
Article

Inhibition of Glucose Transporters and Glutaminase

Synergistically Impairs Tumor Cell Growth
Graphical Abstract
Highlights
d Development of the GLUT-1-3-selective inhibitor Glutor to

suppress glucose uptake

d Glutor potently induces cell death in 2D and 3D cancer cell

culture

d Glutor-induced hypoglycemia upregulates GLUT-1/-3

d Glutor and GLS inhibitor CB-839 synergistically inhibit cell

growth
Reckzeh et al., 2019, Cell Chemical Biology 26, 1–15
September 19, 2019 ª 2019 Elsevier Ltd.
https://doi.org/10.1016/j.chembiol.2019.06.005
Authors

ElenaS. Reckzeh,GeorgeKarageorgis,

Melanie Schwalfenberg, ...,

Carsten Strohmann, Slava Ziegler,

Herbert Waldmann

Correspondence
herbert.waldmann@
mpi-dortmund.mpg.de

In Brief

Cell-based screening identified the

piperazin-2-one Glutor as a nanomolar

inhibitor of glucose uptake that targets

the glucose transporters GLUT-1/-3.

Glutor inhibits glycolysis and effectively

incudes cell death of monolayer- and

spheroid-cultured cancer cells. Glutor-

mediated glucose starvation upregulates

GLUT-1/-3 expression. Glutor and

glutaminase inhibitor CB-839

synergistically inhibit cancer cell growth.

mailto:herbert.waldmann@mpi-dortmund.mpg.�de
mailto:herbert.waldmann@mpi-dortmund.mpg.�de
https://doi.org/10.1016/j.chembiol.2019.06.005


Cell Chemical Biology

Article

Inhibition of Glucose Transporters
and Glutaminase Synergistically
Impairs Tumor Cell Growth
Elena S. Reckzeh,1,2 George Karageorgis,1,4 Melanie Schwalfenberg,1 Javier Ceballos,1,5 Jessica Nowacki,1,6

Marcus C.M. Stroet,1,7 Aylin Binici,1 Lena Knauer,2 Silke Brand,1 Axel Choidas,3 Carsten Strohmann,2 Slava Ziegler,1

and Herbert Waldmann1,2,8,*
1Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
2Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
3Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
4Present address: School of Chemistry, University of Leeds, LS2 9JT Leeds, UK
5Present address: Laboratory of Catalysis and Organic Synthesis, EPFL SB ISIC LCSO, BCH 4221, CH-1015 Lausanne, Switzerland
6Present address: Chemical Genomics Center, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
7Present address: Optical Molecular Imaging/SPECTRIM/Radiochemistry, Radiology Department, Erasmus Medical Center,

Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
8Lead Contact
*Correspondence: herbert.waldmann@mpi-dortmund.mpg.de

https://doi.org/10.1016/j.chembiol.2019.06.005

SUMMARY

Cancer cells sustain growth by altering their meta-
bolism to accelerated aerobic glycolysis accompa-
nied by increased glucose demand and employ
glutamine as additional nutrient source. This meta-
bolic adaptation induces upregulation of glucose
transporters GLUT-1 and -3, and simultaneous tar-
geting of both transporters and of glutamine meta-
bolism may offer a promising approach to inhibit
cancer cell growth. We describe the discovery of
the very potent glucose uptake inhibitor Glutor, which
targets glucose transporters GLUT-1, -2, and -3, at-
tenuates glycolytic flux and potently and selectively
suppresses growth of a variety of cancer cell lines.
Co-treatment of colon cancer cells with Glutor and
glutaminase inhibitor CB-839 very potently and
synergistically inhibits cancer cell growth. Such a
dual inhibition promises to be particularly effective
because it targets the metabolic plasticity as well as
metabolic rescue mechanisms in cancer cells.

INTRODUCTION

Proliferating cells, such as cancer cells, activated T cells, and

endothelial cells ensure rapid growth and proliferation by upre-

gulating glycolysis, even under aerobic conditions (this phenom-

enon is termed the Warburg effect) (Koppenol et al., 2011;

Vander Heiden et al., 2009). Aerobic glycolysis is characteristic

for several diseases, including cancer and inflammatory dis-

eases such as psoriasis (Hanahan and Weinberg, 2011; Zhang

et al., 2018). In particular, various cancers upregulate facilitative

glucose transporters (GLUTs) to increase nutrient uptake, for

example, thyroid carcinomas (Jó�zwiak et al., 2012), endometrial

and breast cancer (Krzeslak et al., 2012), colon- and pancreatic

cancer (Yamamoto et al., 1990), head and neck tumors (Ayala

et al., 2010; Mellanen et al., 1994), and non-small-cell lung

cancer (Younes et al., 1997). Glucose transporters are involved

in central cellular processes, such as insulin secretion in the

pancreas (GLUT-2) and insulin-regulated glucose transport

(GLUT-4), and are expressed tissue specifically, i.e., GLUT-1 is

ubiquitously expressed in normal tissue, whereas GLUT-3 is pri-

marily expressed in neurons (Zhao and Keating, 2007). These

findings have led to the notion that selective inhibition of the ma-

jor facilitative transporter GLUT-1 may open up a promising

approach for the treatment of cancer (Shi et al., 2018), and

recently the first GLUT-1-selective inhibitor has been reported

(Siebeneicher et al., 2016a, 2016b). However, in the cancers

mentioned above, both GLUT-1 and GLUT-3 are upregulated,

and in esophageal adenocarcinoma GLUT-3 expression was

increased in patients undergoing radiotherapy or surgery, which

indicates clonal selection (Fonteyne et al., 2009). Thus, dual-

specific GLUT-1/-3 inhibitors may be required for cancer target-

ing, and we recently identified such a compound, albeit with

moderate potency (Karageorgis et al., 2018).

In addition, rapidly dividing (e.g., cancer) cells rely on gluta-

mine as C- and N-source, and interference with glutamine meta-

bolism is considered a promising approach for cancer drug

discovery (Martinez-Outschoorn et al., 2017). Reduction of

GLUT-1 expression sensitizes lung cancer cells to inhibition of

glutamine utilization and causes apoptosis and growth reduction

and effective combinatory inhibition of glutaminolysis and glycol-

ysis was described for ovarian cancer (Lee et al., 2016; Sun et al.,

2017). Hence, combination of a GLUT-1/-3 inhibitor with an in-

hibitor of glutamine metabolism might synergistically inhibit

cancer cell growth and, therefore, target the metabolic plasticity

and overcome cellular rescue mechanisms of cancer cells.

Here we describe the identification of the GLUT inhibitor

Glutor (glucose uptake inhibitor), which defines an unprece-

dented glucose uptake inhibitor chemotype. Glutor selectively

targets GLUT-1, -2, and -3 with low nanomolar potency, induces
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upregulation of GLUT-1 and -3 in cancer cells, inhibits glycolysis

and efficiently suppresses the growth of various cancer cell lines.

Co-treatment with Glutor and the glutaminase inhibitor CB-839

(Gross et al., 2014) synergistically inhibits cancer cell growth.

RESULTS

Identification of Glucose Uptake Inhibitors
Glucose uptake inhibitors were identified by means of a semi-

automated HCT116 colon cancer cell-based screen that moni-

tors the uptake of 2-deoxy-D-glucose (2-DG) (Yamamoto et al.,

2006) (for details see Figure S1A). The screen employed a library

of over 150,000 compounds from different commercial and

academic sources that were selected according to chemical

diversity and drug likeness. In addition, the collection included

natural products and sp3-rich compounds from Edelris. The

screen identified piperazin-2-one-based hit compound 1a as

2-DG uptake inhibitor with an half maximal inhibitory concentra-

tion (IC50) value of 3.29 ± 2.04 mM in the semi-automated screen

and 588.0 ± 143.3 nM in a separate manually performed assay

(Figures S1B and S1C).

For delineation of a structure-activity relationship (SAR) a total

of 95 analogs was synthesized by means of a modified Ugi four-

component reaction as described by Ivachtchenko and col-

leagues (Ilyn et al., 2005) (for details see the STAR Methods) or

obtained from commercial sources (ChemDiv, UK). Investigation

of the compounds in the semi-automated 2-DG uptake assay

revealed a coherent SAR. General trends are illustrated in Fig-

ure 1A. Thus, replacement of the 4-ethyl substituent in the

N-benzyl amide (A) of the hit compound 1a (IC50 = 3.29 ±

2.04 mM) by a 4-methoxy group (1b) did not alter the activity of

the compound (Figure 1B, left panel, compare entries 1 and 2).

However, introduction of a methoxy group in the 3-position

(1c) reduced the activity ca. 7-fold (Figure 1B, left panel,

compare entries 1 and 3). If the methoxy group was placed in

the 2-position (1d) inhibiting activity was lost (Figure 1B, left

panel, compare entry 2 with entries 3 and 4). Replacement of

the p-ethyl substituent in the benzyl amide A by a fluorine (Fig-

ure 1B, left panel, compare entries 1 and 5) or other halogens

(Table S1, entry 17) led to loss of activity. Replacement of the

2-methoxy benzyl amide C by a benzyl group (1g) did not alter

the potency (Figure 1B, left panel, compare entries 1 and 7).

However, if in 1g (IC50 = 3.64 ± 1.73 mM) the indole heterocycle

(B) was replaced by a 3-phenylpyrazole scaffold (2h), the IC50

value was lowered by one order of magnitude to 0.23 ±

0.11 mM (Figure 1B, left and central panel, compare entries 7

and 17). Therefore, further compound optimization was per-

formed with the 3-phenylpyrazole scaffold as core structure.

Replacement of the 4-ethyl group in the N-benzyl amide (A) of

3-phenylpyrazole 2h by disubstituted amines (2b, 2c) or an ethyl

ether (2d) did not alter the activity substantially (Figure 1B, cen-

tral panel; compare entries 11–13 with entry 17). However, bulky

substituents in the 4-position of N-benzylamide A led to an in-

crease in potency (Figure 1B, central and right panel; compare

entries 14 and 26 with entry 17) to 0.19 ± 0.06 mM (2e) and

0.16 ± 0.09 mM (3f). The highest potency was recorded for com-

pound 3f which embodies a morpholino group as 4-substituent

of N-benzyl amide A. Activity was also lower when larger un-

branched substituents were introduced in the 4-position (see,

e.g., 2a and 2f, entries 8 and 15). Thus, for further optimization

the 4-morpholino group was kept.

Methylation of the exocyclic secondary amide of 2a to yield 2i

(R2 = Me) rendered the compound inactive (Figure 1B, central

panel, compare entries 8 and 18). To improve the solubility of

3f, a nitrogen was introduced in the phenyl ring of benzyl amide

C (3a). Notably, the 3-pyridine group (3f) enhanced the inhibitory

potency by nearly one order of magnitude (Figure 1B, right panel;

compare entries 19 and 26) to yield the most potent glucose

import inhibitor 3a. If the 3-pyridyl (3a) group was replaced by

a 2-pyridyl (3d) the biological activity was lowered by 30-fold

and replacement by a 4-pyridyl group (3c) reduced the activity

by 4-fold to 0.12 ± 0.01 mM (Figure 1B, right panel, compare entry

19 with entries 23 and 24). Introduction of additional substituents

such as fluorine or a methoxy group reduced activity as well (Fig-

ure 1B; right panel). Separation of the enantiomers of the most

active compound 3a revealed that the (+)-enantiomer inhibits

glucose uptake with IC50 = 19 ± 2 nM, whereas the (�)-enan-

tiomer was inactive at 30 mM (Figure 1B, compare entries

20 and 21). Crystal structure analysis (Figure S1D, CCDC:

1883523) unambiguously proved that the inactive enantiomer

was R-configured. By analogy the (S)-configuration was as-

signed to the active (+)-enantiomer of 3a, which we termed

Glutor ((S)-3a, Figure 1C). Irrespective of the originating tissue,

Glutor reduced the uptake of 2-DG with similar potency in

different cancer cell lines such as HCT116 (IC50 = 10.8 ±

5.3 nM), UM-UC-3 (IC50 = 8.3 ± 2.0 nM, urinary bladder), UO-

31 (IC50 = 3.6 ± 1.5 nM, kidney), and MIA PaCa-2 (IC50 = 1.1 ±

0.3 nM, pancreas) (Figures 1D and 1E). Furthermore, Glutor

does not interfere with cellular hexokinase activity (Figure S1E)

and potently reduces glycolytic flux in HCT116 cells (Fig-

ure 1F), which prevents a decrease in oxidative phosphorylation

(OXPHOS) rate upon glucose addition (Figure 1G). The com-

pound does not induce mitochondrial toxicity (Marroquin et al.,

2007) in HCT116 cells (Figures S1F and S1G).

Glutor is an unprecedented GLUT inhibitor substance class

(Figure 1C) with distant structural similarity (N-heterocycle

Figure 1. Glutor Inhibits 2-DG Uptake and Thereby Reduces Glycolytic Flux in HCT116 Cells

(A) Structure-activity relationship for the piperazin-2-one class (see also Tables S1 and S2).

(B) IC50 values for 2-DG uptake inhibition by selected Glutor derivatives (see also Tables S1 and S2). Data are mean values ± SD of n = 3–21. cmpd, compound;

n.a., not active at 30 mM.

(C) Structural comparison of selected GLUT inhibitors.

(D and E) Dose-response curve for 2-DG uptake inhibition by Glutor (see also Figure S1A). The graphs show mean values ± SD. n = 3, N = 3 for HCT116 (D), MIA

PaCa-2 (E), and UM-UC-3 (E); n = 4, N = 3 for UO-31 (E).

(F and G) Glycolytic stress test of Glutor-treated HCT116 cells. The extracellular acidification rate (ECAR) (F) and the oxygen consumption rate (OCR) (G) were

measured for 2 h. Data are mean values ± SD (n = 3, N = 3). Cmpd, Glutor/DMSO; Glc, 10 mM glucose; Oligo, 2.5 mM oligomycin; 2-DG, 50 mM 2-DG. See also

Figures S1F and S1G for mitochondrial toxicity.
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Figure 2. GLUT Isoform Selectivity of Glutor

(A–C) CHO cells were transfected with a plasmid coding for the different isoforms (see also Figures S2A–S2D) GLUT-1 (A), GLUT-2 (B), GLUT-3 (C), or GLUT-4

before performing the 2-DG uptake assay (see also Figure S2E). Mock transfected CHO cells served as control. Data are mean values ± SD (n = 3, N = 3).

(legend continued on next page)
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containing medium-sized small molecules) to the GLUT-1/-3

selective Chromopynone-1 (Karageorgis et al., 2018) and the

GLUT-1 selective inhibitor BAY-876 (Siebeneicher et al.,

2016b) (Figure 1C). The GLUT-1 selective inhibitor WZB117

(Liu et al., 2012) is structurally distinct from the aforementioned

small molecules (Figure 1C).

Glutor Targets GLUT-1, -2, and -3
To determine the isoform-selectivity of Glutor by means of a

rescue experiment, the different GLUT isoforms were overex-

pressed (9- to 15-fold) in CHO cells (Figures S2A–S2D) (Kara-

georgis et al., 2018). Determination of 2-DG uptake revealed

that overexpression of GLUT-1, GLUT-2, and GLUT-3 led to a

shift to higher IC50 values for treatmentwithGlutor and, therefore,

a partial rescue (Figures 2A–2C, 2E, and S2E). GLUT-1 overex-

pression increased the IC50 from 6.2 ± 1.2 to 34 ± 3.5 nM (6.5-

fold) (Figures 2A and 2E) and GLUT-2 overexpression to 26 ±

2.9 nM (4.2-fold) (Figures 2B and 2E). GLUT-3 overexpression

shifted the IC50 value from 5.9 ± 1.6 to 24 ± 2.6 nM (4.1-fold) (Fig-

ures 2C and 2E). In contrast, overexpression of GLUT-4 did not

rescue the 2-DG uptake inhibition by Glutor (IC50 = 6.4 ±

1.7 nM compared with 6.2 ± 1.2 nM in mock transfected CHO

cells; Figures 2E and S2E). These data suggest that Glutor in-

hibits 2-DG uptake by GLUT isoforms 1, 2, and 3, but most likely

not by GLUT-4. Targeting of GLUT-1 and GLUT-3 was further

confirmed by comparing inhibition of 2-DGuptake in DLD-1 cells,

which mainly express GLUT-1, and the isogenic DLD-1 GLUT1

(�/�) cell line which mainly expresses GLUT-3 (Figures S2F

and S2G) (Karageorgis et al., 2018). In DLD-1 cells, 2-DG uptake

was potently inhibited with an IC50 value of 35.5 ± 4.8 nM, and in

DLD-1 GLUT1 (�/�) cells uptake was inhibited with IC50 of 9.8 ±

1.4 nM (Figures 2D and 2E). In addition, Glutor increased the ther-

mal stability of GLUT-3 in SW480 whole-cell lysates, which

exhibit high GLUT-1 and GLUT-3 content (Schmidt et al., 2018)

in a cellular thermal shift assay with a shift in melting temperature

DTm > 10�C (Figure 2F), which further proves that the compound

targets GLUT-3. The thermal shift of GLUT-1 in the presence of

Glutor was smaller (Figure 2F). Overall, these results demonstrate

engagement of GLUT-1 and GLUT-3, and suggest a more potent

inhibition of GLUT-3 than GLUT-1 by Glutor.

Glutor Selectively Impairs Cancer Cell Growth and
Inhibits Glycolytic Flux
Since inhibition of glucose uptake is expected to impair cell

viability and proliferation, we investigated growth of 94, mostly

malignant cell lines of different origin by means of sulforhod-

amine B assay after 72 h treatment with Glutor (Figure 3A; Table

S3). The observed IC50 values ranged from low nanomolar (nM)

to micromolar (mM) activity, and cell lines with IC50 > 30 mM

were regarded as resistant to Glutor treatment. Gratifyingly,

the growth of the non-malignant peripheral blood mononuclear

cells (PBMCs) and IMR-90 embryonic lung cells was not

impaired. The growth of 44 cancer cell lines of diverse tissue

origin was suppressed with IC50 < 100 nM (Figure 3A, white

bars). Among the nine most sensitive cell lines (upper 10%,

IC50 % 11 nM, Figure 3A), three cell lines originate from urinary

bladder carcinoma and are known to be glucose addicted, i.e.,

UM-UC-3 (Lea et al., 2015; Massari et al., 2016) (IC50 = 4 nM),

5637 (Lea et al., 2015) (IC50 = 6 nM), and T-24 (Lea et al., 2015)

(IC50 = 11 nM). Aerobic glycolysis is the prevalent metabolic

pathway in most urinary bladder cancers which renders this can-

cer highly glucose dependent (Lea et al., 2015). Other cell lines

within the most sensitive 10% of the cell panel are MIA PaCa-2

(Daemen et al., 2015) (IC50 = 4 nM, pancreas), SK-N-AS (Huang

et al., 2015) (IC50 = 6 nM, brain), and SU-DHL-6 (Liu et al., 2018)

(IC50 = 11 nM, hematologic) cells, which are also known to exhibit

high glucose dependence or sensitivity toward glycolytic inhibi-

tors. To the best of our knowledge, for the remaining three cell

lines within the upper 10% of the panel (TE671, WSU-NHL,

and A431) no records about their metabolic phenotypes are

available. Pancreatic cancer cell lines exhibited a similar

sensitivity toward glucose starvation by means of Glutor treat-

ment as urinary bladder cancer, except for the BxPC-3 (IC50 >

30 mM) cell line that was resistant (Figure 3A). In agreement

with these results, BxPC-3 cells exhibit a lipogenic and non-

glycolytic phenotype (Daemen et al., 2015). Growth of the model

cell line HCT116 employed in the 2-DG import assay was

impeded with an IC50 value of 40 nM (Figure 3A). The observed

sensitivity tendencies in UM-UC-3, MIA PaCa-2, and HCT116

cells could be confirmed by means of kinetic live-cell analysis

(Figures S3A–S3C). Growth rate determination revealed 50%

of maximal growth inhibition (GI50) values of 10.2 ± 1.1 nM for

UM-UC-3, 58.4 ± 30.5 nM for MIA PaCa-2, and 428.1 ±

157.3 nM for HCT116 cells (Figures S3D and S3E). The sensitiv-

ities apparent from the cell line panel may provide guidance for

possible applications of glucose import inhibition in particular

cancers, such as urinary bladder carcinomas or pancreatic can-

cers, which are strongly dependent on glucose for proliferation.

