarce and numerous methods rely on biotechnoldgidaniques. Here, the two main paths
being followed comprise either the assistance ofated enzymes[47, 51, 52] or the
utilization of seeds.[53-58] Regarding the latedfalfa seeds present a convenient way to
produce unlabeled PNG with yields ranging from&5® % and also allow the synthesis of
[°H]- and PH]-8-PNG.[57, 59-62]

B in its active form (PLP) functions as a cofactonivariety of processes in the human
metabolism.[63] Consequently, the relation betwtheramount of modified vitamin in food
and the total Bintake includes important information regarding tmpact on the nutrition.
Studies with deuterated PNG suggested, that thavailability is substantially higher in
humans (50 - 58 % relative to PN)[64, 65] thanaits (20 - 30 %).[57, 66]

Although PNG remains in the spotlight of researchcamuse of its abundant
occurrence[49], other glycoconjugated derivative®N were also found in nature. More

than 50 % of the glycosylated compounds in ricenbnreere found to be composed of
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5'-O-(s-cellobiosyl) pyridoxine, 40-(5-D-glucosyl)-5"O-(5-cellobiosyl) pyridoxine and
5'-O-(S-glucotriosyl) pyridoxine.[67] Additionally, 38 %faohe total PN-content in rice bran
were assigned to ®-[6-O-((+)-5-hydroxy-dioxindole-3-acetyl}-cellobiosyl] pyridoxine
after enzymatic and chemical hydrolysis proced{68%.In wheat bran, popped pea and
soybeans, another compound, namej}{,Bxists in small amounts. Although the structure
could not be derived from the isolate, treatmenthef latter with alkaline solution and
S-glycosidase released vitamin,Bvhich indicates a glycosylated derivate.[69, FQither
studies revealed, that podded peRisum sativum [71, 72] produces
5'-0O-[6-0O-(3-hydroxy-3-methyl-4-carboxybutanoy®}b-glucopyranosyl)]-pyridoxine (HM
GPNG) and 5'©-(6-O-malonyl#-D-glucopyranosyl)-pyridoxine  (MalonylPNG)  during
germination. Furthermore, the potential occurresicBN-oligosaccharides in potatoes was
proposed, but not further specified.[73]

Identification of new PN-saccharides proceeded oy through the process of
isolation, but was also accomplishéad biotechnological approaches. Experiments with an
isolated marine exa-glucosidase (EC 3.2.1.20) from the anaspidean usilAplysia
fasciata showed transglycosylating properties and were essfally utilized in the
preparation of 4’-/5a-PNG and the respective isomaltosides.[74] Suzulalefound a
glucuronic  acid-like  derivative  while incubating amixture of uridine
5’-diphosphoglucuronyltranserfase from rabbit livaridine phosphoglucuronic acid and
pyridoxine.[75] The three galactosyl conjugatesOg-D-galactopyranosyl)-pyridoxine,
4'-O-(p-D-galactopyranosyl)-pyridoxine and
4'-O-(p-O-galactopyranosyl-(34)-5-D-galactopyranosyl)-pyridoxine  were  reportedly
produced in a culture @porobolomyces singulargrowing on a medium containing 5 %
lactose, 0.75 % yeast extract and 2 % pyridoxiee.J7] Moreover, two fructose derivatives,
5'-O-(s-D-fructofuranosyl)-pyridoxine and
5'-O-[-D-fructofuranosyl-(2-1)- 5-D-fructofuranosyl]-pyridoxine, were detected in dtare
medium ofAspergillus nigerandA. sydowicontaining sucrose and pyridoxine.[78] While
examining a series of glycosidases for their symthgotential regarding pyridoxine as a
substrate, 4'-/50-(2-acetamido-2-deoxy-D-glucopyranosyl) pyridoxine, 5+~ and
4’-/5’- O-(p-D-galactopyranosyl) pyridoxine and 4’-/®-(a-D-mannopyranosyl) pyridoxine
were prepared using 4-nitrophenyl-2-acetamido2-ggbr-glucopyranoside,
4-nitrophenylg-D-galactopyranoside and mannose as sugar donors.[79]

Although a variety of studies were dedicated to idwation and identification of a

manifold of glycoconjugated derivatives of PN, ications about their related content in
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food, in particular when PN-glucoside is excluda®, sparsely sown. Therefore, with raising
awareness of the relevance of glycosylated nattoaipounds in the scientific field, the
present study pursued to expand the catalogue oiviknPN-saccharidesia chemical
synthesis and pave the way for further analytitalies revolving around their occurrence in
food.

