Journal of Medicinal Chemistry

Article

Discovery of a Natural-Product-Derived Preclinical Candidate for Once-Weekly Treatment of Type 2 Diabetes

Shiliang Li, Chun Qin, Shichao Cui, Hongling Xu, Fangshu Wu, Jiawei Wang, Mingbo Su, Xiaoyu Fang, Dan Li, Qian Jiao, Ming Zhang, Chunmei Xia, Lili Zhu, Rui Wang, Jia Li, Hualiang Jiang, Zhenjiang Zhao, Jing-Ya Li, and Honglin Li

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.8b01491 • Publication Date (Web): 29 Jan 2019

Downloaded from http://pubs.acs.org on January 30, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Discovery of a Natural-Product-Derived Preclinical Candidate for

Once-Weekly Treatment of Type 2 Diabetes

Shiliang Li^{1,†}, Chun Qin^{1,†}, Shichao Cui^{2,3,†}, Hongling Xu¹, Fangshu Wu¹, Jiawei Wang¹, Mingbo Su², Xiaoyu Fang¹, Dan Li², Qian Jiao¹, Ming Zhang¹, Chunmei Xia², Lili Zhu¹, Rui Wang¹, Jia Li², Hualiang Jiang², Zhenjiang Zhao^{1,*}, Jingya Li^{2,3,*}, Honglin Li^{1,*}

¹ Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

² State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai 201203, China.

³ University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China

[†] Authors contributed equally to this work

*To whom correspondence should be addressed. Email: zhjzhao@ecust.edu.cn, jyli@simm.ac.cn, hlli@ecust.edu.cn

Abstract

Poor medication adherence is one of the leading causes of suboptimal glycaemic control in approximately half of the patients with type 2 diabetes mellitus (T2DM). Long-acting antidiabetic drugs are clinically needed for improving patients' compliance. DPP-4 inhibitors play an increasingly important role in the treatment of T2DM for their favorable properties of weight neutrality and hypoglycemia avoidance. Herein, we report the successful discovery and scale-up synthesis of compound **5**, a structurally novel, potent and long-acting DPP-4 inhibitor for the once-weekly treatment of T2DM. Inhibitor **5** has fast-associating and slow-dissociating binding kinetics profiles as well as slow clearance rate and long terminal half-life pharmacokinetic properties. A single dose oral administration of **5** (3 mg/kg) inhibited >80% DPP-4 activity for more than 7 days in diabetic mice. The long-term antidiabetic efficacies of **5** (10 mg/kg, q.w) were better than the once-weekly trelagliptin and omarigliptin, especially in decreasing the hemoglobin A1c (HbA1c) level.

Keywords: Drug discovery, DPP-4 inhibitor, Natural product, Diabetes, Once-weekly treatment

Introduction

Diabetes mellitus is one of the largest health emergencies globally. The global healthcare costs to treat diabetes and related complications have reached 727 billion dollars in 2017.¹ The worldwide prevalence of diabetes mellitus for adults is growing at a continuous rate and has reached a total of 425 million in 2017, and the number will rise to 629 million by 2045. Among the diagnosed patients, approximately 90% of cases are type 2 diabetes mellitus (T2DM). Diabetes causes significant morbidity and mortality. Prevention of diabetes-related micro- and macrovascular complications such as nephropathy, retinopathy, neuropathy, and stroke in diabetic patients requires tight glycemic control. An increasing number of antihyperglycemic agents have been approved for the treatment of T2DM. Compared with the traditional antidiabetic drugs (mainly biguanides, sulfonylureas, thiazolidinediones, meglitinides, α -glucosidase inhibitors and insulin) that usually bring undesirable side effects including weight gain, hypoglycemia and gastrointestinal distress, newer therapies such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP-4 inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have more advantages because of their efficacy and safety.² Nevertheless, in spite of their potency in lowering HbA1c level without causing hypoglycemia, a particular inconvenience with GLP-1 receptor agonists therapy is its administration by injection, while SGLT2 inhibitors may potentially lower blood pressure and increase genital infection. Thus, DPP-4 inhibitors tend to draw more attention.3,4

The DPP-4 enzyme is a widely expressed serine protease that belongs to the α/β -hydrolases (family S9B). It can selectively inactivate peptides with an alanine, proline, or

serine residue at the penultimate position from the N-terminus.⁵ Inhibition of the catalytic activity of DPP-4 helps to elevate GLP-1 level, which is an important incretin secreted by the small intestine in response to meal ingestion, and amplifies the insulin secretory response to nutrients through their cognate G protein-coupled receptors in the pancreatic β cells.⁶ GLP-1 regulates glucose lowering activities in a glucose-dependent manner, however, it has short half-lives *in vivo* (< 2 min), and is rapidly degraded to their inactive form by DPP-4.⁶ Therefore, by inhibiting the catalytic activity of DPP-4, DPP-4 inhibitor helps to maintain the endogenous GLP-1 concentration, and is a clinically proven, therapeutically novel approach to treat T2DM.⁷