Investigation of small-molecule activity in 2D culture systems

is considered to be of limited significance (Moffat et al., 2017),

and 3D cell culture systems are regarded asmore physiologically

relevant. Therefore, we generated spheroids of HCT116 cells of

ca. 800 and 380 mm diameter as suggested by Kunz-Schughart

and colleagues (Friedrich et al., 2009). Spheroid size determines

gradients of, for example, O2 and nutrients and formation of a

necrotic core and may influence compound activity (Friedrich

et al., 2009). Under conditions of glucose reduction (0 and

5mM glucose), cytotoxic events (monitored by propidium iodide

[PI] staining) were observed in 800-mm spheroids after 24 h and

resulted in the enlargement of the necrotic spheroid core area

and, finally, in spheroid bursting under glucose-free conditions

(Figures S4A and S4B). Treatment with Glutor mirrored the effect

of glucose starvation in a concentration-dependent manner (Fig-

ures S4C and S4D). Glucose starvation or treatment of HCT116

spheroids with a diameter of approximately 380 mm with

increasing concentrations of Glutor revealed a similar behavior

without bursting of the spheroid (Figure 3B). In cells cultured in

monolayer with equal seeding density, onset of cytotoxicity

(D) 2-DG uptake assay was performed with DLD-1 and DLD-1 GLUT1 (�/�) cells (see also Figures S2F and S2G). Data are mean values ± SD (n = 3, N = 3).

(E) Summary of IC50 values and fold change in IC50 values (A–D) (see also Figure S2E).

(F) Cellular thermal shift assay in SW480 whole-cell lysates by means of immunoblot-based detection of GLUT-1 and GLUT-3 (representative immunoblots) after

compound or DMSO treatment. Data are mean values ± SD (n = 3).
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Figure 3. Glutor Impairs Cancer Growth and Enhances Formation of Necrotic Center in Spheroids

(A) Growth inhibition (IC50) of 94 different cell lines by means of Glutor treatment was assessed using a sulforhodamine B assay (Vichai and Kirtikara, 2006) after

72 h (see also Figure S3).

(legend continued on next page)
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was observed after 6 h of treatment. Quantification of PI staining

after 72 h revealed that Glutor was 2-fold more effective in

inducing cytotoxic events in spheroids (half maximal effective

concentration [EC50] = 81.7 ± 13.1 nM) than in cells cultured in

monolayer (EC50 = 192.9 ± 34.4 nM) (Figure 3C). Of note, irre-

spective of the spheroid size, the cells at the outer border of

the spheroid stayed viable during the experiment. These results

prove that the potent growth inhibitory effect of GLUT inhibition

observed in 2D cell culture can be recapitulated under 3D cell

culture conditions.

To gain further insight into the different cell line responses to

Glutor treatment, the metabolic profiles of the most sensitive

cell line UM-UC-3 (Figures 4A and 4B), the Glutor-sensitive

HCT116 cell line (Figures 1F and 1G), and the resistant BxPC-3

cell line (Figures 4C and 4D) were analyzed in a glycolytic stress

test after 1.5 h glucose deprivation. Addition of 250 nM Glutor

blockedglycolytic flux (ECAR) in all investigated cell lines (Figures

1F, 4A, and 4C). However, glycolytic stress responses in

untreated cell lines revealed differences (Figures 4E–4G). The

Figure 4. Glutor Inhibits Glycolytic Flux

(A–D) The impact of Glutor on glycolysis (extracel-

lular acidification rate [ECAR]) and oxidative phos-

phorylation (oxygen consumption rate [OCR]) was

assessed for UM-UC-3 cells (A and B) and BxPC-3

cells (C and D) using a glycolysis stress test. Data

are mean values ± SD (n = 3, N = 3). Cmpd, com-

pound; Glc, 10 mM glucose; Oligo, 2.5 mM oligo-

mycin; 2-DG, 50 mM 2-deoxy-D-glucose.

(E and F) Glycolytic capacity, glycolytic reserve

(E), and reduction of OCR after glucose addition

(OXPHOS reduction) (F) of UM-UC-3, HCT116, and

BxPC-3 cells were determined during the glycolysis

stress test depicted in Figures 1E and 1F (HCT116)

and (A–D) (UM-UC-3, BxPC-3).

(G) Linear regression and correlation coefficient R2

of the glycolytic reserve and OXPHOS reduction as

shown in (E and F) with IC50 values from the sulfo-

rhodamine B assay were determined (Figure 3A;

Table S3).

Glutor-sensitive cell lines HCT116 (Figures

1F and 1G) and UM-UC-3 (Figures 4A and

4B) switched from OXPHOS to glycolysis

upon glucose addition, which reduced the

oxygen consumption rate by 34% (Figures

4F and4G). In contrast, theGlutor-resistant

BxPC-3 cell line (Figures 4C and 4D)

increased glycolysis uponglucose addition

(Glc), but respiration remained at a con-

stant high level (OXPHOS reduction 11%,

Figures 4F and 4G). Impairment of mito-

chondrial ATP production by oligomycin

(Figure 4D) induced a strong shift from OX-

PHOS to glycolysis in BxPC-3 cells such that these cells dis-

played the highest glycolytic capacity (545% ECAR, Figure 4E)

and reserve (213% ECAR, Figures 4E and 4G). As mentioned

before, BxPC-3 cells possess a lipogenic and non-glycolytic

phenotype, which matches with our observations (Daemen

et al., 2015). The Glutor-sensitive cell lines HCT116 and UM-

UC-3 accelerated the rate of glycolysis after OXPHOS blockage

by 109% and 45%, respectively (glycolytic reserve, Figure 4E).

The cellular growth behavior of HCT116 and UM-UC-3 cells is

known to depend on glucose (Ma et al., 2014; Massari et al.,

2016). Notably, the switch from respiration to glycolysis upon

glucose addition, as well as the glycolytic reserve of the investi-

gated cell lines, correlated with the IC50 for growth inhibition (Ta-

ble S3; Figure 3A) and, therefore, the cellular sensitivity toward

compound treatment (Figure 4G). Similar observation was

described by Liu et al. (2018), whereby glucose-dependent B

cell lymphoma possessed a lower glycolytic reserve than lym-

phoma cell lines that are dependent on other nutrients (in this

case glutamine).

(B) HCT116 cells were seeded in monolayer (2D) or as spheroids (3D, 380 mm diameter) and treated with varying Glutor or glucose concentrations and propidium

iodide (PI) to detect dead cells. Cell growth and toxic events were monitored by means of live-cell imaging. Representative images are shown for 72 h of

compound treatment (see also Figures S4A and S4C).

(C) Toxicity was analyzed by means of PI intensity (3D) or red confluence (2D) (see also Figures S4B and S4D). Data are representative values ± SD (n = 3, N = 8).
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Inhibition of Glucose Uptake by Glutor Induces
Upregulation of GLUT-1 and GLUT-3 Expression
In cancer cells (Marı́n-Hernández et al., 2014) and in neuronal rat

cells (Nagamatsu et al., 1994) GLUT-1 and GLUT-3 expression is

upregulated under glucose deprivation to increase nutrient

uptake. To investigate whether this rescue mechanism is also

operative upon inhibition of glucose import, we investigated

GLUT1-4 (also known as SLC2A1-4) expression after treatment

with Glutor in comparison with glucose depletion. To this end,

the colorectal carcinoma-derived DLD-1 cells, which mainly ex-

pressGLUT-1, were treatedwith 0.5 mMGlutor in the presence of

high glucose concentration (25 mM) for 24 and 48 h, and mRNA

(GLUT1-4) and protein (only GLUT-1 and -3) levels were quanti-

fied bymeans of qRT-PCR and immunoblotting, respectively. By

analogy, the cells were cultured in the absence of the inhibitor,

employing 25 mM glucose, physiological glucose concentration

(5mM) (G€uemes et al., 2016), or under glucose deprivation (1mM

glucose or no glucose) for 24 and 48 h (Figures 5 and 6).

Under hypoglycemic conditions (1 mM glucose or no glucose)

after 24 and 48 hGLUT1 andGLUT3mRNA levels had increased

Figure 5. Glutor and Glucose Starvation Lead to GLUT-1 Upregulation

(A–C) DLD-1 cells were treated with the indicated glucose concentrations for 24 h (A and D) or 48 h (B and E) or with 0.5 mMGlutor at 25mM glucose for 24 or 48 h

(C and F). (A–C) qRT-PCRwas performed using specific primers forGLUT1 orATP1A1, TUBB, andACTB as reference genes. All valueswere normalized to values

of cells treated with 25 mM glucose (A and B) (dotted line) or DMSO (C) (dotted line), respectively. Data shown are mean values ± SD of n = 3 (A and C) or n = 4 (B)

(see also Figures S4E and S4F). (D–F) Cells were lysed and GLUT-1 and Na+-K+-ATPase were detected using immunoblotting. Representative immunoblots of six

biological replicates are depicted. A dashed line indicates cropped immunoblot images from the same blot. The band intensities for GLUT-1 were normalized to

the values for Na+-K+-ATPase and the respective control (D and E) (25 mM glucose, dotted line); (F) (DMSO, dotted line). Data are median values of n = 6 with the

interquartile range. Statistical analysis was performed using unpaired two-tailed t test with Welch’s correction. *p < 0.05, **p < 0.01, ***p < 0.001. See also

Figure S4G for qRT-PCR data on HCT116 cells.
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ca. 1.6-fold (Figures 5A, 5B, 6A, and 6B). After treatment

with Glutor the level of GLUT1 (Figure 5C) and GLUT3 (Fig-

ure 6C) mRNA already increased significantly after 24 h by 1.8-

and 1.4-fold, respectively. Under hypoglycemic conditions

(no glucose or in the presence of 0.5 mM Glutor) the level of the

GLUT-1 protein already increased by ca. 2-fold after 24 h (Fig-

ures 5D and 5F), and, after 48 h, a ca. 3-fold increase was

detected (Figures 5E and 5F). Under hypoglycemic conditions

and in the presence of Glutor, a significant increase in GLUT-3

protein level was observed after 48 h (4.3- and 5.5-fold, respec-

tively, Figures 6E and 6F). Notably, GLUT-3 protein expression

increased more than GLUT-1 expression (4.3- versus 3.2-fold

in the absence of glucose; 5.5- versus 2.8-fold in the presence

of 0.5 mM Glutor; compare Figures 5E, 5F, 6E, and 6F). Expres-

sion of GLUT4 was not increased under glucose starvation con-

ditions upon treatment with Glutor after 24 and 48 h (see Figures

S4E and S4F).GLUT2mRNA could not be detected for all tested

conditions.

A significant upregulation of GLUT3 mRNA by 1.5-fold could

be also observed for HCT116 cells after 48 h of treatment with

0.5 mM Glutor or under glucose reduction (0 or 1 mM) (Fig-

ure S4G). However, the GLUT1mRNA level was unaltered under

Figure 6. Glutor and Hypoglycemia Lead to GLUT-3 Upregulation

(A–C) DLD-1 cells were treated with the indicated glucose concentrations for 24 h (A and D) or 48 h (B and E) or were treated with 0.5 mMGlutor at 25 mM glucose

for 24 or 48 h (C and F). (A–C) qRT-PCR was performed using specific primers for GLUT3 or ATP1A1, TUBB and ACTB as reference genes All values were

normalized to values of cells treated with 25 mM glucose (A and B) (dotted line) or DMSO (C) (dotted line), respectively. Data shown are mean values ± SD of n = 3

(A and C) or n = 4 (B) (see also Figures S4E and S4F). (D–F) Cells were lysed and GLUT-3 and Vinculin were detected using immunoblotting. Representative

immunoblots of n = 6 (D), n = 8 (E), or n = 7 (F) are depicted. A dashed line indicates cropped immunoblot images from the same blot. The band intensities for

GLUT-3 were normalized to the values for Vinculin and the respective control (D and E) (25 mM glucose, dotted line); (F) (DMSO, dotted line). Data are

median values of n = 6 (D), n = 8 (E), or n = 7 (F) with the interquartile range. Statistical analysis was performed using unpaired two-tailed t test with Welch’s

correction. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S4G for qRT-PCR data on HCT116 cells.

Cell Chemical Biology 26, 1–15, September 19, 2019 9

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005



Figure 7. Disruption of Glutamine Metabolism Sensitizes HCT116 Cells to Glucose Deprivation

(A) HCT116 cells were cultured over 120 h under different nutrient concentrations (see also Figure S4H). Cell growth was monitored via live-cell imaging over a

period of 5 days. Cellular confluence was analyzed as a measure of growth. Data show representative values ± SD (n = 3, N = 3).

(legend continued on next page)
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hypoglycemic conditions (Figure S4G). These findings confirm

the observations that a hypoglycemic environment induces

overexpression of GLUT-1, and especially GLUT-3 (Marı́n-Her-

nández et al., 2014) and proves that the same effect is achieved

by inhibition of glucose import through Glutor. As observed in

adipose tissue (Khayat et al., 1998), cancer cells only increase

GLUT-1 and GLUT-3 mRNA and protein level, but not GLUT4

(and GLUT2) mRNA, under glucose deprivation. Thereby cancer

cells employ a rescue mechanism to increase glucose uptake in

times of glucose shortage. Thus, inhibition of GLUT-1 alone may

not be sufficient to efficiently inhibit cancer cell growth, and the

GLUT-2 inhibiting activity of Glutor is at least less important for

reduction of cancer cell growth in the presence of the inhibitor.

Glucose Uptake Inhibition by Glutor and Glutaminase
GLS Inhibition Synergistically Inhibits Cell Growth
Nutrient uptake, utilization, and dependence of cancer cells may

differ and vary depending on cancer cell type and growth condi-

tions; for example, nutrient availability and microenvironment

(Davidson et al., 2016; Stock et al., 2016). In particular, cancer

cells use glutamine for amino acid synthesis and redox balance

maintenance to enable cell growth, and some cancers are gluta-

mine addicted (Eagle, 1955). Thus, combination of glucose up-

take inhibition with inhibition of glutamine metabolism may syn-

ergistically suppress cell growth.

Investigation of HCT116 revealed that, under glutamine deple-

tion (0 mM glutamine and 25 mM glucose), cell growth is more

reduced than under glucose withdrawal (0 mM glucose and

4 mM glutamine) (Figure S4H), suggesting that reduction of

glutamine concentrationmight sensitize the cells toward glucose

starvation. Thus, we examined the growth of HCT116 cells in the

presence of different glucose and glutamine concentrations (Fig-

ure 7A). At low glutamine concentration (0.05 and 0 mM) cell

growth was impeded, regardless of the prevalent glucose con-

centration (25, 10, or 5 mM) (Figure 7A). At physiological gluta-

mine concentration (0.5 mM) (Scriver and Rosenberg, 1973),

reduced glucose (5 mM) led to strong growth reduction that

could only be circumvented in the presence of higher glucose

levels (10 or 25 mM). On the contrary, at physiological glucose

concentration (5 mM) (G€uemes et al., 2016), the growth of

HCT116 cells was dependent on the presence of sufficient

amounts of glutamine (Figure 7A). This finding suggests that

impairment of HCT116 cell growth by means of glucose import

inhibition should be more efficient at reduced glutamine concen-

trations. Indeed, in the presence of 4 mM glutamine, Glutor in-

hibited HCT116 growth with a GI 50 value of 604.1 ± 21.0 nM,

whereas in the presence of 0.5 mM glutamine the GI 50 value

was lowered to 210.3 ± 43.7 nM (Figure 7B).

In light of this finding, we investigated co-treatment with Glutor

and the glutaminase (GLS) inhibitor CB-839 (Gross et al., 2014),

which inhibits growth of triple-negative breast cancer with low

nanomolar activity. We treated HCT116 cells, which are less

sensitive toward CB-839 treatment (GI50 = 16.2 mM) (National

Cancer Institute, 2019; NCI-60 panel, CAS(CB-839) 1439399-

58-2), with CB-839 at different concentrations together with

varying concentrations of Glutor in the presence of 4 mM gluta-

mine and 25 mM glucose (Figures 7C–7E and S5). The co-treat-

ment led to a maximal 40-fold improvement of the GI50 from

428.1 ± 157.3 nM (0 mMCB-839) to 10.4 ± 0.8 nM in the presence

of 5 mMCB-839 (Figure 7D). The GI50 of CB-839 then decreased

from 11.8 mM (0 mMGlutor), which is in line with the reported GI50
value from the NCI-60 panel, to GI50 < 50 nM (1 mM Glutor)

(Figures S5A and S5B). Analysis of the data employing three

independent classical synergy models, namely Loewe (1953)

(Figures 7E and S5D), highest single agent (Tan et al., 2012) (Fig-

ures S5E and S5F), and Bliss (1939) (Figures S5G and S5H),

confirmed the synergistic effect with regard to growth inhibition

in a concentration range for Glutor between 8 nM to 1 mM and

50 nM to 5 mMCB-839 (Figures 7E and S5, see Supplemental In-

formation for model definitions). The analysis clearly indicates

that dual targeting of glutamine metabolism and glucose uptake

may offer a promising approach for synergistic inhibition of tu-

mor cell growth. Moreover, Glutor acts not only synergistically

with CB-839 but may sensitize cell lines to GLS inhibition.

DISCUSSION

Cancer, immune and stem cells adapt their metabolism to meet

the requirements of sustained proliferation by increasing aerobic

glycolysis (Warburg effect) and glucose uptake (Cliff and Dalton,

2017; Jones and Bianchi, 2015). To meet this demand, cancer

cells upregulate facilitative GLUTs, in particular GLUT-1, and

small-molecule inhibition of glucose uptake has been proposed

as a promising approach to cancer drug discovery. Because the

relevant glucose transporter isoforms GLUT-1-4 are expressed

in a tissue-specific manner and are involved in various central

processes, selective inhibition of GLUT-1 was deemed neces-

sary for a wide therapeutic window. However, both GLUT-1

and GLUT-3 are upregulated in various cancers, suggesting

that dual inhibition of both transporters may be required for

successful glucose deprivation. A potent and selective GLUT-1

inhibitor has been developed, but data on its application have

not been reported (Siebeneicher et al., 2016a, 2016b). We

recently described a dual-selective GLUT-1/-3 inhibitor, which,

however, suffers from low potency (Karageorgis et al., 2018).

We discovered the piperazin-one Glutor ((S)-3a) as a potent

glucose uptake inhibitor. Glutor targets glucose transporters

GLUT-1, -2, and -3. Inhibition of glucose uptake by Glutor

attenuates glycolytic flux and increases the expression of

GLUT-1 and GLUT-3. Glutor potently suppresses growth of a

(B) HCT116 cells were cultured over 96 h under high (4 mM) or physiological (0.5 mM) glutamine concentration and in presence of 25 mM glucose. The growth

behavior was assessed by means of live-cell imaging. Cellular confluence was analyzed as a measure of cell growth. The slopes of the exponential growth phase

were used for GI50 determination. Data show mean values ± SD (n = 3, N = 3).