2. Results and discussion

2.1. Synthesis of the starting materials

In order to fulfill this task, glycosyl donors artde acceptor had to be prepared as

starting materials, first, before implementing thiemo glycosylation reactions (Scheme 1).

HO \ O
@
N/ C|® N/ glycosylation /N

introduction of 1 QU pprotection %O/O X | OH
protecting groups (HO)n
OH
2. oH =2 N 9-15
(HO)n (AcO)n
Br
2-8

Scheme 1General synthetic strategy for the preparatiothefPN-saccharides.

The preparation of the glycosyl donors started withinstallation of protection groups.
Hereby, acetate groups were chosen because ohttightbouring group effect.[80-82] The
anomeric outcome of the acetylation reaction wasctkd using either pyridine (py;GIc)
or sodium acetatef{Glc) (Scheme 2).[83] Since glucuronidation comséis an important
phase Il metabolic pathway for a broad spectrumsuabstances, the preparation of
glucuronides was enclosed in this study.[84-91] te¢ed glucuronic methyl ester was
prepared from glucuronic acidlactone.[92] Installation of bromine as leavinggp was

accomplished with hydrogen bromide (HBr).[93-95]

pyridine / NaOAc o HBr (33 wt% in AcOH)

H o
(HO)n Ac,0 (AcO)n (CH,Cly) (AcO),

Br

Scheme 2General depiction of the preparation processhersaccharide donors involving an

acetylation followed by a bromination step.
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The selective protection of pyridoxine was undegtalwith 2,2-dimethoxypropane and
p-toluenesulfonic acidplTSA) in order to increase the regioselectivity todgathe desired
5’-position and to allow the solubility of PN inganic solventsl 96 %, Scheme 3).

OH \_O
HO o}

| X OH >< pTSA, acetone | X OH
@/ + \O O/ N/

96 %

1

Scheme 3The protection of pyridoxine was accomplished Witi-dimethoxypropane ampd SA in

acetone.

2.2. Glycosylation reactions

The preparation of the glycosides followed the glimes of KOENIGSKNORR
conditions[96], but was performed with an increagatbunt of promoter AgOTf/NIS (3.0
eg.). The application of NIS, although presentingedi-established additive with regards to
the reaction of thioglycosides, usually doesn’tdfintilization under KENIGSKNORR
conditions. Preliminary experiments revolving arduhe glucosylation of PN under these
conditions, however, resulted exclusively in therfation of orthoester-structures when low
amounts (0.1 - 0.3 eq.) of promoter (AgOTf 883, Ag.0, Cu(OTfy, TMSOTT, BR;- OEb)
were used in combination with NIS.

OAc \_©O

o (0]
AcO N —
ACO + ’ OH
—
AcO g, N

Promoter/NIS Promoter/NIS
(0.1-0.3€eq.) (>1.0eq.)

(0] L
OAc —
L - % B OA&)/%@OAC -]
’ _ OAc
N

Scheme 4Preliminary experiments resulted exclusively ie trthoester formation, when low amounts of

promoter were added.

Additionally, no conversion of the starting matévias observed when NIS was missing
from the reaction, suggesting an NIS-mediated féionaof the orthoester. Interestingly, an
increased amount of promoter/NIS (3.0 eq.) resuitgtl in a complete shift from orthoester
structure to the desired glycoconjugate and funtioee in the selective formation of the
S-epimer. Hence, the glycosylation of PN with vaga@lycosyl donors was performed using
3.0 eq. of AQOTT/NIS in order to obtain the proextglycosides (Scheme 4).