Nowadays, eleven DPP-4 inhibitors have been approved worldwide (Fig. S1). Classical sitagliptin (Fig. 1a), saxagliptin, alogliptin, and linagliptin et al. are all DPP-4 inhibitors given once per day. Since T2DM is a chronic, lifelong condition that requires patients to take anti-diabetic drugs regularly to control glucose levels, long-acting DPP-4 inhibitors have been clinically needed for improving patients' compliance.⁸ Trelagliptin and omarigliptin are the only two gliptins that have recently received marketing authorization in Japan in 2015 for once-weekly dosing regimen.^{9, 10} Patient satisfaction and compliance improved after switching from taking once-daily DPP-4 inhibitor to once-weekly DPP-4 inhibitor in Japan.^{11, 12} However, manufacturers of both drugs have announced that they discontinued their plans for seeking regulatory approval in countries other than Japan. Omarigliptin was reported to have a higher rate of serious adverse events than sitagliptin, showing elevated rates of cardiovascular issues, hepatobiliary events and prostate cancer.¹³⁻¹⁶ Although currently available data of trelagliptin suggest that trelagliptin is a safe and efficacious medication with

Page 5 of 52

a similar safety profile to the once-daily alogliptin,¹⁷ further studies are needed to investigate the effect of trelagliptin on cardiovascular events,¹⁸ since its close analog alogliptin had been warned by the U.S. FDA for an increased risk of heart failure.¹⁹ It is still unclear whether the excessive heart failure effect is target related or compound related, because sitagliptin did not increase cardiovascular risk in T2DM patients.^{20, 21} Structurally distinct DPP-4 inhibitors may serve as new tools to address this question. Therefore, it is still a necessity and challenge to find novel and safe DPP-4 inhibitors with long-acting antidiabetic efficacy, especially in China where more than 110 million adults have T2DM, accounting for about 25% of all T2DM patients worldwide.

Previously, based on a natural product lead *iso*-daphnetin (Fig. 1a), we have discovered a novel series of 3-phenyl-2,3-dihydro-1*H*-benzo[*f*]chromen-2-amine derivatives as potent DPP-4 inhibitors by scaffold hopping.²² Among those inhibitors, compound **1** (Fig. 1a) was the most promising one, which could inhibit > 80% DPP-4 activity for more than 24 h with a single oral dose of 3 mg/kg in diabetic mice. However, the long-acting antidiabetic efficacy of **1** still cannot afford a once-weekly dosing regimen. Both the ligand-protein binding kinetics and pharmacokinetic profiles of **1** should be optimized because those two profiles are reported to directly influence the duration of a drug's *in vivo* efficacy.²³⁻²⁶

Herein, based on the lead compound **1**, we report the successful discovery, scale-up synthesis and biochemical, structural, pharmacokinetic as well as pharmacological evaluation of a natural-product-derived DPP-4 inhibitor **5** for once-weekly treatment of T2DM with better and longer antidiabetic efficacy than trelagliptin and omarigliptin.

Fig. 1 Discovery and design of long-acting DPP-4 inhibitor **5**. (**a**) Chemical structures of representative DPP-4 inhibitors. (**b**) Binding mode of DPP-4 inhibitor **1** (PDB code: 5J3J), key residues are shown in grey sticks, while Arg358 from 1X70 binding sitagliptin as a ligand is shown in purple for comparison. Hydrogen bonds are displayed as black dashes. (**c**) Pair interaction energy (PIE) between the residues at the active site of DPP-4 and inhibitor **1**

and (d) Pair interaction energy decomposition analysis (PIEDA) for these residues. The electrostatics, charge-transfer, dispersion, and exchange-repulsion PIE terms are represented in green, orange, yellow, and blue, respectively. (e) Structures of three close analogs of 1: compounds 2-4. (f) PIEs between residues at the S2 extended subsite of DPP-4 and 1-4. (g) Correlations between experimentally measured affinities (DPP-4, pIC₅₀) and sums of PIEs between residues at the S2 extended subsite (PIE-sum_{S2 ext.}) of DPP-4 and inhibitors 1-4. (h) Structure of long-acting candidate 5 and the electrostatic surface potential (ESP) of its fragment of 8-cyano-9-methoxy-naphthalene. (i) Simulated binding mode of 5 with Arg358 in a closed-up conformation for FMO calculation. (j) PIEDA for the residues at the active site of DPP-4 and inhibitor 5.