(C–E) HCT116 cells were cultured under 25 mM glucose and 4 mM glutamine and treated with different concentrations of CB-839 and Glutor. Cell growth was

monitored via live-cell imaging over 5 days. Cellular confluence was analyzed as a measure of growth (C). GI50 values for Glutor in the presence of different CB-

839 concentrations were determined using the growth rates between 24 and 72 h (D). For better visualization all values were normalized to the 0 mM CB-839

control. Synergism and antagonism scores were determined with the software combenefit (Di Veroli et al., 2016) (see also Figure S5) employing the Loewemodel

and the score distribution is depicted in the dose-response surface within the concentration space. Data represent mean values ± SD (n = 3, N = 3).
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variety of cancer cell lines of different origin in 2D (monolayer)

and 3D (spheroids) culture systems, but not of non-malignant

IMR-90 and PBMCs, which were employed to assess unspe-

cific cytotoxicity. Nearly half of the examined cancer cell lines

(44) were inhibited with an IC50 below 100 nM, thus demon-

strating the broad applicability for treatment against diverse

cancer types. Furthermore, urinary bladder and pancreatic

cancer cell lines were among the most sensitive cell lines

within the conducted cell panel. Glucose dependence is a

metabolic phenotype observed in both tissue-derived cancer

types, and interference of the glycolytic flux alone or in combi-

nation with other cancer targeting agents were proposed as

therapeutic approaches (Daemen et al., 2015; Lea et al.,

2015; Massari et al., 2016).

Our results indicate that dual inhibition of GLUT-1 and -3

should be particularly effective for inhibition of tumor cell growth.

We demonstrate that tumor cells upregulate mainly GLUT3

and GLUT1 in a cell-dependent manner (but not GLUT2)

upon glucose starvation or treatment with Glutor. Hence, a

dual-specific inhibitor will be more efficacious than a mono-

selective compound, and may overcome this cellular rescue

mechanism (Marı́n-Hernández et al., 2014; Nagamatsu et al.,

1994). In fact, targeting of upregulated GLUT-3 may

be particularly relevant, because GLUT-3 has a lower Km value

for glucose (Km for 2-DG = 1.4 mM) than GLUT-1 (Km for 2-

DG = 5 mM) (Zhao and Keating, 2007), thereby assuring efficient

glucose uptake also at low glucose concentrations. By analogy,

GLUT-3 may have a protecting function from inhibitor influence

for neurons, which express mainly GLUT-3 and rely on glucose.

The low Km and high capacity of GLUT-3 should give neurons a

competitive advantage with respect to glucose at environmental

glucose concentrations (1–2 mM) (Simpson et al., 2008).

Apart from glucose, cells metabolize glutamine, which is the

most abundant amino acid in plasma (Daye and Wellen, 2012).

An intricate interplay between glucose and glutamine meta-

bolism exists in cells that coordinate ATP supply and availability

of biosynthetic precursors, which are required for proliferation,

as well as redox balance maintenance. While in normal cells

glucose is converted to citrate, which fuels fatty acid synthesis,

glutamine is used as an anaplerotic precursor for the tricarbox-

ylic acid cycle and supports mitochondrial respiration, ATP

production, and synthesis of nucleotides and some amino acids.

Cells can synthesize glutamine, and glutamine is non-essential

in normal, non-dividing tissue. However, under conditions of

stress or proliferation (e.g., T cell activation) (Ardawi, 1988;

Carr et al., 2010), the glutamine consumption outpaces the

glutamine supply, and glutamine becomes an essential amino

acid (Still and Yuneva, 2017). Thus, small-molecule inhibitors

of glutamine metabolism are actively being developed as anti-

cancer drugs (Akins et al., 2018). Various genetic alterations

are known to drive glutamine metabolism, for example, in

MYC, KRAS, HIF1, HER2, p53, JAK/STAT, mTOR, and NRF2

activation, PKCz loss, PTEN loss, and RB1 loss (Altman et al.,

2016), and can confer glutamine/glutaminolysis dependence.

Thus, cancer cells rely on both glucose and glutamine, and

despite fulfilling separate roles in cellular metabolism bothmeta-

bolic pathways may compensate for one another (Daye and

Wellen, 2012). Due to this metabolic plasticity, cancer cells

may adapt to glucose- or glutamine-deprived conditions, for

example, upregulating glutamine metabolism during glycolysis

suppression (Lukey et al., 2018). In this context, reduction of

GLUT-1 expression sensitizes lung cancer cells to inhibition of

glutamine utilization (Lee et al., 2016). Naturally, the concomi-

tant targeting of glutamine (unspecific transaminase inhibitor

aminooxyacetate) and glucose metabolism (with 2-DG) has a

cumulative effect on ovarian cancer cell growth suppression

(Sun et al., 2017).

We demonstrated that co-treatment of HCT116 cells with

Glutor and glutaminase inhibitor CB-839 very potently and

synergistically inhibited cancer cell growth at high glucose

and glutamine levels. Thus, simultaneous inhibition of the two

major nutrient supply mechanisms employed by cancer cells

can synergistically reduce cancer cell growth. Such a dual

inhibition may enable particularly effective suppression of

cancer cell growth to avoid therapy resistance through

metabolic plasticity. Overall, our findings suggest that both

cellular rescue mechanisms (i.e., upregulation of glucose

import) and the metabolic plasticity of cancer to increase

alternative use of glutamine as nutrient may be synergistically

overcome by simultaneous inhibition of glucose transporters

GLUT-1 and -3 and glutamine metabolism, for example, by in-

hibition of glutaminase GLS.

Finally, we note that, beyond the potential application in the

discovery of anti-cancer agents, inhibition of glucose uptake

via GLUTs may offer promising opportunities for the treatment

of diseases related to inflammation, immunity, and infection,

such as graft-versus-host disease (Macintyre et al., 2014), co-

litis (Macintyre et al., 2014), systemic lupus erythematosus

(Yin et al., 2015), psoriasis (Zhang et al., 2018), rhinoviral

(Gualdoni et al., 2018) and bacterial infections (Escoll and

Buchrieser, 2018), and HIV persistence (Palmer et al., 2016),

because all these diseases are connected to an increased

glucose utilization.

SIGNIFICANCE

Cancer cell growth is sustained by increased glucose de-

mand, which frequently induces upregulation of glucose

transporters GLUT-1 and -3. Therefore, interference with

tumor metabolism by means of GLUT inhibition is consid-

ered a relevant strategy to impair cancer growth. However,

currently available inhibitors of the glucose transporters

(GLUTs) suffer from low potency or mainly target GLUT-1.

We discovered a GLUT-1/-2/-3-selective inhibitor that

potently inhibits glucose entry, glycolysis, and cancer cell

growth in monolayer and spheroids. The use of GLUT-1/-3

targeting—rather than isoform-specific inhibitors—enables

efficient suppression of glucose uptake because cells upre-

gulate both GLUT-1 and GLUT-3 upon glucose starvation

caused by small-molecule-mediated inhibition of glucose

uptake. Cancer cell growth and survival may also be sup-

ported by glutamine as an additional nutrient source, which

confers metabolic flexibility. We demonstrate that simulta-

neous targeting of glucose uptake by means of GLUT-1/-3

inhibition and glutaminolysis synergistically inhibits cancer

cell growth. This dual strategy may open up unprecedented

opportunities to overcome rescue mechanisms and meta-

bolic plasticity in cancer, and may inspire chemical biology

12 Cell Chemical Biology 26, 1–15, September 19, 2019

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005



andmedicinal chemistry programs aimed at the discovery of

alternative strategies and compound classes for the treat-

ment of cancer.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-GLUT-1 (1:5,000) Abcam Cat# ab40084;

RRID: AB_2190927

Rabbit polyclonal anti-GLUT-2 (1:200) Santa Cruz Cat# sc-9117;

RRID: AB_641068

Rabbit monoclonal anti-GLUT-3 (1:5,000) Abcam Cat# ab191071;

RRID: AB_2736916

Rabbit monoclonal anti-GLUT-3 (1:5,000) Santa Cruz Cat# sc-74399;

RRID: AB_1124975

Rabbit polyclonal anti-GLUT-4 (1:500) Millipore Cat# 07-1404;

RRID: AB_1587080

Rabbit monoclonal anti-Na+/K+-ATPase (1:10,000) Abcam, Cat# ab76020;

RRID: AB_1310695

Mouse monoclonal anti-Vinculin (1:10,000) Santa Cruz Cat# sc-59803;

RRID: AB_794011

Donkey anti-mouse (1:5,000),

infrared dye 800CW-labeled

LI-COR Cat# 926-32212;

RRID: AB_621847

Donkey anti-rabbit (1:5,000),

infrared dye 680RD-labeled

LI-COR Cat# 926-68073;

RRID: AB_10954442

Donkey anti-rabbit (1:5,000),

infrared dye 800CW-labeled

LI-COR Cat# 926-32213;

RRID: AB_621848

Donkey anti-mouse (1:5,000),

infrared dye 680RD-labeled

LI-COR Cat# 926-68072; RRID:AB_10953628

Goat polyclonal anti-rabbit (1:100,000),

horseradish peroxidase-labeled

Thermo Fisher Scientific Cat# 31430;

RRID: AB_228307

Goat polyclonal anti-mouse, (1:10,000)

horseradish peroxidase-labeled

Thermo Fisher Scientific Cat# 31460;

RRID: AB_228341

Chemicals, Peptides, and Recombinant Proteins

Chemical: 3-Bromopyruvate Alfa Aesar Cat# L00720

CAS: 1113-59-3

Chemical: 2-Deoxy-a-D-glucose (2-DG) Santa Cruz Cat# sc-202010

CAS: 154-17-6

Protein: Diaphorase, Clostridium kluyvery Sigma-Aldrich Cat# D5540-500UN

CAS: 9001-18-7

Protein: Glucose-6-phosphate dehydrogenase,

Leuconostoc mesenteroides

Sigma-Aldrich Cat# G8404

CAS: 9001-40-5

Protein: Insulin, bovine pancreas Sigma-Aldrich Cat# I6634

CAS: 11070-73-8

Chemical: NADP+ AppliChem Cat# A1394,0001

CAS: 1184-16-3

Chemical: NP-40 alternative Merck-Calbiochem Cat# 492016

CAS: 9016-45-9

Chemical: Propidium iodide (PI) Sigma-Aldrich Cat# P4864

CAS: 25535-16-4

Chemical: Resazurin Acros Organics Cat# AC418900050

CAS: 62758-13-8

Critical Commercial Assays

Sso Advanced SYBR Green Mix Bio-Rad Cat# 1725270

SuperSignal West Pico Chemiluminescent Thermo Fisher Scientific Cat# 10177533
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SuperSignal West Femto Maximum Sensitivity Substrate Thermo Fisher Scientific Cat# 34095

QuantiTect Reverse transcription kit Qiagen Cat# 205313

Seahorse Glycolysis Stress test Agilent Cat# 103020-100

Deposited Data

X-ray structure compound (R)-2a This paper CCDC: 1883523

Experimental Models: Cell Lines

Human: DLD-1 cells (male) Horizon Discovery Cat# HD PAR-086; RRID: CVCL_0248

Human: DLD-1 GLUT1(-/-) cells (male) Horizon Discovery Cat# HD R00-024;

RRID: CVCL_HD63

Human: UM-UC-3 cells (male) ATCC Cat# CRL-1749;

RRID: CVCL_1783

Human: HCT116 cells (male) DSMZ Cat# ACC581;

RRID: CVCL_0291

Human: BxPC-3 cells (female) DSMZ Cat# ACC760;

RRID: CVCL_0186

Human: UO-31 cells (female) National Cancer Institute MTA #1-4488-14;

RRID: CVCL_1911

Human: MIA PaCa-2 (male) ATCC Cat# CRM-CRL-1420;

RRID: CVCL_0428

Human: SW480 cells (male) ATCC Cat# CCL-228;

RRID: CVCL_0546

Hamster: CHO cells (female) ATCC Cat# CRL-9618; RRID: CVCL_0214

Oligonucleotides

Primers for GLUT1, see Table S5 Eurofins N/A

Primers for GLUT2, see Table S5 Eurofins N/A

Primers for GLUT3, see Table S5 Eurofins N/A

Primers for GLUT4, see Table S5 Eurofins N/A

Primers for ACTB, see Table S5 Eurofins N/A

Primers for TUBB, see Table S5 Eurofins N/A

Primers for ATP1A1, see Table S5 Eurofins N/A

Recombinant DNA

Plasmid: GLUT-1 (pTCN) transOMIC Cat# BC121804

Plasmid: GLUT-2 (pTCN) transOMIC Cat# BC060041

Plasmid: GLUT-3 (pCMV-SPORT 6) Dharmacon Cat# OHS1770-202314070

Plasmid: GLUT-4 (pTCN) transOMIC Cat# BC034387

Plasmid: pTCN transOMIC Cat# BC060823

Plasmid: pCMV-SPORT 6 Dharmacon N/A

Software and Algorithms

CFX Manager Bio-Rad RRID: SCR_003375

http://www.bioconductor.org/packages/release/

bioc/html/HTqPCR.html

Prism 5 GraphPad RRID:SCR_002798

http://www.graphpad.com/

Prism 7 GraphPad RRID:SCR_002798

http://www.graphpad.com/

Combenefit (Di Veroli et al., 2016) N/A

Image Studio Ver. 5.2 LI-COR RRID:SCR_015795

https://www.licor.com/bio/products/software/

image_studio/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Herbert

Waldmann (herbert.waldmann@mpi-dortmund.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
HCT116 (human, male), UM-UC-3 (human, male), UO-31 (human, female), MIA PaCa-2 (human, male) were grown in 4.5 g/l glucose

Dulbecco’s modified Eagle’s medium (DMEM, PAN Biotech) supplemented with 10% v/v fetal calf serum (FCS, Invitrogen-Gibco)

with 1 mM sodium pyruvate (PAN Biotech) and 100 U/mL penicillin/ 0.1 mg/mL streptomycin (PAN Biotech). CHO cells (hamster, fe-

male) were cultured in in 4.5 g/l glucose Dulbecco’s modified Eagle’s medium (DMEM, PAN Biotech) supplemented with 10% v/v

fetal calf serum (FCS, Invitrogen-Gibco), 100 U/mL penicillin/ 0.1 mg/mL streptomycin (PAN Biotech) and non-essential amino acids

(PAN Biotech). DLD-1 (human, male) and DLD-1 GLUT1 (-/-) (human, male) as well as BxPC-3 (human, female) cells were cultured in

RPMI1640 medium supplemented with 10% fetal calf serum (FCS, Invitrogen-Gibco) and 1100 U/mL penicillin/ 0.1 mg/mL strepto-

mycin (PAN Biotech). SW480 cells (human, male) were cultured in Leibovitz L-15 medium supplemented with 10% fetal calf serum

(FCS, Invitrogen-Gibco) and 1100 U/mL penicillin/ 0.1 mg/mL streptomycin (PAN Biotech). All cell lines were grown at 37�C with 5%

CO2 in humidified atmosphere and regularly tested negative for mycoplasma contamination.

METHOD DETAILS

Biological Experiments
Resazurin-coupled 2-DG Uptake Assay

Cells were seeded in a 96-well plate (black wall, clear bottom, Corning) in complete medium with a density of 40,000 cells/well. Cells

were grown for 24 h at 37�C with 5% CO2 in humidified atmosphere. Adherent cells were washed three times with freshly prepared

Krebs-Ringer bicarbonate (KRB) buffer (20 mM HEPES, 5 mM KH2PO4, 1 mMMgSO4, 1 mM CaCl2, 136 mM NaCl, 4.7 mM KCl, pH

7.4, 0.1% w/v BSA). 1 mM 2-DG was added to the cells together with the respective compound dilution and incubated for 30 min at

room temperature. DMSO served as a control. The assay buffer was removed and the 2-DG uptake was stopped bywashing the cells

thrice with ice-cold KRB buffer. 60 mL 0.06MHCl supplemented with 1%w/v CHAPSwas added to the cells and the cells were incu-

bated for 15 min at 65�C for cell lysis. Neutralization was performed with 20 mL 0.5 M Tris at room temperature. 60 mL enzyme mix

(16 U/mL glucose-6-phosphate dehydrogenase (Sigma Aldrich), 0.2 U/mL diaphorase (Sigma-Aldrich), 0.1 mM NADP+ (Applichem),

2.5 mg/mL resazurin (Acros Organics) in 0.125 M Tris-HCl (Carl Roth), pH 8.4 supplemented with 0.1% w/v BSA) was added and the

plate was incubated for 2 h in the dark. Fluorescence of resorufin (ex/em 535 nm/590 nm) was measured using the Tecan Infinite

M200 (Tecan Trading). The background (no addition of 2-DG) was subtracted from the raw values prior to normalization to the

DMSO control. IC50 values were calculated using a nonlinear regression fit with variable slope (four parameters) using GraphPad

Prims 5 or 7.

The semi-automated screening was performed as described above with slight modifications: 15,000 HCT116 cells/well were

seeded into 384- well black-walled, clear bottomed plates (CellBIND, Corning) and incubated overnight. Compounds were tested

at 30 mM concentration (for the screening) or in serial dilutions staring from 30 mM (IC50 determinations) from DMSO stocks with

an acoustic nanoliter dispenser (ECHO 520). Fluorescence intensity (ex/em 535 nm/590 nm) wasmeasured with a SpectraMax Para-

digm Multi-Mode Microplate Reader (Molecular devices, bottom read-out) using the Rhodamine filter settings. For hit compounds,

cell viability was assessed using the CellTiter Glo reagent (Promega) after 30 min of treatment in HCT116 cells. Washing steps and

liquid additions were performed by means of automated cell washer or multidrop device, respectively.

Hexokinase Assay

HCT116 cells were grown to confluence, washed thrice with PBS and lysed with RIPA buffer (10 mMTris-Cl (pH 8.0, 1 mMEDTA, 1%

Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl, 1 mM phenylmethylsulfonyl fluoride (PMSF)) that was

supplemented with protease inhibitor cocktail as recommended by the manufacturer (Roche). Cells were lysed on ice for 5 min

and collected. The lysate was centrifuged (500 x g, 4�C, 10 min) and the supernatant transferred to a fresh tube. After protein

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IncuCyte ZOOM 2015/2016A (EssenBioscience)

Satorius

https://www.essenbioscience.com/en/

products/software/

IncuCyte S3 2017A (EssenBioscience)

Satorius

https://www.essenbioscience.com/en/

products/software/

APEX 3 Suite (v.2017.3-0) Bruker https://www.bruker.com/products/

microtomography/micro-ct-software/3dsuite.html

e3 Cell Chemical Biology 26, 1–15.e1–e25, September 19, 2019

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005

mailto:herbert.waldmann@mpi-dortmund.mpg.de
https://www.essenbioscience.com/en/products/software/
https://www.essenbioscience.com/en/products/software/
https://www.essenbioscience.com/en/products/software/
https://www.essenbioscience.com/en/products/software/
https://www.bruker.com/products/microtomography/micro-ct-software/3dsuite.html
https://www.bruker.com/products/microtomography/micro-ct-software/3dsuite.html


concentration determination with Bradford reagent (Bio-Rad), the lysates were snap frozen and stored at -80�C until further usage.