142
143

144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

N
%/O AgOTFINIS 3.0 eq. &
0°C, 4 AMS, CH,Cl, 0
@) X OH + 0 mo X o
| (AcO), (AcO)n
~
0\

N Br

1. KOH, NaOH

0,
OH OH OH 2. 1% HCOOH, reflux

oH OH
Qe HOONTA 2
(O
N OH OH HO_|_
) ( )

N
9 (19 %) 10 (10 %) 14(<3% 15 (11 % o -
N\ © N
OH (HO), OH
OH
9-15

o HO 0 Ok OH
OH o HO {
HO S "o Ho/ﬁ/o o’
HO \ e} o . HO

11 (50 %) 12 (18 %) 13 (25 %)

Scheme 5.The glycosylation reaction for the preparationtted PN-saccharides was undertaken

based on KENIGSKNORR conditions followed by a two-step deprotectionqadure. The listed

yields refer to the deprotected glycosides obtaafezt three steps (glycosylation and deprotection)

The robustness of the acetonide group in basiemdnd stability of the acetate groups
towards acidic conditions demanded a two-step phaeefor the subsequent removal of the
protection groups. Thus, the acetate groups weaet by application of 1 N KOH/NaOH
first, followed by reflux in 1 % HCOOH in order tbeprotect the acetonide functionality.
Following this procedure, PN-saccharides contaimrannosed, galactoselO, glucuronic
acid 11, maltosel2, cellobiosel3, xylose 14 and arabinosd5 were synthesized with a
selective anomeriggf outcome, which was verified through NMR experitsen

The deprotected glycosides were obtained afterethsteps (glycosylation and
deprotection) in approximately the same range @eifdgi (10 - 25 %) except for PN-xyloside
(< 3 %) and PN-glucuronide (50 %). The low yieldtbé xyloside arose from a stronger
tendency to decomposition resulting from a higimstability of the molecule compared to
the other saccharides. This aspect was particutalignt in NMR measurements of the
glycoconjugate (which was purified by preparativ®l€ and confirmed by ESI-MS
beforehand), where the signals of pyridoxine antbsey overshadowed those of the
glycoside. Storing the substrate at lowered tempera (- 28 °C) did not improve this
aspect. By contrast, the preparation of the gluude worked well and resulted in the
highest yield among the reacted sugar donors. Qyvenast losses occurred during the
glycosylation reaction rather than the deprotecsitaps. Preliminary experiments including
the variation of reaction conditions, next to praemajuantity and type, such as temperature
(- 78, — 30, 0 °C or rt) and time, although suctidlsshifting the formation of orthoester
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structures completely towards thepimer of the desired product, didn’t manage tprowe
the reaction outcome over a certain point, qualdythe chosen reaction conditions (3.0 eq.
AgOTI/NIS; 0 °C; CHCI,) as best variant using PN as substrate und@niGS-KNORR
conditions. On the other hand, there consequeetynhuch potential for improvement with
regards to aspects like increased reaction outdontbe variation of the glycosylation
method and exploration of further leaving groups.