Results

Design of the potent and long-acting DPP-4 inhibitor

In our previous study, we found that both shape and electrostatic complementarities at the S2 extended subsite of the DPP-4 catalytic site influence the bioactivity of the inhibitors in our series.²² The flexible Arg358 can be attracted by the negative electrostatic potential (ESP_{min} = -36.41 kcal/mol) produced by the two methoxyl oxygen atoms in **1**, and rotated its guanidine group into a closed-up conformation to generate hydrogen bonds with the methoxyl oxygen atoms (Fig. 1b). Therefore, compound **1** has a nanomolar binding affinity ($K_D = 2.38 \times 10^{-9}$ M) against DPP-4 and a slower dissociation rate ($k_{off} = 3.43 \times 10^{-3}$ s⁻¹) than sitagliptin ($k_{off} = 1.49 \times 10^{-2}$ s⁻¹) whose Arg358 flips away in an open conformation. Conformational changes were reported to be determinative features of many protein-ligand

systems with slow dissociation kinetics.²⁷ Thus, we speculated that interacting with Arg358 may be a key factor influencing the dissociation rate of our compounds in this series since Arg358 is flexible likes a door which can hinder the ligand from leaving.

In order to investigate how Arg358 contributes to the ligand-protein binding, the fragment molecular orbital (FMO) quantum-mechanical (QM) method²⁸⁻³¹ was applied to quantify the interactions formed between 1 and the pocket-lining residues of DPP-4. After FMO calculation, we found that dispersion interactions are prominent at the S1 and S'1 subsites (Fig. 1c and 1d), indicating that hydrophobic interactions are major inter-molecular interactions at those regions including residues His740, Tyr547, Try631, Tyr666, Val656, Tyr662, Val711, Asn710. Strong electrostatic interactions were presented at the S2 subsite, especially between 1 and residues Glu205 and Glu206, which are the two most important residues in the binding pocket that most of the reported DPP-4 inhibitors are interacting with. At the S2 extended subsite including residues Val207, Ser209, Phe357 and Arg358, we were surprised to observe that apart from the strong π - π stacking interactions between 1 and Phe357 informed by the pair interaction energy decomposition analysis (PIEDA), pair interaction energy (PIE) between 1 and Arg358 is comparable to that of Glu206 (-34.49 vs -32.94 kcal/mol), indicating that Arg358 contributes significantly to the binding stability of the complex. To explore whether such a great contribution made by Arg358 to the binding affinity is unique to the scaffold of 1, we subsequently performed FMO calculation on the X-ray complex structure of sitagliptin and DPP-4 (PDB: 1X70) in which Arg358 adopts an open conformation to accommodate the -CF3 group of sitagliptin. Results showed that PIE between sitagliptin and Arg358 is -9.59 kcal/mol (Fig. S2), only a third of that of the

Journal of Medicinal Chemistry

1-Arg358 pair. The above results suggested that the ligand-induced conformation change of Arg358 plays an important role in the binding of **1** to DPP-4, and contributes significantly to the binding affinity.

Expecting to keep Arg358 in a closed-up conformation in the subsequent structural optimization, the specific contribution made by the two methoxyl groups should be studied to illuminate us which methoxyl group is appropriate for substituting at the S2 extended subsite. Then, FMO calculations were performed on three close analogs of 1 (Fig. 1e): compound 2 with only one methoxyl group at R^1 , compound **3** with only one methoxyl group at R^2 , and compound 4 with neither of the methoxyl groups. Preparations of the complex structures of 2-4 with DPP-4 were described in the experimental section. For the four residues at the S2 extended subsite, major PIE differences were observed against Arg358 (Fig. 1f and Fig. S2). We found that methoxyl group at R^1 and methoxyl group at R^2 play an almost equally important role in interacting with Arg358, because PIEs of the 2-Arg358 and 3-Arg358 pairs were close to each other (-18.52 vs -19.40 kcal/mol). Without two methoxyl groups, 4 interacted Arg358 with PIE value of -4.16 kcal/mol, a more than 4 fold decrease than that of 2 or 3. Whereas, the occurrence of the two methoxyl group brought 1 the most strong interaction with Arg358 (PIE = -34.49 kcal/mol). The sums of the PIEs (PIE-sum_{S2 ext}) between each analog and residues at the S2 extended subsite correlated well with the four inhibitors' biological potencies ($R^2 = 0.84$, Fig. 1g). Those results suggested that functional groups at R¹ and R² should cooperate with each other to attract Arg358 to form a closed-up conformation, and two methoxyl groups in 1 made nearly equal contributions. Compared with R^1 position that has limited space, R^2 positon is open wide enough, thus we decided to

decorate at R² with the attempt to keep Arg358's closed-up conformation.