The assay was performed in a black 96 well plate in 100 mL total volume. 10% v/v cell lysate (conc. 0.04 mg/mL) were supplemented

with 0.3mMATP, 10%v/v of 2-DG (concentration range 0-15.6mM), 43%v/v enzymemix (0.1mMNADP+, 16 U/mLG6PDH in assay

buffer) and 10% v/v compound (300 mMGlutor or 300 mM 3-bromopyruvate) (Matsushita et al., 2012) and filled up with assay buffer

(100 mM Tris, 5 mM MgCl2, pH 8.5). Samples were incubated for 40 min at 37�C. Fluorescence intensity of NADPH+H+ (ex/em

340 nm/445 nm) was measured with the Tecan Infinite M200 (Tecan Trading). The background was subtracted and all values

were normalized to the maximal fluorescence intensity at 15.6 mM 2-DG.

Cell Panel Profiling

Cell panel profiling to assess the growth behavior of 94 cell lines in presence of Glutor was performed by Oncolead (Germany). Deter-

mination of cell growth was performed after 72 h of compound treatment using sulforhodamine B assay (Vichai and Kirtikara, 2006).

Cells were fixed by addition of 10% TCA (adherent cells) or 50% TCA (semi-adherent or suspension cells) for 1 h at 4�C followed by

two washing steps with 400 ml deionized water. After drying, cells were stained with 100 mL of 0.04% w/v sulforhodamine B and

incubated for at least 30 min at room temperature. Unbound dye was removed by washing six times with 1% acetic acid and drying

samples at room temperature. Bound sulforhodamine B was dissolved in 100 mL of 10 mM Tris. Absorbance was determined at 492,

520 and 560 nm using a Deelux-LED96 plate reader (Deelux Labortechnik GmbH, Germany).

Glycolysis Stress Test

Glycolysis Stress Test (Agilent) was performed using the Seahorse XFp analyzer (Agilent). Briefly, 24 h prior the experiment cells were

seeded with a density of 75,000 cells/well in the respective full medium. The next day, mediumwas exchanged to glucose-free assay

medium (Agilent) and cells were incubated at 37�Cwithout CO2 for 45min. After compound addition (first injection, 30min incubation)

the glycolysis stress test protocol was performed according to the manufacturer’s instructions. The data was analyzed using the

Wave software (Agilent) and all oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) values were normalized

to the time point before compound addition (3rd measurement). A second normalization was done to calculate the rate relative to the

DMSO control. For metabolic profiles, the second of three measurements from one experimental phase (e.g. after glucose addition)

was used to plot the glycolytic reserve, glycolytic capacity and the OXPHOS reduction.

Reverse Transcription-Quantitative PCR

DLD-1 or HCT116 cells were seeded at 63,000 cells/well in a 12-well plate and incubated for 24 h prior to treatment. Cells were incu-

bated with 0.5 mM Glutor (RPMI medium for DLD-1 cells; DMEM medium for HCT116 cells) or different glucose concentrations

(DMEMmedium) for the indicated time points. Total RNAwas isolated bymeans of RNeasyMini Kit as described by themanufacturer

(Qiagen). The Bioanalyzer (Agilent) was used with the corresponding RNA 6000 nano Kit (Agilent) to perform integrity measurements

of the isolated RNA following the manufacturer’s instructions. Reverse transcription was done using QuantiTect Reverse transcrip-

tion kit (Qiagen) and according to the instructions of themanufacturer. RT-qPCRwas performedwith Sso Advanced SYBRGreenMix

(Bio-Rad) using the iCycler iQ5 thermal cycler (Bio-Rad). Gene-specific primer sequences, their respective efficiencies and amplicon

sizes are depicted in Table S5. Data was analyzed usingCFXManager.GLUT1-4 valueswere normalized to the levels ofACTB, TUBB

and ATP1A1 using theDDCt-method (Livak and Schmittgen, 2001). Efficiencies were measured in DLD-1 wt lysates (GLUT1,GLUT3,

ACTB, TUBB, ATP1A1) or with isoform-specific plasmids (GLUT2, GLUT4).

Immunoblotting

DLD-1 cells were seeded in a 6-well plate with 3.06*105 cells/well (24 h treatment) or 1.53*105 cells/well (48 h treatment) 24 h prior to

the experiment. Different glucose concentrations were tested in DMEM medium. Cells were treated with Glutor in RPMI1640

medium. DMSO served as a control. Cells were treated for 24 or 48 h prior to cell lysis. Briefly, cells were washed once with PBS,

detached with cell dissociation solution (Sigma Aldrich) and washed again with PBS. After centrifugation for 5 min (4�C,
1,200 rpm) the pellet was lysed in PBS supplemented with 2% w/v dodecyl-b-D-maltoside (Carl Roth) on ice (15 min). After centri-

fugation at 14,000 rpm (4�C, 15 min) the supernatant was collected to determine the protein concentration by means of DC protein

assay (Bio-Rad) or with Bradford reagent (Bio-Rad). SDS-PAGE was carried out using 6% SDS gels followed by transfer on

polyvinyldiene difluoride membrane (PVDF, Merck) by means of semi-dry electrophoretic device (Bio-Rad). Membranes were

blocked using Odyssey� blocking buffer (LI-COR) for 1 h at room temperature. The proteins GLUT-1 and GLUT-3 were detected

using the primary antibodies anti-GLUT-1 (mouse) and anti-GLUT-3 (rabbit, Abcam) in Odyssey blocking buffer (LI-COR). Na+/K+-

ATPase (rabbit) and vinculin (mouse) were detected for normalization (housekeeping proteins). The primary antibodies were

incubated over night at 4�C and washed three times with PBS. For detection, infrared dye-labeled 800CW anti-mouse (donkey)

and 680RD anti-rabbit (donkey) secondary antibodywere used to detect GLUT-1 andNa+/K+-ATPase and 800CWdonkey anti-rabbit

and 680RD anti-mouse secondary antibody to detect GLUT-3 and vinculin. The membranes were incubated with the secondary

antibody solutions for 1 h at room temperature followed by two washing steps with PBS-T (0.1% Tween-20) and one washing

step with PBS. The fluorescence detection was carried out using the Odyssey CLx imaging system (LI-COR). Densitometric analysis

was used for protein band quantification (Image Studio Ver. 5.2).

GLUT-1-4 Overexpression in CHO Cells

1x106 CHOcells were seeded 10 cm (diameter) cell culture plates and incubated overnight. Cells were transiently transfectedwith the

respective GLUT-isoform containing plasmids using Lipofectamine 3000 according to the supplier’s instructions. Briefly, DNA-lipid

complexes (100 mg plasmid DNA, DNA:lipid ratio 1:2) were prepared in OptiMEM and added to the cells. GLUT-4-transfected cells
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were treated with insulin (100 mg/mL). After 48 h the cells were reseeded (40,000 cell/well) in 96-well plates for 2-DG uptake moni-

toring or lysed to assess protein expression level by means of immunoblotting. For immunoblotting, samples were lysed in 1.5x SDS

sample buffer without bromophenol blue. Protein concentrations were determined bymeans of DC protein assay (Bio-Rad). Proteins

were separated using SDS-PAGE and transferred to PVDF membrane via semi-dry transfer. Blocking was performed using 5% w/v

skimmed milk in 0.1% Tween-20 in Tris buffer (TBS-T) for 1 h at room temperature. The primary antibody GLUT-1, GLUT-2, GLUT-3

(Santa Cruz), GLUT-4 or/and Na+-K+-ATPase (housekeeping protein) (TBS-T) was incubated at 4�C overnight. The respective

secondary horseradish peroxidase-labeled antibody (TBS-T) was incubated for 1 h at room temperature after washing with

TBS-T. Signals visualization was performed using SuperSignal West Pico Chemiluminescent or Femto Maximum Sensitivity

Substrate (Thermo Fischer) employing the Odyssey Fc imaging system (Li-COR). Band quantification was analyzed by means of

densitometric analysis.

Real-Time Live-Cell Imaging and Analysis

Cells were seeded 24 h prior to treatment at 5,000 cells/well in a 96-well plate. In case the nutrient concentrations were varied, DMEM

medium without glucose and glutamine was used. Glutor or DMSO was added to the cells and the growth behavior of the cells were

monitored for 48 h or 120 h, depending on the duration of the experiment using the IncuCyte ZOOM or IncuCyte S3. Cell confluence

was analyzed as a measure of cell growth using the respective software IncuCyte ZOOM 2016B or IncuCyte S3 2017A.

3D vs. 2D Cell Culture

Cells were seeded at 750 cells/well (380 mm spheroids) or 10,000 cells/well (800 mm spheroids) in monolayer or as spheroids in ultra-

low attachment (ULA) plates (Corning) in full DMEM medium (200 mL/well). After 48 h 100 mL medium of the large spheroids (and

monolayer control) was exchanged by fresh medium. After 72 h the cells were treated with the compound or different glucose

concentrations in the presence of propidium iodide (PI) (0.02mg/mL, Sigma Aldrich) to assess cell toxicity. For different glucose con-

centrations, 100 mL of medium was exchanged six times by the respective medium to achieve the desired concentration of glucose.

For compound addition, 100 mL medium were exchanged for 100 mL fresh medium containing 2x the desired compound concentra-

tion. Cell growth was monitored by means of live-cell imaging using IncuCyte S3. Analysis of PI intensity was performed using the

IncuCyte S3 2017A software. Spheroid toxicity was evaluated using all brightfield objects redmean intensities (RCU) whereas toxicity

of monolayer cultured cells was analyzed by red confluence (%). EC50 values were calculated using a nonlinear regression fit with

variable slope (four parameters) with GraphPad Prims 5 or 7.

Synergism/Antagonism Scores

Data generated during live-cell imaging (growth rates) in co-treatment experiments were normalized to DMSO-treated cells (%) and

analyzed using different models.

Definition of synergy models as implemented in the open source software combenefit (Di Veroli et al., 2016).

a=drug A, b=drug B, au=dose drug A, bu=dose drug B, R=reference effect, E=efficacy

Loewe Model. The reference effect for the combination of drug A and drug b (RAB) is calculated by determining the two doses au
and bu such that the efficacy of both drugs is equal (Loewe, 1953).

Formula to define the reference effect:

RAB_Loewe(a,b) = E(au) = E_B (bu)

With the extension:

RAB_Loewe(a,b) = E(bu) = EB(b)

The extension is included for cases when drug A and drug B have a different maximum effect.

Bliss Model. The reference effect for the combination of drug A and drug b (RAB) is calculated by multiplying the effects at the

concentrations of drug A and drug B (Bliss, 1939).

Formula to define the reference effect:

RAB_Bliss(a,b) = EA(a) x EB(b)

With the definition:

The effect of drug A (or drug B) is the fraction of the cell population that is not affected by treatment.

Highest Single Agent (HAS) Model. The reference effect for the combination of drug A and drug b (RAB) is calculated by determining

the greatest difference between the drug A and drug B, when given as single agent (Tan et al., 2012).

Formula to define the reference effect:

RAB_HSA(a,b) = MIN(EA(a), EB(b))

Cellular Thermal Shift Assay (CETSA)

For whole cell lysates, SW480 cells were grown to nearly confluence, washed with PBS and detached using cellular detachment so-

lution (Sigma Aldrich) according to Reckzeh et al. (Reckzeh et al., 2019). Cells were resuspended using PBS, centrifuged at 1,200 rpm

andwashedwith PBS. After a second centrifugation step, the pellet was resuspended in lysis buffer (PBS, 0.4% v/v NP40 alternative)

on ice. To lyse the cells, four freeze-and-thaw cycles were applied to the cell suspension, followed by short sonication step (10 s). The
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supernatant was collected after ultracentrifugation (4�C, 20min, 100,000 x g) and the protein concentration was determined by using

a Bradford reagent (Bio-Rad). Samples were snap frozen and stored at -80�C. For cellular thermal shift assay (CETSA), lysates were

diluted to 2 mg/mL and divided into two reaction tubes. One fraction was treated with 10 mMGlutor, whereas the control fraction was

supplemented with 1% (v/v) DMSO. The lysates were incubated for 10 min at room temperature, followed by fractionation (10 tubes)

and subjection to a temperature gradient (36.9-67�C) for 3 min. After ultracentrifugation (4�C, 20 min, 100,000 x g), the soluble

fractions were collected and analyzed using immunoblotting with antibodies against GLUT-1 and GLUT-3.

Mitochondrial Toxicity

Mitochondrial toxicity was analyzed by assessing compound sensitivity of HCT116 under 25mMglucose and 10mMgalactose (Mar-

roquin et al., 2007). Briefly, cell were seeded at 5,000 cells/well in 96-well plates and treated after 24 h with the inhibitor and in the

presence of glucose or galactose. Oligomycin was used as a control for mitochondrial toxicity. Cell growth was monitored by means

of live-cell imaging using IncuCyte ZOOM and analyzed as described above.

Synthetic Procedure
Materials

All chemicals were obtained from Acros Organics, Activate Scientific, Alfa Aesar or Sigma-Aldrich and used as provided, unless

otherwise indicated. Dry solvents over molecular sieves were purchased from Sigma-Aldrich or Acros Organics.

Instrumentation

Proton and carbon nuclear magnetic resonance (1H- and 13C-NMR) spectra were recorded on Varian Mercury 400 (400MHz), Bruker

Avance DRX 500 (500 MHz), INOVA 500 (500 MHz), Bruker AV600 (600 MHz) and Bruker AV700 (700 MHz) at ambient temperature.

Proton chemical shifts are indicated as parts per million (ppm, d-scale) and are referenced to residual protium in the NMR solvent

(CHCl3, d7.26 ppm; CH2Cl2, d5.30 ppm; (CH3)2SO, d2.50 ppm, CH3OH, d3.31 ppm) (Fulmer et al., 2010). Data are represented as

follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd= doublet of doublets, ddd= doublet of doublet

of doublets, dt = doublet of triplets, t = triplet, td = triplet of doublets, q = quartet, s = septet, m = multiplet), coupling constant (J)

in Hertz (Hz) and integration. Carbon chemical shifts are expressed in parts per million (ppm, d-scale) and are referenced to the car-

bon resonances of the NMR solvent (CDCl3, d77.16 ppm; CD2Cl2, d53.84 ppm; (CH3)2SO, d39.52 ppm; CD3OD, d49.00 ppm). All NMR

spectra were analyzed using MastReNova Version 12.0.0 and are depicted in Data S1. Low resolution mass spectra were collected

via 7890a (Agilent) equipped with a 5975c mas spectrometer (Agilent) and a hp-5ms column (Agielnt) (MS-EI) or using uHPLC system

1290 infinity system (Agilent) equipped with a 6150 mass spectrometer (Agilent) and zorbax eclipse plus C18 rapid resolution HD

2.1x50mm 1.8 mm material column (Agilent). High resolution mass spectra (HR-MS) were recorded on a LTQ Orbitrap mass

spectrometer 5 coupled to an Acceka HPLC-System (HPLC column: Hypersyl GOLD, 0 m x 1 mm, particle size 1.9 mm, ionization

method: electron spray ionization). One exemplary spectrum of 3a is depicted in Data S1. Systematic names formolecules according

to IUPAC rules were generated using ChemDraw Professional version 16.0.

Synthetic Methods

Scheme of synthetic procedure to generate piperazin-2-one-based compound library. i) Triphosgene, ACN, 0�C, 0.5-2 h; ii)

Burgess reagent, ACN / MeOH (5:1), rt, 2 h; iii) Benzenesulfonyl chloride, trioctylamine, 80�C, 2 h; iv) HCONH2, HCO2H, 180
�C, con-

ventional heating 0.5-2 h or microwave 3 min; v) HCO2Et, 60
�C, 24 h; vi) HCONH2, H2NOH*HCl, toluene, 110�C, 24 h; R1=heteroar-

omatic, R2=alkyl, aromatic, heteroaromatic, R’=R1,R2, R’’=aromatic. annul. Cy=annulated cyclohexane. 2x=2a, 2b, 2c, 2e, 2h;

3x=3a, 3b, 3c, 3e, 3f, 3g, 3h, 3i, 3l, 3m, 3n, 3o, 3p, 3s. Late stage functionalization to generate 2i, 3d, 3k, 3q and 3r are described

in the compound characterization.

General Procedure 1A. Modified Leuckart-Wallach reaction (Neochoritis et al., 2015)

General Procedure for Conventional Heating. A microwave vial was charged with the corresponding aldehyde (3.6 mmol, 1 equiv.)

dissolved in formamide (36mmol, 10 equiv.) and formic acid (18mmol, 5 equiv.). The reactionmixture was vigorously stirred at 180�C
for 2-4 h. After cooling the mixture to room temperature, the reaction was extracted with DCM and the combined organic layers were

dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was subsequently purified by flash silica

gel column chromatography (elute as indicated) to yield the corresponding formamide.
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General Procedure for Microwave Irradiation. A microwave vial was charged with the corresponding aldehyde (0.4 mmol, 1 equiv.)

dissolved in formamide (18.4 mmol, 50 equiv.) and formic acid (1.8 mmol, 5 equiv.). The reaction mixture was irradiated in a

microwave oven for 30 sec. at 180�C, quenched with 10 mL water and extracted with DCM. The combined organic layers were dried

over Na2SO4, filtered and concentrated under reduced pressure. Residual formamide was removed in vacuo. The crude residue was

purified by means of flash silica gel column chromatography (elute as indicated) to yield the corresponding formamide.

Formamide Formation from Amines

Formamides were synthesized from amines as described by Kajanus et al. (Kajanus et al., 2016) or Allen et al. (Allen et al., 2012).

All amines and isocyanides that were incorporated in the modified Ugi reaction are depicted in Table S4.

General Procedure 2: Modified Ugi Reaction. The bifunctional carboxylic acid/ketone (0.20 mmol, 1.0 equiv.) and the amine

(0.20 mmol, 1.0 equiv. or 0.18 mmol, 0.9 equiv.) were dissolved in MeOH (1 mL), stirred for 30min at room temperature and the iso-

cyanide (0.20mmol, 1.0 equiv.) was added. Themixturewas vigorously stirred at 40�Cuntil full conversion of the startingmaterial was

indicated by TLC. The solvent was removed under reduced pressure and the product was extracted thrice with amixture of water and

dichloromethane (15 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure.

The product was purified by flash silica gel column chromatography (eluate: petroleum ether / EtOAc or DCM / MeOH) (Ilyn

et al., 2005).

General Procedure 3A: Modified Ugi Reaction with In Situ Isocyanide Formation Using Phosgene. The reaction was performed as

described by Neochoritis et al. (2015). The corresponding formamide (0.06mmol, 1.0 equiv.) was dissolved in DCM (1mL) and cooled

to 0�C. Triethylamine (0.15 mmol, 2.5 equiv.) was added, themixture was stirred for 10min and triphosgene (0.02 mmol, 0.3 equiv.) in

DCM (1mL) was added dropwise over a period of 30min. After consumption of the formamide (monitored by TLC), the corresponding

bifunctional carboxylic acid/ketone (0.07 mmol, 1.2 equiv.) and amine (0.06 mmol, 1.0 equiv.) were added and the reaction mixture

was vigorously stirred for 5-72 h. The crude mixture was concentrated under reduced pressure and purified by means of silica gel

chromatography using the indicated elute.

General Procedure 3B: Modified Ugi Reaction with In Situ Isocyanide Formation Using Burgess Reagent. The reaction was per-

formed as described by Creedon et al. (Creedon et al., 1998). Briefly, an oven-dried Schlenck tube was charged with the formamide

derivative (220 mmol, 1 eq) and dry acetonitrile under argon atmosphere. Solid Burgess reagent (348 mmol, 1.5-2 eq) was added and

the solution was stirred for 0.5-2 h at room temperature. The reaction progress was checked by means of thin layer chromatography

(TLC). The amine (198 mmol, 0.9 eq) and bifunctional compound (220 mmol, 1 eq) were combined in MeOH, stirred for approximately

10 min and added to the reaction mixture. The reaction mixture was vigorously stirred at room temperature for 1-5 days. Saturated

NaHCO3 was added to the reactionmixture and the product was extracted thrice with DCM. The combined organic layers were dried

over Na2SO4, filtered and concentrated under reduced pressure. Purification was performed over silica or by recrystallization from

MeOH as indicated.