The literature mainly focuses on the synthesihefabundantly present PN-glucoside.
Only few preparations of other PN-saccharides amonted, among them mostlja
biotechnological methods. Charles and Divakar opgeh reaction conditions for the
preparation of PN-glucoside (36 = 10 %), -manno§aet 10 % of which being 4/5’a/5’f
= 24/34/42) and -galactoside (40 = 10 % of whicimg&'a/5'a/5’f = 47/27/26) with the aid
of f-glucosidase from sweet almonds starting from éspective saccharides, but struggled
with bad regio- and anomeric selectivity resultinga mixture of 4’/5’-saccharides and
alp-anomers.[52] Weignerova et al. utilized specifigcgsidases and could improve the
regioselectivity. Here, 4'/55-PN-galactosides were obtained in 32 % vyield (eeladb the
sugar donor) utilizings-galactosidase fronA\. oryzaeand 4'/5«w-PN-mannosides were
received in 2 % yield (also related to the sugaradpwith mannosidase frofGanavalia
ensiformis(jack beans).[79] Tadera et al. isolated 53 mg-g#-BN-cellobioside from 10 kg
defatted rice.[67] The yields of the chemical swsik proposed in the study presented here
aligned with the results from the literature, kakidrious separation of regio-isomers could be
omitted since 5’-selectivity was promoted throughe tacetonide protecting group.
Furthermore, contrary to many biotechnologicaltetyees, upscaling constitutes a simple
and non-time-consuming operation because thergjariaterials are inexpensive and easily
prepared. The remaining PN-saccharides (glucurpmétoside, xyloside and arabinoside)
have not been reported in the literature to date.

In order to evaluate fragmentation patterns of RNesaccharides and to affirm their
structure additionally to NMR-experiments, the a#pced PN-saccharides were measured
via ESI-MS (Figure 2). Protonated PN-maltosidlg (n/z 494 A) dissociated through loss of
a glucose moiety (m/z 314), followed by loss of theo glucose fragment (m/z 170) and
water (m/z 152). Protonated PN-cellobiosid8, (m/z 494,B) showed a similar pattern,
confirming the disaccharidic structure of the praduFragmentation of protonated
PN-glucuronide 11, m/z 346,C) resulted in the loss of water (m/z 328) and loSshe
glucuronic moiety (m/z 152). Further fragmentatsteps of PN (m/z 108) are detailed
elsewhere.[97] The ESI-MS spectrum of protonatedaPdbinoside X5 m/z 302,D)



200 showed fragments after the loss of water (m/z 284) sugar moiety (m/z 152) and further

201 fragmentations (m/z 108).
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203  Figure2. LC-ESI(+)-MS/MS spectra of PN-maltoside A, collision energy (CE) = — 20 V), PN-cellobioside
204  (13,B,CE =-21V), PN-glucuronidel(, C, CE = - 25 V) and PN-arabinosid&5 D, CE = - 23 V).

205 2.3. Synthesis of #-pyridoxal glucoside (55-PLG)

206 An additional branch of this study was directed dodg the question, whether other
207 vitamers of the Bgroup occur as glycosylated derivatives in nat@iace PLP plays an
208 important role as a cofactor in many enzymatictreas in the human metabolism[63, 98],
209 PL was chosen as the target substrate. The vitahwvs the same solubility properties as
210 PN, thus being insoluble in organic liquids. Folvew this problem, the strategy outlined
211 above involving the installation of an acetonideugr was not available due to the aldehyde
212 group. Masking the latter with imine functionalgj@9, 100] enhanced the solubility of the
213 molecule in dichloromethane, but did not resultthe formation of product during
214 glycosylation reactions further down the road. Henthe first step revolved around a
215 solubility study, where the hydrochloric salt (HOFHPL was suspended in various solvents
216 suitable for glycosylation reactions. In accordatecenprotected PN, no dissolution of the
217 white solid was observed, and the thought arosetlveln and to what extent the HCI-salt was

218 inhibiting a proper dissolution in certain solverfisnce vitamin Bis based on a pyridine



219
220
221
222
223

224
225

226
227
228
229
230
231
232

233

moiety, a stronger non-nucleophilic base was engaloy order to test this hypothesis. Upon
addition of imidazole (1.1 eq.), the solid completdissolved in dimethyl sulfoxide and
dimethylformamide (DMF), mediocrely in dichloromatie (DCM) and no dissolution was
observed in diethyl ether (), tetrahydrofuran (THF) and toluene (Tol) (Figug
Additional imidazole did not result in an improvealubility in the other solvents.

Figure 3. Solubility screening of PL-HCI in various solvemigh the addition of imidazole (1.1 eq.).