Propargyl isocyanide was alternatively synthesized in situ from N-(propargyl)formamide as described by Chrostowska et al.

(Chrostowska et al., 2012).

Preparative HPLC-MS

Separations were performed by means of mass-directed preparative HPLC (Agilent Series, 1100/LC/MSD VL) using reversed-phase

C18 column with a constant flow of 20.0 mL/min. Solvent A: water +0.1% v/v TFA; solvent B: acetonitrile +0.1% v/v TFA.

Separation of the Enantiomeric Mixture

Chiral separation was performed by means of solid phase separation via an Ultimate 3000 HPLC (Dionex, Thermo Fisher) employing

an IC column (CHIRALPAK IC, column no. IC00CG-MA004) column. An isocratic gradient was used to separate both enantiomers

(elute: isohexane / DCM/MeOH(5%)).

Single Crystal X-ray Structure Analyses

Data collection was conducted on a Bruker D8 Venture four-circle diffractometer by Bruker AXS GmbH using a PHOTON100 CMOS

area detector by Bruker AXS GmbH. X-ray radiation was generated by microfocus sources ImS Cu or Mo by Incoatec GmbH with

HELIOS mirror optics and a single-hole collimator by Bruker AXS GmbH.

For the data collection, the programs APEX 3 Suite (v.2017.3-0) with the integrated programs SAINT (integration) and SADABS

(adsorption correction) by Bruker AXS GmbH were used. Using Olex2 (Dolomanov et al., 2009), the structures were solved with

the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined with the XL (Sheldrick, 2008) refinement

package using Least Squares minimization.

Compound Characterization
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Methyl 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylate (5a). Methyl 3-phenyl-1H-pyrazole-5-carboxylate 4a (30.0 mg,

0.15 mmol, 1.0 equiv.), 3-chloroacetone (11.9 mL, 0.15 mmol, 1.0 equiv.), K2CO3 (24.6 mg, 0.18 mmol, 1.2 equiv.) and

18-crown-6-ether (0.4mg, 1.5 mmol, 0.01 equiv.) were suspended in 1,4-dioxane (1mL) and vigorously stirred under reflux conditions

for 6 h. Afterwards, water (50 mL) and DCM (50 mL) were added to the reaction mixture and the layers were separated. The aqueous

phase was extracted two more times with DCM (2x 50 mL) and the combined organic layers were dried over MgSO4, filtrated

and evaporated under reduced pressure. The residue was purified by means of silica gel column chromatography (elute:

cyclohexane / EtOAc) and obtained as white solid (23.0 mg, 0.15 mmol, quant.). Rf = 0.24 (cyclohexane / EtOAc = 3:1). 1H NMR

(400 MHz, CDCl3) d 7.79 (d, J = 7.3 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.19 (s, 1H), 5.39 (s, 2H), 3.88 (s, 3H),

2.23 ppm (s, 3H). 13C NMR (100 MHz, CDCl3) d 201.3, 162.9, 146.5, 143.9, 129.9, 129.4, 129.4, 129.1, 109.6, 59.8, 52.5, 27.4

ppm. HR-MS: calc. for [M+H]+ C14H15N2O3 259.1077 found 259.1075.

1-(2-Oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid (6a). Methyl 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylate 5a

(30.0 mg, 0.12 mmol, 1.0 equiv.) was suspended in water (1 mL) and NaOH was added slowly (5.6 mg, 0.14 mmol, 1.2 equiv.) and

stirred thoroughly at 70�C for 3 h. Afterwards, HCl (0.5 mL, 1 M) was added to the crude reaction mixture. Water (40 mL) and EtOAc

(40 mL) were added to the crude reaction and the phases were separated. The aqueous phase was extracted two more times with

EtOAc (2x 40 mL) and the combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The

product was obtained as light yellow solid (28.3mg, 0.12mmol, quant.). Rf = 0.41 (dichloromethane /MeOH= 7:3). 1HNMR (400MHz,

CDCl3) d 7.88 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 7.3 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.31 (s, 1H), 5.41 (s, 2H), 2.23 ppm (s, 3H). 13C NMR

(100 MHz, CDCl3) d 201.2, 163.6, 151.4, 133.4, 132.0, 128.9, 128.6, 125.9, 110.0, 61.5, 27.0 ppm. HR-MS: calc. for [M+H]+

C13H13N2O3 245.0921 found 245.0929.

Methyl 1-(3-oxobutyl)-3-phenyl-1H-pyrazole-5-carboxylate (5b). Methyl 3-phenyl-1-pyrazole-5-carboxylate 4a (100 mg, 495 mmol,

1.0 equiv.) was dissolved in 1,4-dioxane (1.5 mL) and potassium carbonate (82 mg, 593 mmol, 1.2 equiv.), 18-Crown-6 ether (1.5 mg,

5 mmol, 0.01 equiv.) and 4-chlorobutan-2-one (47.3 mL, 495 mmol, 1.0 equiv.) were added. The solution was stirred thoroughly at

140�C for 4 h. The product was purified by means of silica gel column chromatography (elute: cyclohexane / EtOAc) and obtained

as white solid (55 mg, 202 mmol, 40%). Rf = 0.30 (cyclohexane / EtOAc = 3:1). 1H NMR (700 MHz, CDCl3) d 7.77 (dd, J = 8.0, 1.2 Hz,

2H), 7.40 (t, J = 8.0 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.11 (s, 1H), 4.86 (t, J = 7.2 Hz, 2H), 3.92 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H), 2.21 ppm

(s, 3H). 13C NMR (176 MHz, CDCl3) d 206.0, 160.3, 150.3, 133.4, 132.6, 128.9, 128.3, 125.7, 108.3, 52.2, 46.9, 43.5, 30.3 ppm. HR-

MS: calc. for [M+H]+ C15H17N2O3 273.12337 found 273.12343.

1-(3-Oxobutyl)-3-phenyl-1H-pyrazole-5-carboxylic acid (6b). Methyl 1-(3-oxobutyl)-3-phenyl-1H-pyrazole-5-carboxylate 5b

(70 mg, 0.26 mmol, 1.0 equiv.) was subjected to NaOH (2% w/v in water, 617 mL, 0.31 mmol, 1.2 equiv.) and stirred at 70�C for

4 h. The crude was acidified to pH 2 using 1 M HCl and extracted with EtOAc. The combined organic layers were dried over

Na2SO4, filtered and concentrated under reduced pressure. The product was purified bymeans of silica gel column chromatography

(elute: cyclohexane / EtOAc +2% v/v acetic acid) and obtained as crystalline white solid (58 mg, 0.22 mmol, 87%). Rf = 0.37

(EtOAc +2% v/v acetic acid). 1H NMR (700 MHz, CDCl3) d 7.80-7.76 (m, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.22
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(s, 1H), 4.87 (t, J = 7.2 Hz, 2H), 3.12 (t, J = 7.2 Hz, 2H), 2.23 ppm (s, 3H). 13CNMR (176MHz, CDCl3) d 206.2, 162.8, 150.5, 132.7, 132.4,

128.9, 128.4, 125.7, 109.6, 46.9, 43.4, 30.3 ppm. HR-MS: calc. for [M+H]+ C14H15N2O3 259.10772 found 259.10779.

Methyl 4,5,6,7-tetrahydro-2H-indazole-3-carboxylate (4b). 4,5,6,7-Tetrahydro-2H-indazole-3-carboxylate (324mg, 2.13 mmol, 1.0

equiv.) was dissolved in 7.8 mL methanol and cooled to -10�C before thionyl chloride (278.3 mL, 3.84 mmol, 1.8 equiv.) was added

dropwise to the solution. The reaction was vigorously stirred at room temperature for 5 days. The crude reactionmixture was concen-

trated under reduced pressure. The product was extracted thrice with EtOAc (20 mL) from water (20 mL) and the combined organic

layers were dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residual was purified by

means of silica gel column chromatography (elute: DCM / MeOH) and obtained as white solid (161.7 mg, 0.9 mmol, 42%). Rf = 0.23

(DCM +4% v/v MeOH). 1H NMR (500 MHz, CDCl3) d 3.89 (s, 3H), 2.72 (td, J = 25.9, 6.1 Hz, 4H), 1.84-1.71 ppm (m, 4H). 13C NMR

(126 MHz, CDCl3) d 162.5, 119.9, 51.8, 22.9, 22.6, 22.2, 21.5 ppm. HR-MS: calc. for [M+H]+ C9H13N2O2 181.09715 found 181.09697.

Methyl 2-(2-oxopropyl)-4,5,6,7-tetrahydro-2H-indazole-3-carboxylate (5c). Methyl-4,5,6,7-tetrahydro-2H-indazol-3-carboxylate

4b (90.4 mg, 0.5 mmol, 1.0 equiv.) and 1-chloroactone (161.44 mL, 2.01 mmol, 4.0 equiv.) were dissolved in 2.3 mL acetone and

K2CO3 (153.22 mg, 1.1 mmol, 2.2 equiv.) was added. The reaction mixture was vigorously stirred at 60�C for 2 days. The crude re-

action mixture was adjusted to pH 7 with 0.5 M HCl. The solvent was evaporated under reduced pressure. The crude reaction was

extracted thrice with EtOAc (3x 50mL) from water (50 mL) and the combined organic layers were dried over Na2SO4 and filtered. The

filtrate was evaporated under reduced pressure and purified by means of silica gel column chromatography (elute: DCM / MeOH).

The isomers were separated using preparative HPLC. The 2-alkylated product was obtained as white solid (24 mg, 0.1 mmol,

20%). Rf = 0.66 (DCM +5% v/v MeOH). 1H NMR (500 MHz, CDCl3) d 4.88 (s, 2H), 3.90 (s, 3H), 2.77 (t, J = 6.0 Hz, 2H), 2.45

(t, J = 6.2 Hz, 2H), 2.14 (s, 3H), 1.84 – 1.74 ppm (m, 4H). 13C NMR (126 MHz, CDCl3) d 201.0, 163.1, 141.0, 139.8, 120.7, 58.7,

52.0, 26.9, 22.3, 22.0, 21.3, 21.1 ppm. HR-MS: calc. for [M+H]+ C12H17N2O3 237.12547 found 237.12337.

2-(2-Oxopropyl)-4,5,6,7-tetrahydro-2H-indazole-3-carboxylate (6c). Methyl 2-(2-oxopropyl)-4,5,6,7-tetrahydro-2H-indazole-3-

carboxylate 5c (24 mg, 0.1 mmol, 1.0 equiv.) was solved in 0.8 mL water and NaOH (4.9 mg, 0.12 mmol, 1.2 equiv.) was added

subsequently to the solution. The reaction mixture was stirred at 70�C for 5 h. The crude was acidified to pH 4-5 using 1 M HCl

and extracted thrice with EtOAc (3x 50 mL) from water (50 mL). The combined organic layers were dried over Na2SO4, filtered

and concentrated under reduced pressure. The product was obtained as white solid (12.2 mg, 0.05 mmol, 54%). Rf = 0.56

(DCM +35% v/v MeOH). 1H NMR (500 MHz, CD3CN) d 5.23 (s, 2H), 4.44 (s, 1H), 2.71 (t, J= 6.1 Hz, 2H), 2.62 – 2.57 (m, 2H), 2.13

(s, 3H), 1.82 – 1.70 ppm (m, 4H). 13C NMR (126 MHz, CD3CN) d 203.4, 161.9, 149.5, 129.7, 62.0, 27.3, 23.9, 23.8, 23.8, 23.1 ppm.

HR-MS: calc. for [M+H]+ C11H15N2O3 223.10772 found 223.1080.

3-(Azidomethyl)-5-methylpyridine. 3-(Chloromethyl)-5-methylpyridine (300 mg, 1.7 mmol, 1.0 equiv.) and sodium azide (470 mg,

7.2mmol, 4.2 equiv.) were dissolved in ACN (6.2mL).N,N-Diisopropylethylamide (287 mL, 1.7mmol, 1.0 equiv.), tetrabutylammonium

iodide (6 mg, 20 mmol, 0.1 equiv.) and 18-crown-6 (4 mg, 20 mmol, 0.1 equiv.) were added. The reaction mixture was stirred at room

temperature overnight. EtOAc was added to the crude product and the mixture was extracted with saturated NaHCO3. The aqueous

layer was extracted twice with EtOAc and the combined organic layers were concentrated under reduced pressure. The product was

obtained as white crystalline solid (238 mg, 1.61 mmol, 95%) and used in the following step without further purification. Rf = 0.71

(EtOAc / MeOH / TEA = 9:1:0.1). 1H NMR (500 MHz, CDCl3) d 8.43 (d, J = 2.0 Hz, 1H), 8.38 (d, J = 2.0 Hz, 1H), 7.47 (m, 1H), 4.35

e9 Cell Chemical Biology 26, 1–15.e1–e25, September 19, 2019

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005



(s, 2H), 2.37 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 150.5, 146.6, 136.4, 133.5, 130.7, 52.2, 18.5 ppm. HR-MS: calc. for [M+H]+

C7H9N4 149.08217 found 149.08198.

(5-Methylpyridin-3-yl)methanamine (14a). 3-(Azidomethyl)-5-methylpyridine (244 mg, 1.7 mmol, 1.0 equiv.) was dissolved in 55 mL

EtOAc / MeOH (2:1) and Pd/C (175mg, 0.17 mmol, 0.1 equiv.) was added. The solution was stirred under inert hydrogen atmosphere

for 1 h. The reaction mixture was filtered over Celite� and the filtrate was concentrated under reduced pressure. The residual was

purified by means of silica gel column chromatography (elute: EtOAc / MeOH +1% v/v TEA) and the product was obtained as

pale yellow oil (108.6 mg, 0.89 mmol, 54%). Rf = 0.23 (DCM / EtOH / sat.NH4OH = 50:8:1). 1H NMR (500 MHz, CDCl3) d 8.35

(d, J = 1.5 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H), 7.49 – 7.47 (m, 1H), 3.87 (s, 2H), 2.33 ppm (s, 3H). 13C NMR (126 MHz, CDCl3)

d 149.0, 146.2, 137.7, 135.6, 133.1, 43.9, 18.5 ppm. HR-MS: m/z calculated for [M+H]+ C7H11N2 123.09167 found 123.09139.

N-((5-methylpyridin-3-yl)methyl)formamide (13a). (5-Methylpyridin-3-yl)methanamine 14a (100 mg, 0.82 mmol, 1.0 equiv.) was

dissolved in ethyl formate (200 mL, 2.5 mmol, 3.0 equiv.) and the solution was vigorously stirred at 60�C for 24 h. The solvent

was removed under reduced pressure and the residual was purified by means of silica gel column chromatography

(elute: EtOAc / MeOH +1% v/v TEA). The product was obtained as yellow oil (111 mg, 0.74 mmol, 90%). 1H NMR (500 MHz,

CDCl3) d 8.34 (d, J = 14.4 Hz, 2H), 8.29 (s, 1H), 7.46 (s, 1H), 4.47 (d, J = 6.1 Hz, 2H), 2.33 ppm (s, 3H). 13C NMR (126 MHz,

CDCl3) d 161.2, 149.7, 146.3, 136.4, 133.5, 133.0, 39.6, 18.5 ppm. HR-MS: m/z calculated for [M+H]+ C8H11N2O 151.08659

found 151.08616.

N-(4-Picolyl)formamide (13b). 4-Picolylamine 14b (305 mL, 3.0 mmol, 1.0 equiv.) was dissolved in ethyl formate (724 mL, 9.0 mmol,

3 equiv.) and the solution was vigorously stirred at 60�C for 24 h. The reaction mixture was evaporated under reduced pressure and

the product was obtained as yellow oil (398 mg, 2.9 mmol, 97%). Rf = 0.21 (EtOAc / MeOH / TEA = 90:10:1). 1H NMR (500 MHz,

DMSO-d6) mixture of rotamers is observed, major rotamer is given; d 8.62 (bs, 1H), 8.50 (d, J = 6.0 Hz, 2H), 8.19 (s, 1H), 7.26

(d, J = 6.0 Hz, 2H), 4.33 ppm (d, J = 6.2 Hz, 2H). 13C NMR (126MHz, DMSO-d6) d 161.5, 149.6, 148.0, 122.2, 39.8 ppm (under solvent

signal, determined by HSQC). LC-MS: m/z calculated for [M+H]+ C7H9N2O 137 found 137.

N-(Pyrimidine-5-ylmethyl)formamide (13c). Prepared according to general procedure 1A with pyrimidine-5-carbaldehyde 12a

(300 mg, 2.8 mmol, 1.0 equiv.), formic acid (838 mL, 22 mmol, 7.9 equiv.) and formamide (1.6 mL, 33 mmol, 11.8 equiv.) under con-

ventional heating at 180�C for 30 min. The product was purified by means of silica gel column chromatography (elute: EtOAc /

MeOH +1% v/v TEA) to obtain the product as colorless oil (41 mg, 0.3 mmol, 10%). Rf = 0.17 (EtOAc / MeOH / TEA = 90:10:1).
1H NMR (600 MHz, CDCl3) mixture of rotamers is observed, major rotamer is given; d 9.15 (s, 1H), 8.71 (s, 2H), 8.32 (s, 1H), 6.16

(bs, 1H), 4.51 ppm (d, J = 6.2 Hz, 2H). 13C NMR (151 MHz, CDCl3) d 161.3, 158.3, 156.6, 131.5, 37.6 ppm. HR-MS: m/z calculated

for [M+H]+ C6H8N3O 138.0662 found 138.06579.

N-(3-Fluorobenzyl)formamide (13d). Prepared according to general procedure 1A with 3-fluorobenzaldehyde 12b (300 mL,

2.8 mmol, 1.0 equiv.), formic acid (530 mL, 14 mmol, 5.0 equiv.) and formamide (1.3 mL, 28 mmol, 10.0 equiv.) under conventional

heating. The product was obtained by means of flash silica gel column chromatography (elute: cyclohexane / EtOAc) as pale yellow
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oil (244 mg, 1.6 mmol, 56%). Rf = 0.27 (cyclohexane / EtOAc = 1:1). 1H NMR (400 MHz, DMSO-d6) mixture of rotamers is observed,

major rotamer is given; d 8.54 (bs, 1H), 8.15 (d, J = 0.8 Hz, 1H), 7.41-7.33 (m, 1H), 7.14 – 7.03 (m, 3H), 4.32 ppm (d, J = 6.2 Hz, 2H). 13C

NMR (101 MHz, DMSO-d6) mixture of rotamers; d 165.0, 163.4, 161.2, 142.1, 142.0, 130.3, 130.3, 123.3, 123.2, 114.0, 113.8, 113.7,

113.5, 40.2 ppm. LC-MS: m/z calculated for [M+H]+ C8H9FNO 154.0 found 154.0.

N-(4-Fluorobenzyl)formamide (13e). Prepared according to general procedure 1A with 4-fluorobenzaldehyde 12c (300 mL,

2.8 mmol, 1.0 equiv.), formic acid (530 mL, 14 mmol, 5.0 equiv.) and formamide (1.3 mL, 28 mmol, 10.0 equiv.) under conventional

heating. The product was obtained by means of flash silica gel column chromatography (elute: cyclohexane / EtOAc) as white

crystalline solid (254 mg, 1.7 mmol, 59%). Rf = 0.23 (cyclohexane / EtOAc = 1:1). 1H NMR (400 MHz, DMSO-d6) mixture of rotamers

is observed, major rotamer is given; d 8.50 (bs, 1H), 8.12 (s, 1H), 7.34-7.25 (m, 2H), 7.21-7.10 (m, 2H), 4.28 ppm (d, J = 6.2 Hz, 2H). 13C

NMR (101 MHz, DMSO-d3) d 161.1, 129.3, 129.3, 115.2, 115.0, 40.0 ppm. LC-MS:m/z calculated for [M+H]+ C8H9FNO 154.0 found

154.0.

N-(4-Methoxybenzyl)formamide (13f). Prepared according to general procedure 1A using 4-methoxybenzaldehyde 12d (44.6 mL,

0.37 mmol, 1.0 equiv.), formic acid (72.9 mL, 1.84 mmol, 5.0 equiv.) and formamide (731.9 mL, 18.36 mmol, 50.0 equiv.) using

microwave irradiation. The product was purified by means of flash silica gel column chromatography (elute: cyclohexane / EtOAc)

and obtained as off-white solid (29.9 mg, 0.18 mmol, 49%). Rf = 0.24 (cyclohexane / EtOAc 1:3). 1H NMR (400 MHz, CDCl3) mixture

of rotamers, only major rotamer given; d 8.24 (s, 1H), 7.22 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.75 (bs, 1H), 4.42 (d, J = 5.8 Hz,

2H), 3.80 ppm (s, 3H). 13C NMR (100MHz, CDCl3) mixture of rotamers, only major rotamer given; d 160.9, 159.4, 129.4, 128.5, 114.3,

55.5, 41.9 ppm. MS-EI: m/z (%): 165 (100) [M]+, 136 (56), 121 (85), 109 (20), 91 (18), 77 (26).

N-(Furan-2-ylmethyl)formamide (13g). Prepared according to general procedure 1Awith furfural 12e (300 mL, 3.6mmol, 1.0 equiv.),

formic acid (683 mL, 18 mmol, 5.0 equiv.) and formamide (1.7 mL, 36 mmol, 10.0 equiv.) under conventional heating. The product

was obtained by means of flash silica gel column chromatography (elute: cyclohexane / EtOAc) as brown oil (164 mg, 1.3 mmol,

36%). Rf = 0.11 (cyclohexane / EtOAc = 1:1). 1H NMR (600MHz, DMSO-d6) mixture of rotamers is observed, major rotamer is given;

d 8.47 (bs, 1H), 8.06 (s, 1H), 7.62-7.55 (m, 1H), 6.39 (dd, J = 3.0, 1.9 Hz, 1H), 6.25 (d, J = 3.2 Hz, 1H), 4.28 ppm (d, J = 5.8 Hz, 2H). 13C

NMR (151MHz, DMSO-d6) d 160.9, 151.8, 142.2, 110.5, 107.0, 34.0 ppm. MS-EI:m/z (%): 125 (100) [M]+, 108 (5), 96 (50), 81 (48), 68

(20), 53 (20).

N-(Propargyl)formamide (13h). Propargylamine 14c (500 mL, 9.1 mmol, 1.0 equiv.) and formamide (360 mL, 9.1 mmol, 1.0 equiv.)

were dissolved in toluene (8 mL) and hydroxylamine hydrochloride (63 mg, 0.9 mmol, 0.1 equiv.) was added. The reaction mixture

was stirred to reflux for 24 h. The reaction mixture was allowed to cool down to room temperature and concentrated under reduced

pressure. The crude reaction was extracted with DCM and the organic layer was washed twice with water. The combined

organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The product was obtained by means

of silica gel column chromatography (elute: cyclohexane / EtOAc) as white crystalline solid (367 mg, 4.4 mmol, 48%). Rf = 0.28

(cyclohexane / EtOAc = 1:1). 1H NMR (500 MHz, CDCl3) mixture of rotamers is observed, major rotamer is given; d 8.19 (s, 1H),
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5.86 (bs, 1H), 4.10 (ddd, J = 5.4, 2.6, 0.8 Hz, 2H), 2.26 ppm (t, J = 2.6 Hz, 1H). 13C NMR (126 MHz, CDCl3) d 160.7, 78.9, 72.1,

28.0 ppm.

N-((1-Methyl-1H-imidazol-5-yl)methyl)formamide (13i). (1-Methyl-1H-imidazol-5-yl)methanamine 14d (233 mg, 2.1 mmol, 1.0

equiv.) was dissolved in ethyl formate (505 mL, 6.3 mmol, 3.0 equiv.) and the solution was transferred into a sealed glass vial. The

reaction was vigorously stirred at 60�C for 24 h. After completion of the reaction, the reaction mixture was evaporated under reduced

pressure and purified by means of silica gel column chromatography (EtOAc / MeOH). The product was obtained as colorless oil

(252mg, 1.81mmol, 86%). Rf = 0.16 (EtOAc /MeOH / TEA = 90:10:1). 1H NMR (700MHz, DMSO-d6) mixture of rotamers is observed,

major rotamer is given; d 8.36 (bs, 1H), 8.04 (s, 1H), 7.53 (s, 1H), 6.78 (s, 1H), 4.28 (d, J = 5.7 Hz, 2H), 3.55 ppm (s, 3H). 13C NMR

(176 MHz, DMSO-d6) d 160.8, 138.4, 128.6, 127.6, 30.9, 30.5 ppm. LC-MS: m/z calculated for [M+H]+ C6H10N3O 140; found, 140.

N-Benzyl-6-methyl-5-(4-(methylthio)benzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2a). Pre-

pared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (200.0 mg, 0.82 mmol,

1.0 equiv.), 4-(methylthio)benzylamine 9e (144.1 mL, 0.82 mmol, 1.0 equiv.) and benzylisocyanide 8k (99.7 mL, 0.82 mmol, 1.0 equiv.).

The product was obtained as white solid (382.4 mg, 0.77 mmol, 94%). Enantiomers were separated by means of chiral preparative

HPLC. Optical rotation after enantiomer separation: R -0.250 �; S +0.258 �. Crystals for X-ray structure determination were grown in

Et2O / DCM (5:1). Rf = 0.45 (cyclohexane / EtOAc = 1:1). 1H NMR (500 MHz, CDCl3) d 7.77 (d, J = 7.4 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H),

7.35 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.16 (d, J = 8.3 Hz, 2H), 7.12 – 7.08 (m, 3H), 7.06 (s, 1H), 6.78 (d, J = 6.4 Hz, 2H), 6.31

(s, 1H), 5.15 (d, J = 15.5 Hz, 1H), 5.06 (d, J = 13.0 Hz, 1H), 4.61 (d, J = 15.5 Hz, 1H), 4.37 (dd, J = 14.9, 6.7 Hz, 1H), 4.19 (d, J = 13.0 Hz,

1H), 4.01 (dd, J = 14.9, 5.0 Hz, 1H), 2.45 (s, 3H), 1.70 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 170.7, 159.1, 152.4, 138.5, 137.1,

134.6, 134.1, 132.3, 128.9, 128.7, 128.5, 128.2, 127.6, 127.1, 127.0, 125.8, 105.4, 66.0, 55.8, 45.7, 44.1, 22.0, 15.8 ppm. HR-MS:

calc. for [M+H]+ C29H29N4O2S 497.2006 found 497.2002.

N-Benzyl-5-(4-(diethylamino)benzyl)-6-methyl-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2b).

Prepared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (20.0 mg,

0.08 mmol, 1.0 equiv.), (4-aminomethyl)-N,N-diethylaniline 9c (13.3 mL, 0.07 mmol, 0.9 equiv.) and benzyl isocyanide 8k (10.0 mL,
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0.08 mmol, 1.0 equiv.). The product was obtained as light yellow solid (11.5 mg, 0.02 mmol, 27%). Rf = 0.42 (cyclohexane / EtOAc =

1:1). 1H NMR (500 MHz, CDCl3) d 7.80 (d, J = 7.4 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.28 (s, 1H), 7.13 – 7.02

(m, 4H), 6.70 (d, J = 7.0 Hz, 2H), 6.55 – 6.56 (m, 2H), 6.20 – 6.13 (m, 1H), 5.10 (d, J = 12.8 Hz, 1H), 4.95 (d, J = 15.0 Hz, 1H), 4.70

(d, J = 15.0 Hz, 1H), 4.32 (dd, J = 15.0, 7.0 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H), 3.80 (dd, J = 15.0 Hz, 1H), 3.31 (q, J = 7.0 Hz, 4H),

1.80 (s, 3H), 1.13 ppm (t, J = 7.0 Hz, 6H). 13C NMR (126 MHz, CDCl3) d 171.2, 159.1, 152.1, 147.5, 137.2, 134.5, 132.5, 129.8,

128.9, 128.6, 128.4, 127.4, 127.0, 125.8, 123.8, 112.1, 105.2, 65.9, 55.9, 45.4, 44.4, 44.0, 21.8, 12.6 ppm. HR-MS: calc. for

[M+H]+ C32H36N5O2 522.2864 found 522.2873, calc. for [M+Na]+ C32H35N5O2Na 544.2694 found 544.2694.

N-Benzyl-5-(4-(dimethylamino)benzyl)-6-methyl-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2c).

Prepared according to the general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (36.7 mg,

0.15 mmol, 1.0 equiv.), (4-aminomethyl)-N,N-dimethylaniline 9b (22.2 mL, 0.15 mmol, 1.0 equiv.) and benzyl isocyanide

8k (18.3 mL, 0.15 mmol, 1.0 equiv.). The product was obtained as light-yellow solid (44.4 mg, 0.09 mmol, 60%). Rf = 0.38 (cyclo-

hexane / EtOAc = 1:1). 1H NMR (500 MHz, CDCl3) d 7.81 – 7.79 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.29

(d, J = 8.6 Hz, 2H), 7.14 – 7.03 (m, 5H), 6.72 (d, J = 7.1 Hz, 2H), 6.61 (bs, 1H), 6.14 (t, J = 5.4 Hz, 1H), 5.10 (d, J = 12.8 Hz, 1H),

4.91 (d, J = 14.7 Hz, 1H), 4.77 (d, J = 14.7 Hz, 1H), 4.28 (dd, J = 14.9, 7.0 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H), 3.88 (dd, J = 14.9,

4.6 Hz, 1H), 2.92 (s, 6H), 1.78 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 171.1, 159.1, 152.2, 137.2, 134.4, 132.4, 129.4, 128.9,

128.6, 128.4, 127.4, 127.1, 125.8, 112.9, 105.2, 77.4, 65.9, 60.6, 55.9, 45.4, 44.1, 40.6, 21.8 ppm. HR-MS: calc. for [M+H]+

C30H32N5O2 494.2551 found 494.2561, calc. for [M+Na]+ C30H31N5O2Na 516.2370 found 516.2382.

N-Benzyl-5-(4-isopropoxybenzyl)-6-methyl-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2e). Pre-

pared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (20.0 mg, 0.08 mmol,

1.0 equiv.), (4-isopropoxyphenyl)-methanamine 9d (13.7 mL, 0.08 mmol, 1.0 equiv.) and benzyl isocyanide 8k (10.0 mL, 0.08 mmol,

1.0 equiv.). The product was obtained as brown solid (24.9 mg, 0.05 mmol, 60%). Rf = 0.55 (cyclohexane / EtOAc = 1:1). 1H NMR

(500 MHz, CDCl3) d 7.99 (d, J = 7.2 Hz, 2H), 7.71 – 7.45 (m, 5H), 7.31 (d, J = 7.2 Hz, 3H), 6.98 – 7.03 (m, 4H), 6.65 – 6.77 (m, 1H),

5.55 – 5.23 (m, 2H), 4.88 (d, J = 15.0 Hz, 1H), 4.73 (hept, J = 6.0 Hz, 1H), 4.59 (d, J = 15.0 Hz, 1H), 4.39 – 4.44 (m, 1H), 4.22

(d, J = 15.0 Hz, 1H), 1.94 (s, 3H), 1.55 ppm (d, J = 6.0 Hz, 6H). 13C NMR (126 MHz, CDCl3) d 170.9, 159.1, 157.6, 152.2, 137.2,
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134.3, 132.3, 129.6, 129.2, 128.9, 128.6, 128.4, 127.5, 127.0, 125.8, 116.3, 105.3, 69.9, 65.9, 55.8, 45.5, 44.0, 22.1, 21.9 ppm.

HR-MS: calc. for [M+H]+ C31H33N4O3 509.2547 found 509.2561, calc. for [M+Na]+ C31H32N4O3Na 531.2367 found 531.2382.

N-Benzyl-5-(4-ethylbenzyl)-6-methyl-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2h). Prepared ac-

cording to the general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (50.0 mg, 0.20 mmol,

1.0 equiv.), (4-ethylphenyl)methanamine 9f (29.2 mL, 0.20mmol, 1.0 equiv.) and benzyl isocyanide 8k (24.9 mL, 0.20mmol, 1.0 equiv.).

The product was obtained as light-yellow solid (72.8 mg, 0.15 mmol, 74%). Rf = 0.56 (cyclohexane / EtOAc = 1:1). 1H NMR (400MHz,

CDCl3) d 7.96 (d, J = 7.3 Hz, 2H), 7.58 (t, J = 7.3 Hz, 2H), 7.52 (d, J = 7.3 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.33 – 7.23 (m, 5H), 6.93 (d, J =

7.1 Hz, 2H), 6.38 (t, J = 5.6 Hz, 1H), 5.24 (dd, J = 15.0, 5.4 Hz, 2H), 4.89 (d, J = 15.0 Hz, 1H), 4.53 (dd, J = 15.0, 5.1 Hz, 1H), 4.37 (d, J =

15.0 Hz, 1H), 4.10 (dd, J = 15.0, 5.1 Hz, 1H), 2.78 (q, J = 7.7 Hz, 2H), 1.89 (s, 3H), 1.38 ppm (t, J = 7.7 Hz, 3H). 13C NMR (101 MHz,

CDCl3) d 170.9, 159.1, 152.4, 144.2, 137.2, 135.2, 134.3, 132.4, 128.9, 128.8, 128.7, 128.4, 127.8, 127.6, 127.1, 125.9, 105.4, 66.0,

55.9, 45.9, 44.1, 28.6, 21.9, 15.6 ppm. HR-MS: calc. for [M+H]+ C30H31N4O2
+ 479.2442 found 479.2454, calc. for [M+Na]+

C30H30N4O2Na 501.2261 found 501.2273.

N-Benzyl-N,6-dimethyl-5-(4-(methylthio)benzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (2i).

N-Benzyl-6-methyl-5-(4-(methylthio)benzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide 2a (11 mg,

22 mmol, 1.0 equiv.) was dissolved in DMF (0.5 mL) and cooled to 0�C. Sodium hydride (1.8 mg, 44 mmol, 2.0 equiv.) was thereto

added and the solution was stirred at 0�C for 10 min. Subsequently, methyl iodide (1.7 mL, 27 mmol, 1.2 equiv.) was added and

the solution was allowed to warm up to room temperature overnight. The excess of sodium hydride was quenched by addition of

1 mL water at 0�C. The product was extracted thrice with EtOAc and the combined organic layers were concentrated under reduced

pressure. The product was purified by means of silica gel column chromatography (elute: cyclohexane / EtOAc) and obtained as

white solid (4 mg, 8 mmol, 35%). Rf = 0.67 (cyclohexane / EtOAc = 1:1). 1H NMR (600 MHz, CDCl3) d 7.81 – 7.77 (m, 2H), 7.42

(d, J = 7.2 Hz, 2H), 7.36 – 7.33 (m, 1H), 7.31 – 7.27 (m, 5H), 7.23 (s, 1H), 7.21 – 7.18 (m, 2H), 7.10 (d, J = 7.2 Hz, 2H), 4.77 – 4.67

(m, 2H), 4.61 (d, J = 15.4 Hz, 2H), 4.36 (d, J = 13.5 Hz, 2H), 2.79 (s, 3H), 2.48 (s, 3H), 1.65 ppm (s, 3H). 13C NMR (151 MHz,
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CDCl3) d 168.2, 158.6, 152.7, 138.3, 135.9, 134.7, 134.3, 132.3, 129.5, 129.0, 129.0, 128.6, 128.0, 127.8, 126.6, 125.8, 105.6, 66.5,

53.8, 53.7, 47.3, 36.6, 23.8, 16.0 ppm. HR-MS: calc. for [M+H]+ C30H31N4O2S 511.21622 found 511.21567.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyridin-3-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3a). Prepared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (100.0 mg,

0.41 mmol, 1.0 equiv.), 4-(morpholinophenyl)methanamine 9a (78.7 mg, 0.41 mmol, 1.0 equiv.) and 3-(isocyanomethyl)pyridine

8j (48.4 mg, 0.41 mmol, 1.0 equiv.). The product was obtained as white solid (97.2 mg, 0.18 mmol, 44%). Enantiomers were

separated by means of chiral preparative HPLC. Optical rotation after enantiomer separation: R -0.431 �; S +0.390 �. Rf = 0.51

(dichloromethane / MeOH = 4:1). 1H NMR (400 MHz, CDCl3) d 8.33 (dd, J = 4.7, 1.4 Hz, 1H), 8.19 (d, J = 1.4 Hz, 1H), 7.81 – 7.68

(m, 2H), 7.46 – 7.30 (m, 3H), 7.27 (s, 1H), 6.98 (s, 1H), 6.97 (dt, J = 7.8, 1.9 Hz, 1H), 6.90 (dd, J = 7.8, 4.7 Hz, 1H), 6.79

(d, J = 8.7 Hz, 2H), 6.64 (t, J = 5.5 Hz, 1H), 5.06 (d, J = 13.0 Hz, 1H), 4.97 (d, J = 15.3 Hz, 1H), 4.73 (d, J = 15.3 Hz, 1H), 4.25

(dd, J = 15.1, 6.5 Hz, 1H), 4.16 (d, J = 13.0 Hz, 1H), 4.00 (dd, J = 15.1, 5.5 Hz, 1H), 3.84 (t, J = 4.8 Hz, 4H), 3.10 (t, J = 4.8 Hz, 4H),

1.72 ppm (s, 3H). 13C NMR (101 MHz, CDCl3) d 171.3, 159.1, 152.3, 151.0, 148.9, 148.8, 134.8, 134.3, 133.1, 132.2, 129.0, 128.9,

128.7, 128.5, 125.8, 123.6, 115.9, 105.2, 66.9, 65.9, 55.8, 48.9, 45.5, 41.5, 21.8 ppm. HR-MS: calc. for [M+H]+ C31H33N6O3

537.2609 found 537.2601.