After finishing the solubility experiments, a prainary glycosylation was undertaken
in DMSO and DMF according to #ENIGSKNORR conditions (AgOTf/NIS 3.0 eq., 0 °C).
Hereby, no product formation was detecteESI-MS in aliquots taken during the reaction
and after work-up. Since the synthesis of the Pd¢isarides was successful in
dichloromethane, but an unsatisfying solubilitypdfwas observed in that solvent during the

screening, a mixture of GBI, and DMF (v/v = 1/1) was tested in the next apphd&cheme

5).
O\ OAc AgOT{/NIS 3.0 eq. OAc N
HO Imidazole 1.2 eq. ~
X7 OH  AcO 0T AcO Qo A
| o) o +  AcO | AcO OH
NG AcO g (CHCL/DMF) AcO -
H O
16 17
OH N
o’
KOH/NaOH o
o O N
(ACN/H,0) ol OH
o

15 % (after
two steps)

21
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Scheme 6The glycosylation of PL-HCI was undertaken acamydbd KOENIGSKNORR conditions

with an increased amount of promoter in a solveirture.

With this procedure, the produdt?®) was verified in the reaction mixtuwa ESI-MS (m/z
498.1 [M + HJ). After the work-up, the crude substance was depted as described for the
PN-saccharides to obtain the desired PLG (m/z 3B0:0H]") in 15 % yield after two steps
starting from PL-HCI. Hereby, in accordance torgeection outcome of the PN-saccharides,
most losses occurred during the glycosylation ségper than the deprotection steps. A
crucial part influencing the reactivity of this paular glucosylation lies in the solvent
mixture, that had to be applied in order to guararthe complete dissolution of the starting
materials. Since DMSO and DMF, when used soleoagent, didn’t lead to a conversion of
starting material, they could have an impact onotverall reactivity and yield. Furthermore,
as results from preliminary experiments statedjdpye-derivatives with basic properties
exhibit an influence on the reactivity of the prdero Imidazole, in the same way as PN,
could inhibit the formation of product due to irgetion with the promoter. A furtherly
increased addition of promoter didn’t lead to arpriavement regarding the reaction
outcome. The mild treatment with NaOH/KOH did neatvl an impact on the aldehyde
group, leaving it intact during the deprotectiongadure.

A singlet ato = 10.3 ppm and absence of a signal group comelati a third CH-group in
the NMR-spectra affirmed the integrity of the algeéd&-group. A doublet at 4.55 pprh £
8.0 Hz) confirmed the selective formation of thanomer. The fragmentation pattern of the
product in LC-ESI(+)-MS/MS showed the loss of thigar moiety (m/z 168) affirming the

structure as well (Figure 4).

100 OH N 168
’
0
HO le)
Hoﬁ/ X OH
75 OH “
0o
m/z 329 150

50

Rel. Int. [%]

25
122

94
67

75,0 100,0 1250 150,0 miz

Figure 4.LC-ESI(+)-MS/MS spectrum of PL&(, CE = - 26 V).
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This method presents a strategy for the directh®gis of PLG starting from the
commercially available hydrochloric salt of theawter while simultaneously proposing a
way to dissolve the substrate.

A further conceivable route for the preparatiorPafG, beside the preparation starting
from the hydrochloric salt, involves the assignmehPNG (L8) as the starting substrate
(Scheme 6).

1% HCOOH
AcO reflux ACO/&S/
AcO AcO
MnO, (20.0
n 2( eq.) ACO/&S/ KOH/NaOH
AcO
(CH,Cl,) (ACN/H,0)

35 % (after
three steps)

Scheme 7 An alternative route for the synthesis of PLG tetbugh an additional oxidation step

during the deprotection procedure.