6-Methyl-N-((5-methylpyridin-3-yl)methyl)-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-car-

boxamide (3b). Prepared according to general procedure 3B using Burgess reagent (95 mg, 400 mmol, 2.0 equiv.),N-((5-methylpyr-

idin-3-yl)methyl)formamide 13a (30 mg, 200 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (49 mg,

200 mmol, 1.0 equiv.) and 4-(morpholinophenyl)methanamine 9a (35 mg, 180 mmol, 1.0 equiv.) in MeOH (1.2 mL) and ACN

(5.5 mL). The product was purified by means of silica gel column chromatography (DCM / EtOH / sat. NH4OH) and obtained as white

crystalline solid (13mg, 24 mmol, 13%). 1HNMR (700MHz, CDCl3) d 8.18 (d, J = 2.1 Hz, 1H), 7.99 (d, J = 2.1 Hz, 1H), 7.77 (d, J = 7.1 Hz,

2H), 7.42 – 7.36 (m, 2H), 7.34 – 7.29 (m, 3H), 7.07 (s, 1H), 6.83 – 6.81 (m, 2H), 6.81 – 6.79 (m, 1H), 6.34 (t, J = 6.3 Hz, 1H), 5.08 (d, J =

12.8 Hz, 1H), 4.91 (d, J = 15.3 Hz, 1H), 4.81 (d, J = 15.3 Hz, 1H), 4.26 (dd, J = 15.1, 6.3 Hz, 1H), 4.16 (d, J = 12.8 Hz, 1H), 3.90 (dd, J =

15.1, 6.3 Hz, 1H), 3.85 (t, J = 4.9 Hz, 4H), 3.11 (td, J = 4.3, 1.5 Hz, 4H), 2.02 (s, 3H), 1.75 ppm (s, 3H). 13C NMR (176 MHz, CDCl3)
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d 171.3, 159.0, 152.3, 151.1, 149.6, 145.8, 135.3, 134.3, 133.3, 132.5, 132.2, 129.2, 128.9, 128.7, 128.5, 125.8, 116.0, 105.1, 66.9,

65.9, 55.8, 49.0, 45.5, 41.4, 21.9, 18.2 ppm. HR-MS: calc. for [M+H]+ C32H35N6O3 551.27652 found 551.27602.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyridin-4-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3c). Prepared according to general procedure 3B using Burgess reagent (83mg, 348 mmol, 1.6 equiv.),N-(4-picolyl)formamide 13b

(30 mg, 220 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (54 mg, 220 mmol, 1.0 equiv.) and 4-(mor-

pholinophenyl) methanamine 9a (38 mg, 198 mmol, 0.9 equiv.) in MeOH (1.2 mL) and ACN (5.5 mL). The product was purified twice by

means of silica gel column chromatography (1st elute: DCM /MeOH; 2nd elute: DCM / EtOH / sat. NH4OH) and obtained as white solid

(12 mg, 22 mmol, 11%). Rf = 0.29 (DCM / EtOH / sat. NH4OH = 75:4:0.5). 1H NMR (700 MHz, CD2Cl2) d 8.27-8.22 (m, 2H), 7.85 – 7.80

(m, 2H), 7.46 – 7.41 (m, 2H), 7.38 – 7.35 (m, 1H), 7.34 (d, J = 8.7 Hz, 2H), 7.15 (s, 1H), 6.84 – 6.80 (m, 2H), 6.60 – 6.57 (m, 2H), 6.31 (t, J =

6.2 Hz, 1H), 5.03 (d, J = 12.8 Hz, 1H), 4.88 (s, 2H), 4.26 (dd, J = 16.0, 6.2 Hz, 1H), 4.22 (d, J = 12.8 Hz, 1H), 3.94 (dd, J = 16.0, 6.2 Hz,

1H), 3.83 – 3.78 (m, 4H), 3.07 (m, 4H), 1.76 ppm (s, 3H). 13C NMR (176MHz, CD2Cl2) d 171.9, 159.2, 152.4, 151.5, 150.1, 146.7, 134.9,

132.7, 129.4, 129.2, 129.0, 128.7, 125.9, 121.8, 116.1, 105.2, 67.1, 66.2, 56.2, 49.2, 45.6, 43.0, 21.8 ppm. HR-MS: calc. for [M+H]+

C31H33N6O3 537.26087 found 537.26006.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyridin-2-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3d). 6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide 3k (30 mg,

67 mmol, 1.0 equiv.) was dissolved in DMF (0.50 mL) and cooled to 0�C. Solid sodiumhydride (60% dispersion in mineral oil,

3mg, 75 mmol, 1.1 equiv.) was added and the resulting suspensionwas stirred at 0�C for half an hour. 2-Picolyl chloride (basic workup

of the commercially obtained HCl salt with saturated NaHCO3 yielded the free chloride derivative) (7.2 mL, 75 mmol, 1.1 equiv.) was

added to via a syringe and the vial was allowed towarm up to room temperature overnight. Afterwards, themixture was cooled to 0�C
and water (1 mL) was added. The mixture was extracted thrice with EtOAc, the combined organic layers were washed with brine,

dried over Na2SO4, filtered and concentrated under reduced pressure. The product was purified by means of silica gel column chro-

matography (elute: EtOAc/MeOH / TEA) and obtained as white solid (7 mg, 13 mmol, 19%). Rf = 0.53 (EtOAc /MeOH / TEA = 90:10:1).
1HNMR (700MHz, CDCl3) d 8.43 (d, J = 4.9 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.45 (td, J = 7.7, 1.8 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.35 – 7.30

(m, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.22 (t, J = 4.9 Hz, 1H), 7.15 (s, 1H), 7.10 – 7.06 (m, 1H), 6.83 (t, J = 8.1 Hz, 3H), 5.38 (d, J = 15.6 Hz, 1H),

5.04 (d, J = 13.0 Hz, 1H), 4.53 (d, J = 15.6 Hz, 1H), 4.45 (dd, J = 16.6, 4.9 Hz, 1H), 4.28 (dd, J = 16.6, 4.9 Hz, 1H), 4.20 (d, J = 13.0 Hz,
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1H), 3.86 – 3.82 (m, 4H), 3.13 – 3.07 (m, 4H), 1.71 ppm (s, 3H). 13C NMR (176 MHz, CDCl3) d 171.0, 159.1, 155.3, 152.2, 150.8, 149.1,

136.8, 134.5, 132.5, 129.4, 128.9, 128.7, 128.4, 125.8, 122.5, 121.4, 116.0, 105.3, 67.0, 65.8, 55.8, 49.3, 45.7, 44.8, 22.2 ppm.

HR-MS: calc. for [M+H]+ C31H33N6O3 537.26087 found 537.26033.

N-(Tert-butyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (3e).

Prepared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (108 mg,

0.44 mmol, 1.0 equiv.), 4-(morpholinophenyl) methanamine 9a (85 mg, 0.44 mmol) and tert-butylisocyanide 8l (50 mL, 0.44 mmol,

1.0 equiv.). The product was purified by means of silica gel column chromatography (elute: pentane / EtOAc) and obtained as yellow

solid (126 mg, 0.25 mmol, 57%). Rf = 0.21 (cyclohexane / EtOAc = 1:1). 1H NMR (700 MHz, CDCl3) d 7.82 – 7.79 (m, 2H), 7.42 – 7.39

(m, 4H), 7.35 – 7.31 (m, 1H), 7.17 (s, 1H), 6.91 – 6.88 (m, 2H), 5.41 (s, 1H), 4.97 (d, J = 12.9 Hz, 1H), 4.94 (d, J = 15.2 Hz, 1H), 4.69 (d, J =

15.2 Hz, 1H), 4.14 (d, J = 12.8 Hz, 1H), 3.87 – 3.84 (m, 4H), 3.17 – 3.10 (m, 4H), 1.74 (s, 3H), 0.94 ppm (s, 9H). 13C NMR (176 MHz,

CDCl3) d 169.8, 159.2, 152.1, 151.3, 134.3, 132.6, 129.8, 129.0, 128.9, 128.4, 125.9, 116.3, 104.9, 67.0, 66.2, 56.1, 51.7, 49.3, 45.4,

28.2, 21.6 ppm. HR-MS: calc. for [M+H]+ C29H36N5O3 502.28127 found 502.28028.

N-Benzyl-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (3f). Pre-

pared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (30.0 mg, 0.12 mmol,

1.0 equiv.), (4-morpholino-phenyl)methanamine 9a (21.2 mL, 0.12 mmol, 1.0 equiv.) and benzyl isocyanide 8k (15.0 mL, 0.12 mmol,

1.0 equiv.). The product was obtained as brown solid (44.3 mg, 0.08 mmol, 67%). Rf = 0.25 (cyclohexane / EtOAc = 3:7). 1H NMR

(500 MHz, CDCl3) d 7.79 (d, J = 7.3 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.30 (d, J = 8.7 Hz, 2H), 7.13 – 7.07

(m, 4H), 6.80 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 6.4 Hz, 2H), 6.21 (t, J = 5.4 Hz, 1H), 5.08 (d, J = 12.9 Hz, 1H), 4.98 (d, J = 15.0 Hz,

1H), 4.74 (d, J = 15.0 Hz, 1H), 4.35 (dd, J = 15.0, 6.8 Hz, 1H), 4.18 (d, J = 12.9 Hz, 1H), 3.94 (dd, J = 15.0, 5.4 Hz, 1H), 3.85 (t, J =

4.8 Hz, 4H), 3.11 (t, J = 4.8 Hz, 4H), 1.74 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 171.0, 159.1, 152.3, 150.9, 137.2, 134.3,
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132.4, 129.1, 128.9, 128.7, 128.4, 127.5, 127.0, 125.8, 116.0, 105.3, 66.9, 65.9, 55.9, 49.1, 45.5, 44.1, 29.8, 21.9 ppm. HR-MS: calc.

for [M+H]+ C32H34N5O3 536.2656 found 536.2668, calc. for [M+Na]+ C32H33N5O3Na 558.2476 found 558.2487.

N-(4-Fluorobenzyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3g). Prepared according to general procedure 3B using Burgess reagent (70 mg, 293 mmol, 2.0 equiv.), N-(4-fluorobenzyl)form-

amide 13e (30 mg, 196 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (48 mg, 196 mmol, 1.0 equiv.)

and 4-(morpholinophenyl)methanamine 9a (34mg, 176 mmol, 0.9 equiv) inMeOH (1.2ml) and ACN (5.5ml). The crudewas filtered and

the remaining product was washed thrice with cold ACN. The product was obtained as a white solid (15mg, 27 mmol, 15%). Rf = 0.47

(cyclohexane / EtOAc = 1:4). 1H NMR (500 MHz, CDCl3) d 7.77 (d, J = 7.3 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.30

(d, J = 8.6 Hz, 2H), 7.06 (s, 1H), 6.80 (d, J = 8.6 Hz, 2H), 6.75 (t, J = 8.3 Hz, 2H), 6.73-6.68 (m, J = 8.3 Hz, 2H), 6.25 (s, 1H), 5.07 (d, J =

12.9 Hz, 1H), 4.94 (d, J = 15.2 Hz, 1H), 4.76 (d, J = 15.2 Hz, 1H), 4.27 (dd, J = 14.9, 6.7 Hz, 1H), 4.18 (d, J = 12.9 Hz, 1H), 3.91 (dd, J =

14.9, 5.1 Hz, 1H), 3.88-3.81 (m, 4H), 3.17-3.06 (m, 4H), 1.74 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 171.0, 163.1, 161.1, 159.1,

152.3, 151.0, 134.3, 133.0, 132.2, 129.1, 128.9, 128.8, 128.8, 128.5, 125.8, 115.9, 115.6, 115.4, 105.3, 66.9, 65.9, 55.9, 49.0,

45.5, 43.4, 21.8 ppm. HR-MS: calc. for [M+H]+ C32H33FN5O3 554.25619 found 554.25544.

N-(4-fluorophenyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3h). Prepared according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (50.0 mg,

0.20 mmol, 1.0 equiv.), (4-morpholino-phenyl)methanamine 9a (35.4 mL, 0.20 mmol, 1.0 equiv.) and N-(4-fluorophenyl)formamide

8m (25mg, 0.20mmol, 1.0 equiv.). The product was obtained as light brown solid (33.7mg, 0.06mmol, 31%). Rf = 0.18 (cyclohexane /

EtOAc = 1:9). 1H NMR (500 MHz, CDCl3) d 7.77 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 3H), 7.31 (t, J = 7.5 Hz,

1H), 7.14 (s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 6.88 – 6.75 (m, 4H), 5.22 (d, J = 15.1 Hz, 1H), 5.17 (d, J = 12.9 Hz, 1H), 4.64 (d, J = 15.1 Hz, 1H),

4.22 (d, J = 12.9 Hz, 1H), 3.86 (t, J = 4.8 Hz, 4H), 3.14 (t, J = 4.8 Hz, 4H), 1.86 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 169.2, 159.1,
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152.4, 151.4, 134.2, 132.2, 130.3, 128.8, 128.5, 128.5, 125.8, 122.4, 122.3, 116.3, 115.5, 115.3, 105.4, 66.9, 66.3, 55.7, 49.0, 45.6,

22.0 ppm. HR-MS: calc. for [M+H]+ C31H31FN5O3 540.2405 found 540.2413.

N-(4-Methoxybenzyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3i). Prepared according to general procedure 3A using N-(4-methoxybenzyl)formamide 13f (10.0 mg, 0.07 mmol, 1.0 equiv.), 1-(2-

oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (16.6 mg, 0.07 mmol, 1.0 equiv.) and (4-morpholinophenyl)methanamine 9a

(11.8 mg, 0.06 mmol, 0.9 equiv.). The product was obtained as light yellow solid (13.2 mg, 0.02 mmol, 34%). Rf = 0.39 (cyclohexane /

EtOAc = 1:9). 1H NMR (400MHz, CDCl3) d 7.83 – 7.79 (m, 2H), 7.45 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 7.32 – 7.27 (m, 2H), 6.84 – 6.78

(m, 2H), 6.70 – 6.65 (m, 2H), 6.62 – 6.57 (m, 2H), 6.10 – 6.00 (m, 1H), 5.06 (d, J = 12.9 Hz, 1H), 4.98 (d, J = 15.3 Hz, 1H), 4.71 (d, J =

15.3 Hz, 1H), 4.31 (dd, J = 14.8 Hz, 1H), 4.18 (d, J = 12.9 Hz, 1H), 3.87 – 3.84 (m, 4H), 3.83 – 3.82 (m, 1H), 3.59 (s, 3H), 3.17 – 3.08

(m, 4H), 1.74 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 170.7, 159.0, 158.8, 152.1, 150.9, 134.2, 132.3, 129.1, 129.0, 128.8, 128.3,

128.3, 125.7, 115.9, 113.9, 105.2, 66.8, 65.8, 55.8, 55.1, 49.0, 45.3, 43.4, 26.9, 21.7 ppm. HR-MS: calc. for [M+H]+ C33H36N5O4

566.2762 found 566.2759, calc. for [M+Na]+ C33H35N5O4Na 588.2581 found 588.2579.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyridin-3-ylmethyl)-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepine-6-

carboxamide (3j). Prepared according to general procedure 2 using 1-(3-oxobutyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6b

(50 mg, 190 mmol, 1.0 equiv.), 4-(morpholinophenyl)methanamine 9a (34 mg, 170 mmol, 0.9 equiv.) and 3-(isocyanomethyl)pyridine

8j (23 mg, 190 mmol, 1.0 equiv.). The product was purified by means of silica gel column chromatography (elute: DCM / EtOH /

sat. NH4OH) and obtained as off-white solid (7 mg, 13 mmol, 7%). Rf = 0.39 (DCM / EtOH / sat. NH4OH = 175:4:0.5). 1H NMR

(700 MHz, CDCl3) d 8.39 (dd, J = 4.8, 2.0 Hz, 1H), 8.29 (d, J = 2.0 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.44 – 7.39 (m, 2H), 7.34 – 7.29

(m, 3H), 7.23 (dt, J = 7.8, 2.0 Hz, 1H), 6.97 (ddd, J = 7.8, 4.8, 0.9 Hz, 1H), 6.87 (s, 1H), 6.83 – 6.80 (m, 2H), 6.07 (t, J = 6.0 Hz, 1H),

4.92 (d, J = 128.0 Hz, 2H), 4.60 (ddd, J = 14.2, 7.2, 4.5 Hz, 1H), 4.26 (ddd, J = 14.2, 9.2, 6.2 Hz, 1H), 4.10 (dd, J = 14.8, 5.9 Hz,

1H), 4.00 (dd, J = 14.8, 5.9 Hz, 1H), 3.86 (t, J = 4.8 Hz, 4H), 3.21 (ddd, J = 14.4, 9.2, 7.3 Hz, 1H), 3.16 – 3.09 (m, 4H), 2.07 (ddd,

J = 14.4, 6.2, 4.6 Hz, 1H), 1.69 ppm (s, 3H). 13C NMR (176 MHz, CDCl3) d 172.5, 163.0, 151.1, 156.0, 149.3, 149.2, 138.2, 135.9,
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133.1, 132.6, 129.8, 128.9, 128.8, 128.2, 125.8, 123.7, 115.9, 107.9, 67.0, 65.8, 49.1, 47.3, 47.1, 41.7, 38.7, 27.4 ppm. HR-MS: calc.

for [M+H]+ C32H35N6O3 551.27652 found 551.27590.

3-Methyl-2-(4-morpholinobenzyl)-1-oxo-N-(pyridin-3-ylmethyl)-1,2,3,4,7,8,9,10-octahydropyrazino[1,2-b]indazole-3-carboxamide

(11). Prepared according to general procedure 2 using 2-(2-oxopropyl)-4,5,6,7-tetrahydro-2H-indazol-3-carboxylicacid 6c

(11.6 mg, 0.05 mmol, 1.0 equiv.), 4-morpholino-benzylamine 9a (18.1 mg, 0.9 mmol, 1.8 equiv.) and 3-isocyanomethylpyridine 8j

(5.71 mL, 0.05 mmol, 1.0 equiv.). The product was purified by means of silica gel column chromatography (elute: DCM / MeOH)

and obtained as white solid (9.9 mg, 0.02 mmol, 37%). Rf = 0.27 (DCM / MeOH = 95:5). 1H NMR (500 MHz, CDCl3) d 8.46 (d, J =

4.6 Hz, 1H), 8.16 (s, 1H), 7.28 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.79 (d, J = 8.7 Hz, 2H), 6.25

(t, J = 5.5 Hz, 1H), 4.93 – 4.88 (m, 2H), 4.71 (d, J = 15.3 Hz, 1H), 4.30 (dd, J = 15.3, 6.9 Hz, 1H), 4.04 (d, J = 12.7 Hz, 1H), 3.97

(dd, J = 15.3 Hz, 5.5 Hz, 1H), 3.85 (t, J = 4.8 Hz, 4H), 3.10 (t, J = 4.8 Hz, 4H), 2.91 – 2.80 (m, 1H), 2.72 – 2.65 (m, 2H), 2.65 – 2.59

(m, 1H), 1.85 – 1.78 (m, 2H), 1.78 – 1.71 (m, 2H), 1.69 ppm (s, 3H). 13C NMR (126 MHz, CDCl3) d 171.7, 160.0, 150.9, 150.3,

149.0, 148.8, 134.8, 133.2, 129.0, 128.2, 123.5, 121.0, 115.9, 66.9, 65.9, 55.7, 49.0, 45.0, 41.4, 23.4, 23.0, 22.9, 21.7, 21.3 ppm.

HR-MS: calc. for [M+H]+ C29H35N6O3 515.27652 found 515.27724.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (3k). N-(tert-butyl)-6-

methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide 3e (52 mg, 104 mmol,

1.0 equiv.) was dissolved in p-xylene (0.5 mL) and methanesulfonic acid (1.0 mL, 15.4 mmol, 148 equiv.) was slowly added. The

biphasic mixture was stirred vigorously for 5 min at room temperature and an additional hour at 40�C. The reaction mixture was al-

lowed to cool down to room temperature and carefully transferred to a container with 25mL saturated NaHCO3. The resultingmixture

was extracted thrice with EtOAc and the combined organic layers were dried over Na2SO4, filtered and concentrated under reduced

pressure. The product was obtained as white solid (46 mg, 100 mmol, 99%). Rf = 0.60 (EtOAc / MeOH / TEA = 90:10:1). 1H NMR

(700 MHz, CDCl3) d 7.77 (dd, J = 7.6, 1.4 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.14

(s, 1H), 6.87 – 6.84 (m, 2H), 5.93 (s, 1H), 5.63 (s, 1H), 5.16 (d, J = 15.5 Hz, 1H), 4.99 (d, J = 13.0 Hz, 1H), 4.57 (d, J = 15.5 Hz, 1H),

4.15 (d, J = 13.0 Hz, 1H), 3.88 – 3.83 (m, 4H), 3.16 – 3.11 (m, 4H), 1.68 ppm (s, 3H). 13C NMR (176 MHz, CDCl3) d 173.6, 159.1,

Cell Chemical Biology 26, 1–15.e1–e25, September 19, 2019 e20

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005



152.4, 150.9, 134.4, 132.3, 129.0, 128.9, 128.9, 128.4, 125.8, 116.0, 105.4, 66.9, 65.5, 55.6, 49.2, 45.5, 22.0 ppm. HR-MS: calc.

for [M+H]+ C25H28N5O3 446.31867 found 446.21830.

N-(3-Fluorobenzyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3l). Prepared according to general procedure 3B using Burgess reagent (70 mg, 293 mmol, 2.0 equiv.), N-(3-fluorobenzyl)form-

amide 13d (30 mg, 196 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (48 mg, 196 mmol, 1.0 equiv.)

and 4-(morpholinophenyl)methanamine 9a (34 mg, 176 mmol, 1.0 equiv.) in MeOH (1.2 mL) and ACN (5.5 mL). The product was pu-

rified by means of recrystallization fromMeOH and obtained as brown solid (20 mg, 35 mmol, 20%). Rf = 0.50 (cyclohexane / EtOAc =

1:4). 1H NMR (700MHz, CDCl3) d 7.77 (dd, J = 7.6, 1.3 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.35 – 7.32 (m, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.08

(s, 1H), 7.02 (td, J = 7.9, 5.8 Hz, 1H), 6.81 – 6.77 (m, 3H), 6.53 – 6.51 (m, 1H), 6.48 (dt, J = 9.5, 2.0 Hz, 1H), 6.39 (t, J = 6.1 Hz, 1H), 5.08

(d, J = 12.8 Hz, 1H), 4.94 (d, J = 15.4 Hz, 1H), 4.79 (d, J = 15.4 Hz, 1H), 4.27 (dd, J = 15.2, 6.1 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H), 3.95 (dd,

J = 15.2, 6.1 Hz, 1H), 3.84 (m, 4H), 3.13 – 3.08 (m, 4H), 1.75 ppm (s, 3H). 13C NMR (176 MHz, CDCl3) d 171.1, 163.5, 162.1, 159.1,

152.4, 151.0, 139.9, 139.8, 134.3, 132.3, 130.2, 130.1, 129.1, 128.8, 128.8, 128.4, 125.9, 122.6, 122.6, 115.9, 114.5, 114.4, 114.1,

114.0, 105.3, 66.9, 65.9, 55.9, 49.0, 45.5, 43.5, 43.5, 21.9 ppm. HR-MS: calc. for [M+H]+ C32H33N5O3F 554.25619 found 554.25561.

N-(Furan-2-ylmethyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3m). Prepared according to general procedure 3B using Burgess reagent (43 mg, 180 mmol, 1.5 equiv.), N-(furan-2-ylmethyl)form-

amide 13g (15 mg, 120 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (29 mg, 121 mmol, 1.0 equiv.)

and 4-(morpholinophenyl)methanamine 9a (21 mg, 109 mmol, 0.9 equiv.) in MeOH (0.6 mL) and ACN (2.75 mL). After work-up of the

crude reaction mixture, the product was purified using preparative HPLC-MS followed by silica gel column chromatography (elute:

DCM / EtOH / sat. NH4OH) as white solid (10 mg, 19 mmol, 17%). Rf = 0.51 (cyclohexane / EtOAc = 1:4). 1H NMR (500 MHz, CD2Cl2)

d 7.82 – 7.78 (m, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.36 – 7.32 (m, 1H), 7.30 (d, J= 8.5 Hz, 2H), 7.21 (d, J = 1.9 Hz, 1H), 7.11 (s, 1H), 6.92 – 6.88

(m, 2H), 6.17 (dd, J = 3.3, 1.9 Hz, 2H), 5.87 (d, J = 3.3 Hz, 1H), 5.02 (d, J = 15.5 Hz, 1H), 4.98 (d, J = 13.0 Hz, 1H), 4.65 (d, J = 15.5 Hz,

1H), 4.23 – 4.16 (m, 2H), 4.11 (dd, J = 15.6, 5.6 Hz, 1H), 3.85 – 3.81 (m, 4H), 3.16 – 3.12 (m, 4H), 1.68 ppm (s, 3H). 13C NMR (126 MHz,
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CD2Cl2) d 171.1, 159.2, 152.2, 150.9, 150.5, 142.5, 134.8, 132.7, 130.1, 129.9, 129.1, 128.6, 125.9, 116.6, 110.6, 107.3, 105.1, 66.9,

66.0, 55.9, 49.8, 45.7, 37.4, 21.9 ppm. HR-MS: calc. for [M+H]+ C30H32N5O4 526.24488 found 526.24402.

6-Methyl-N-((1-methyl-1H-imidazol-5-yl)methyl)-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyra-

zine-6-carboxamide (3n). Prepared according to general procedure 3B using Burgess reagent (128mg, 539 mmol, 2.5 equiv.),N-((1-

methyl-1H-imidazol-5-yl)methyl)formamide 13i (30 mg, 216 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic

acid 6a (53 mg, 216 mmol, 1.0 equiv.) and 4-(morpholinophenyl)methanamine 9a (37 mg, 194 mmol, 0.9 equiv.) in MeOH (1.2 mL)

and ACN (5.5 mL). The product was purified twice by means of silica gel column chromatography (1st elute: EtOAc / MeOH /

TEA = 90:10:1; 2nd elute: DCM / EtOH / sat. NH4OH = 125:4:0.5) and obtained as white solid (13 mg, 24 mmol, 12%). Rf = 0.40

(DCM / EtOH / sat. NH4OH = 125:4:0.5). 1H NMR (700 MHz, CD2Cl2) d 7.80 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.35 (t, J =

7.5 Hz, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.23 (s, 1H), 7.10 (s, 1H), 6.81 (d, J = 8.5 Hz, 2H), 6.64 (s, 1H), 5.98 (s, 1H), 5.03 (d, J =

12.5 Hz, 1H), 4.89 (d, J = 15.4 Hz, 1H), 4.75 (d, J = 15.4 Hz, 1H), 4.23 (dd, J = 15.6, 6.2 Hz, 1H), 4.18 (d, J = 12.5 Hz, 1H), 3.93

(dd, J = 15.5, 6.2 Hz, 1H), 3.83 (t, J = 5.0 Hz, 4H), 3.14 (m, 4H), 3.09 (s, 3H), 1.74 ppm (s, 3H). 13C NMR (176 MHz, CD2Cl2)

d 171.2, 159.1, 152.2, 151.4, 139.1, 135.0, 132.7, 129.4, 129.2, 128.9, 128.7, 128.7, 127.7, 125.9, 116.0, 105.0, 67.2, 66.1, 56.1,

49.2, 45.6, 33.8, 31.3, 21.7 ppm. HR-MS: calc. for [M+H]+ C30H34N7O3 540.27176 found 540.27094.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(pyrimidin-5-ylmethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carbox-

amide (3o). Prepared according to general procedure 3B using Burgess reagent (143 mg, 602 mmol, 2.6 equiv.), N-(pyrimidin-5-yl-

methyl)formamide 13c (32 mg, 233 mmol, 1.0 equiv.), 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (53 mg, 218 mmol,

0.9 equiv.) and 4-(morpholinophenyl)methanamine 9a (38 mg, 196 mmol, 0.8 equiv.) in MeOH (1.2 mL) and ACN (5.5 mL). The product

was purified twice by means of silica gel column chromatography (1st elute: DCM / MeOH; 2nd elute: DCM / EtOH / sat. NH4OH) and

obtained as white solid (12 mg, 22 mmol, 12%). Rf = 0.21 (DCM / EtOH / sat.NH4OH = 150:8:1). 1H NMR (700 MHz, CD2Cl2) d 8.96

(s, 1H), 8.21 (s, 2H), 7.82 – 7.79 (m, 2H), 7.42 (dd, J = 7.0, 8.4 Hz, 2H), 7.37 – 7.32 (m, 3H), 7.11 (s, 1H), 6.81 – 6.79 (m, 2H), 6.26

(t, J = 6.2 Hz, 1H), 5.03 (d, J = 12.8 Hz, 1H), 4.99 (d, J = 15.4 Hz, 1H), 4.71 (d, J = 15.4 Hz, 1H), 4.18 (d, J = 12.8 Hz, 1H), 4.08

(dd, J = 15.4, 6.2 Hz, 1H), 3.99 (dd, J = 15.4, 6.2 Hz, 1H), 3.82 (m, 4H), 3.10 (m, 4H), 1.75 ppm (s, 3H). 13C NMR (176 MHz,
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CD2Cl2) d 172.0, 159.2, 158.3, 156.3, 152.3, 151.5, 134.8, 132.7, 131.4, 129.6, 129.1, 128.8, 128.6, 126.0, 116.0, 105.2, 67.1, 66.1,

56.0, 49.0, 45.6, 39.6, 21.8 ppm. HR-MS: calc. for [M+H]+ C30H32N7O3 538.25611 found 538.25529.

6-Methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(prop-2-yn-1-yl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide

(3p). A round bottom flask was charged with formamide 13h (106 mg, 1.3 mmol, 1 equiv.), benzenesulfonyl chloride (327 mL,

2.6mmol, 2.0 qeuiv.) and trioctylamine (1.12mL, 2.6mmol, 2.0 equiv.). The flaskwas connected to a glass distillation tube and heated

to 80�C. A two-neck receiver flask was cooled to -80�C to collect formed isocyanide under reduced pressure over 2 h. Subsequently,

4-(morpholinophenyl)methanamine 9a (80 mg, 415 mmol, 0.3 equiv) and 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a

(113mg, 461 mmol, 0.4 equiv.) were added inMeOH (2.4mL) to the freshly distilled isocyanide. The resultingmixturewas stirred vigor-

ously at room temperature for two days. Thereafter, the reactionmixturewas dilutedwith EtOAc andwashedwith saturatedNaHCO3.

The aqueous layer was extracted twice with EtOAc and the combined organic layers were dried over Na2SO4 and filtered. The filtrate

was concentrated under reduced pressure and the product was purified by means of silica gel column chromatography (DCM /

EtOH / sat. NH4OH) and obtained as white crystalline solid (80 mg, 170 mmol, 40%). Rf = 0.5 (DCM / EtOH / sat.NH4OH =

125:4:0.5). 1H NMR (500 MHz, CDCl3) d 7.78 – 7.73 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.28 (m, 3H), 7.14 (s, 1H), 6.90 – 6.86

(m, 2H), 6.28 (q, J = 4.8 Hz, 1H), 5.11 (d, J = 15.4 Hz, 1H), 5.03 (d, J = 13.0 Hz, 1H), 4.66 (d, J = 15.4 Hz, 1H), 4.15 (d, J =

13.0 Hz, 1H), 3.87 – 3.80 (m, 5H), 3.72 (ddd, J = 17.5, 5.0, 2.6 Hz, 1H), 3.17 – 3.11 (m, 4H), 2.08 (t, J = 2.6 Hz, 1H), 1.69 ppm

(s, 3H). 13C NMR (126 MHz, CDCl3) d 170.8, 159.0, 152.3, 151.0, 134.2, 132.2, 128.9, 128.9, 128.8, 128.4, 125.8, 116.2, 105.4,

78.6, 72.1, 66.9, 65.7, 55.6, 49.2, 45.6, 30.1, 22.1 ppm. HR-MS: calc. for [M+H]+ C28H30N5O3 484.23432 found 484.23387.

6-Methyl-N-((1-methyl-1H-1,2,3-triazol-4-yl)methyl)-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyra-

zine-6-carboxamide (3q). Cupper(I)iodide (2.4 mg, 12.4 mmol, 0.2 equiv.) and sodium azide (8.8 mg, 136 mmol, 2.4 equiv.) were dis-

solved in H2O / EtOH (400 mL, 1:1). To the reaction mixture methyl iodide (4.3 mL, 68 mmol, 1.2 equiv.) and sodium ascorbate (11 mg,

60 mmol, 0.9 equiv.) were added and the resulting mixture and stirred for 1 h at room temperature. Subsequently, 6-methyl-5-(4-mor-

pholinobenzyl)-4-oxo-2-phenyl-N-(prop-2-yn-1-yl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide 3p (27 mg, 56 mmol,

1.0 equiv.) was added and the mixture was stirred at 50�C for 2 days. The product was purified by means of silica gel column chro-

matography (DCM / EtOH / sat. NH4OH) followed by MS-assisted preparative HPLC. After basic extraction between saturated

NaHCO3 and DCM the product was obtained as white solid (12 mg, 22 mmol, 40%). Rf = 0.11 (DCM / EtOH / sat.NH4OH =

175:4:0.5). 1H NMR (700 MHz, CDCl3) d 7.79 (dd, J = 8.2, 1.3 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.37 – 7.31 (m, 1H), 7.29 (d, J = 8.7 Hz,

2H), 7.08 (s, 1H), 6.89 – 6.84 (m, 2H), 6.78 (s, 1H), 6.64 (t, J = 6.2 Hz, 1H), 5.12 (d, J = 15.5 Hz, 1H), 5.02 (d, J = 12.8 Hz, 1H), 4.63

(d, J = 15.5 Hz, 1H), 4.43 (dd, J = 15.3, 6.6 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H), 4.05 (dd, J = 15.3, 5.4 Hz, 1H), 3.87 – 3.83 (m, 4H),
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3.58 (s, 3H), 3.16 – 3.11 (m, 4H), 1.71 ppm (s, 3H). 13C NMR (176MHz, CDCl3) d 171.4, 159.0, 151.9, 151.0, 144.6, 134.6, 132.2, 129.0,

129.0, 128.9, 128.6, 125.7, 122.6, 116.1, 105.0, 67.0, 65.9, 56.1, 49.2, 45.5, 36.3, 36.0, 21.6 ppm. HR-MS: calc. for [M+H]+

C29H33N8O3 541.26701 found 541.26642.

N-((1H-1,2,3-triazol-4-yl)methyl)-6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-

carboxamide (3r). To a suspension of 6-methyl-5-(4-morpholinobenzyl)-4-oxo-2-phenyl-N-(prop-2-yn-1-yl)-4,5,6,7-tetrahydropyr-

azolo[1,5-a]pyrazine-6-carboxamide 3p (30mg, 62 mmol, 1.0 equiv.), cupper(I)iodide (1.3mg 6.9 mmol, 0.1 equiv.), and sodium ascor-

bate (4.9 mg 25 mmol, 0.4 equiv.) in a DMF-water mixture (4:1, 1.0 mL) was added trimethylsilylazide (9 mg, 76 mmol, 1.2 equiv.). The

resulting mixture was stirred at heating on 100�C overnight. The mixture was allowed to cool down to room temperature and was

subsequently extracted between saturated NH4Cl and DCM. The combined organic layers were dried over Na2SO4, filtered and

concentrated under reduced pressure. The product was purified by means of silica gel column chromatography (elute: DCM /

EtOH / sat. NH4OH) and obtained as white crystalline solid (18 mg, 34 mmol, 55%). Rf = 0.27 (Pentane / DCM / EtOH / sat.NH4OH =

60:50:8:1). 1HNMR (700MHz, CDCl3) d 12.79 (bs, 1H), 7.74 (dd, J = 7.5, 1.3 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.32 – 7.29 (m, 1H), 7.27 (s,

1H), 7.24 (d, J = 8.6 Hz, 2H), 7.08 (s, 1H), 6.87 (s, 1H), 6.82-6.78 (m, 2H), 5.13 (d, J = 15.7 Hz, 1H), 5.05 (d, J = 12.9 Hz, 1H), 4.57 (d, J =

15.7 Hz, 1H), 4.33 – 4.26 (m, 2H), 4.17 (d, J = 12.9 Hz, 1H), 3.85 – 3.81 (m, 4H), 3.12 – 3.08 (m, 4H), 1.68 ppm (s, 3H). 13C NMR

(176 MHz, CDCl3) d 171.4, 159.3, 152.4, 150.9, 144.8*, 134.4, 132.2, 128.9, 128.9, 128.8, 128.5, 125.9, 116.0, 105.4, 66.9, 65.8,

55.7, 49.1, 45.7, 35.4**, 21.9 ppm. HR-MS: calc. for [M+H]+ C28H31N8O3 527.25136 found 527.25070.

only observed in HMBC* or HSQC**

N-Benzyl-5-(4-ethynylbenzyl)-6-methyl-4-oxo-2-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamide (3s). Prepared

according to general procedure 2 using 1-(2-oxopropyl)-3-phenyl-1H-pyrazole-5-carboxylic acid 6a (20.0mg, 0.08mmol, 1.0 equiv.),

(4-ethynylphenyl)methanamine 9g (10.7 mL, 0.08 mmol, 1.0 equiv.) and benzyl isocyanide 8k (10.0 mL, 0.08 mmol, 1.0 equiv.). The

product was obtained as white solid (13.4 mg, 0.03 mmol, 34%). Rf = 0.56 (cyclohexane / EtOAc = 3:7). 1H NMR (500 MHz,

CDCl3, major rotamer given) d 7.99 (d, J = 7.2 Hz, 2H), 7.69 – 7.62 (m, 4H), 7.60 (d, J = 7.2 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.36 –

7.31 (m, 3H), 7.07 – 6.99 (m, 2H), 6.80 (t, J = 5.1 Hz, 1H), 5.56 (d, J = 15.9 Hz, 1H), 5.29 (d, J = 13.1 Hz, 1H), 4.74 (d, J = 15.9 Hz,

1H), 4.63 (dd, J = 14.9 Hz, 1H), 4.43 (d, J = 13.1 Hz, 1H), 4.33 (dd, J = 14.9, 5.1 Hz, 1H), 3.35 (s, 1H), 1.91 ppm (s, 3H). 13C NMR

(126 MHz, CDCl3) d 170.6, 159.2, 152.4, 138.7, 137.2, 134.1, 132.9, 132.2, 128.9, 128.7, 128.5, 127.6, 127.3, 127.1, 125.8, 121.8,

105.5, 83.1, 78.0, 66.0, 55.8, 46.0, 44.1, 22.0 ppm. HR-MS: calc. for [M+H]+ C30H27N4O2 475.2129 found 475.2124, calc. for

[M+Na]+ C30H26N4O2Na 497.1948 found 497.1943.

Cell Chemical Biology 26, 1–15.e1–e25, September 19, 2019 e24

Please cite this article in press as: Reckzeh et al., Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth, Cell
Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.06.005



QUANTIFICATION AND STATISTICAL ANALYSIS

All biological replicates were expressed as mean ±s.d. or median with interquartile range. For statistical analysis of the data from RT-

qPCR experiments and immunoblot analysis an unpaired two-tailed t-test with Welch’s correction (without assuming equal s.d.) was

conducted (if indicated) using GraphPad Prism 5 or 7. *:p<0.05; **:p<0.01; ***:p<0.001. Linear regression was performed to evaluate

association between two conditions. N: technical replicates; n: biological replicates. All statistical details of the conducted experi-

ments can be found in the respective figure and table legends.

DATA AND CODE AVAILABILITY

The crystal structure of compound (R)-2a has been deposited in the CCDC database under ID code 1883523.
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