Because the aldehyde functionality in 4’-positionstitutes the sole difference between
PNG and PLG, the implementation of an oxidatiorp Steo the deprotection procedure
presents a convenient way for the preparation efddsired glycoconjugate. Hereby, the
acetonide group was removed by reflux in accordéamdbe procedure for PN-saccharides
described above unveiling the hydroxyl functionalit9) in 4’-position. Oxidation with
manganese oxide (Mnpin dichloromethane led to the selective formatdnhe aldehyde
group @0), whose integrity was assured by ESI-MS measuresm@en'z 498.1 [M + H).
Lastly, the acetate groups were cleaved in badieurto obtain PLGZ1) in 35 % yield after
three steps starting from the protected PNG. Alginothe yield increased compared to the
synthesis starting from PL at first glance, it tabe noted, that a multistep procedure for the
preparation of PNG preceded the proposed strait@ggasing the overall working effort and
hampering the accessibility of the method. Addaiby the oxidation of PN reportedly
poses a challenging reaction, often accompaniethéyransformation into an oxime and
subsequent acid hydrolysis in order to obtain tdeteyde.[101-103] Both methods - direct
glycosylation of PL and oxidation of PNG - werereaa out under non-optimized reaction
conditions, and comprise the potential for highetds. In this regard, other glycosylation
methods involving different protecting- and leavgrgups or promoters should be tested for
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the direct glycosylation. Additionally, other oxitan reagents like potassium
permanganate[104] can be examined for the multisteghod.

So far, the glycosylation of PL was only accompidhat the 3'-positionvia
KOENIGSKNORR  synthesis  utilizing  pyridoxal-monoethylacetal  hychloride,

acetobromoglucose and silver carbonate.[105]

2.4. Synthesis ofiCq-5'- -PNG

Stable isotope dilution analysis (SIDA) marks aque way of quantifying substrates in
food, since, among other positive features, the tdsanalyte during sample work-up can be
exactly compensated for.[106, 107] Although beingremising method, SIDA demands
isotopically labeled substrates, which are not ggx@mmercially available and thus have to
be synthesized. Since this study revolved arouaddarch for glycoconjugated derivatives
of vitamin Bs, the last chapter involved the chemical synthesissotopically labeled
5-4-PNG for its application in SIDA.

AcO AcO

quant. 92 %

1+ 2 9, ACO%
33 % (after

three steps)
25

Scheme 8.The synthesis of isotopically labeled BSPNG @6) was accomplished according to
KOENIGSKNORR conditions. a) A§O, Py, DMAP; b) HBr; c) AGOTf/NIS; d) NaOH/KOH; €) %
HCOOH.

The synthesis followed the strategy for the PN-saddes mentioned above. Isotopic
labeling was introduced through the glucose maityting from $°C¢-glucose (Scheme 7).
The preparation of the sugar donor proceeded thraggtylation (quant.) using acetic
anhydride (AgO), pyridine (Py) and 4-dimethylaminopyridine (DMARNd subsequent
bromination (92 %), undertaken with hydrogen bramiHBr). The glycosidic bond
between the sugar donor amd,3-O-isopropylidene pyridoxine was established with
AgOTf/INIS (3.0 eq.) as promoter in dichloromethaateO °C. The following two-step
deprotection involved the application of NaOH/KOhtlal % HCOOH to obtain the desired
5'-B-[**Cg]-PNG in 33 % yield after the three steps includigrosylation and deprotection.
The structural validity was confirmed through NMpestroscopy - a doublet of doublets at
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4.26 ppm with & = 7.7 Hz affirmed thg conformation - and ESI-MS (m/z 338.1 [M +M]
Cleaving the glycosidic bond wifktglycosidase from almonds verified tfieselectivity of
the reaction.

The currently favored preparation of pyridoxine ggigides involves the addition of
saccharides to sprouting alfalfa seeds and alldves isolation of {H]- (47 %) and
[*H]--PNG beside unlabeled PNG (35 - 60 %).[57, 59-@2,Athough the yield seems
comparingly higher by 10 % at first glance, thdizdtion of seeds involves the synthesis of
deuterated PNia a five step route[62, 104] beforehand in ordeptovide the starting
material. By utilization of commercially availabl€Ce]-glucose and the simple strategy of
acetylation/bromination in order to prepare thertstg materials, the overall costs in
preparation in the presented method are reduceditidwlally, utilizing seeds for the
preparation of glycosides is rather optimized & ffoint and losses occur mostly during
handling and chromatography[62], whereas the chamsinthesis promises high potential
for optimization through variation of the reactioanditions. FurthermoreCg]-glucose
introduces a higher amount of labelling into thefimolecule and hence reduces analytical

errors as a mass spectrometric overlap due toalgtorccurring isotopologues is avoided.
3. Materials and Methods

3.1. General information

Reactions sensitive to air or moisture were camwigdn dried glassware under a positive
pressure of argon using stand&ahlenkechniques. Solvents were distilled and stored over
molecular sieves prior to use. Chemicals receiveninf commercial sourcesA¢ros
Sigma-Aldrich Fluka, Fisher Scientifiz were used without further purification unlesgestia
otherwiseb-[*Cg]-glucose was purchased from Sigma-Aldrich. Dethfieeparations of the
sugar donors and glycosides can be found in thplemgntary information. The optical

rotation was measured on a P3000 polarimeter (Raeds).

3.2. Column chromatography/TLC

Column chromatography was performed on silica @el\Merck, 230 - 240 mesh) with
the eluent mixtures given for the correspondingcedures. Thin-layer chromatography
(TLC) was performed using silica-coated aluminiulatgs (silica gel 60). The substances
were detected by UVA(= 254 nm, 366 nm) or after visualization with CAfderium
ammonium molybdate)/potassium permanganate (KNs@ution.

3.3. Nuclear Magnetic Resonance
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NMR spectra were recorded either orBauker AV Il system (400 MHz, Bruker,
Rheinstetten, Germany) or on a Bruker AV Il systés00 MHz, Bruker, Rheinstetten,
Germany).'H- and**C NMR spectra were recorded at 400 or 500 MHz aridDa or 126
MHz, respectively'H and**C NMR spectroscopic chemical shiftsre reported in parts per
million (ppm) relative to residual proton signalll Aoupling constantsJj are reported in
Hertz (Hz). The following abbreviations were usedxplain multiplicities: s = singlet, d =
doublet, dd = doublet of doublets, t = triplet, maltiplet.

3.4. LC-MS/MS

LC-MS/MS was carried out on a Shimadzu Nexera X2PU# system (Shimadzu,
Kyoto, Japan) with the mobile phase combinationtew@cetonitrile or water/methanol. The
injection volume was 1 pL. The LC was interfacedhva triple quadrupole ion trap mass
spectrometer (LCMS-8050, Shimadzu, Kyoto, Japaaja@cquisition was performed with
LabSolutions software 5.80 (Shimadzu, Kyoto, Japan)

4. Conclusions

The motivation to understand the full extent of imeolvement of glycoconjugates in
nature has become the driving force to a varietyeséarch fields. Especially in terms of
vitamins, the influence of the respective glycasidonjugates on the human metabolism
remains not thoroughly explored to this day. Stsidievolving around these frontiers in
research show a demand for respective standartigpobunercial availability is often the
decisive road block. Hence, this study focused loe ¢hemical synthesis of various
5'-B-saccharides of PN and isotopically labelegg%*3C¢]-PNG. Furthermore, strategies to
create other Bglycosides €.9.PLG) were illuminated. So far, the main focusitarhture
lies on the isolation and preparation of PN-saddear but data on their content in food is
scarce. The synthesized substrates herein cantligid purpose in future experiments

involving analytical surveys of natural samples.

Supplementary Materials: Experimental procedures and NMR-spectra of the new

substances are available in the supplementarynaoon.
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Chemical synthesis of 5f-glycoconjugates of vitamin B

Highlights

* The chemical synthesis of the &'saccharides of pyridoxine, namely the mannoside,
galactoside, arabinoside, maltoside, cellobiosieglucuronide, was accomplished.

* New strategies for the chemical glucosylation afigigxal were investigated.

« The chemical synthesis of B{**C¢]-labeled pyridoxine glucoside (PNG) was done

according to KENIGSKNORR conditions.
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