The methoxyl oxygen atom of R^2 in 1 that makes H-bond with Arg358 is 1.4 Å away from the attached aromatic carbon atom. In order to mimic the role of that oxygen atom, an H-bond acceptor that attached close to the aromatic ring but with greatly increased electro-withdrawing profile is preferred. A linear and rigid cyano group, which is 2.4 Å long with an electronegative nitrogen atom that has a set of lone pair electrons, emerged in our mind immediately. The ESP_{min} of the fragment containing R¹ of -OCH₃ and R² of -CN was more negative than that of the fragment in 1 (-44.17 vs -36.41 kcal/mol) (Fig. 1h), indicating that 5 may be capable to fix Arg358 in a closed-up conformation by strong dipole-dipole interaction. We then constructed the complex structure of 5 and DPP-4 (Fig. 1i) and performed the FMO calculation. PIEDA results informed us that the overall energy of the electronic, charge transfer and dispersion interactions of the 5-Arg358 pair (-49.45 kcal/mol) is comparable to that of the 1-Arg358 pair (-48.90 kcal/mol). Meanwhile, the introduction of the cyano group made the molecule more polar in nature, leading to strengthened electrostatic interactions between the amino group and residues Glu205 and Glu206 at the S2 subsite (Fig. 1j). Those calculating data suggested that 5 is of great possibility to lock Arg358 in a closed-up conformation. Additionally, substituting -OCH₃ with -CN may also improve the pharmacokinetic features of the compound. Subsequently, compound 5 was synthesized for further experimental verification.

Scale-up synthesis of compound 5

Scheme 1. Scale-up synthesis of compound 5.

Due to the excellent research and development prospects of **5**, pilot-scale synthesis of **5** must be solved. If we use the previously reported synthetic route of **1** to synthesize **5**,²² a total yield of less than 1% would be obtained, and finally only mg-level product could be acquired. Besides the low selectivity of demethylation for intermediate **11** and low condensation efficiency of intermediate **7**, the separation of the enantiomers by preparative HPLC in the synthetic route of **1** also hampered to provide Kg-level product for further studies.

Herein, we reported an optimized route for the preparation of **5** with the overall yield improved to 17% (Scheme 1). In this optimized approach, the AlCl₃/KI-mediated cleavage of the methyl-oxygen bond in compound **11** was proceeded regio-selectively and isolated as a white crystalline solid in more than 90% purity through a simple filtration at a yield of 89%

> which is much higher than the previous 40%. The key intermediate 7 was successfully obtained by Michael addition and Henry reaction of substituted salicylaldehyde 8 on nitroalkene 9. After optimization by trying out a variety of bases and ligands, we found that the use of L-(-)-piperidine-2-carboxylic acid or morpholine instead of DABCO as catalyst gave the corresponding coupling product 7 more effectively in 75% yield which is much better than the $\sim 20\%$ of the original process, and the crude product was used in the next step without further purification. Reduction of 7 with NaBH4 gave a mixture of cis/trans dihydrochroman derivatives 6, then configuration transformation of the *cis* isomers to the trans isomers could occur in one-pot upon exposure to DIPEA in ethanol at room temperature. Subsequently, reduction of the nitro group of *trans* isomers of 6 to an amine proceeded with Zn and HCl in ethanol formed enantiomers of 5 smoothly. The two-step reaction of NaBH₄ reduction and configuration transformation was completed in one step, and the yield was 80%, which is significantly higher than the yield of less than 50% of the original process.

> The absolute configuration of **5** was determined to be (2S, 3R) by X-ray crystallographic analysis. Having established a scale-up method to access *trans*-enantiomers **5**, we explored several commercially available resolving agents to afford optically pure **5**. Through a rational screening approach, (+)-Dibenzoyl-D-tartaric acid was selected as the resolving agent to achieve the desired salts of **5** with ee value 99% and yield 37% after re-crystallization twice from acetone/H₂O, which is much more convenient than the separation of enantiomers **5** by chiral preparative HPLC in the original process. The total yield of the entire synthetic route was increased from less than 1% to nearly 20% in the present study, and the operation

process has been greatly simplified. Through the Kg-level production procedure above described, we have finished nearly 10 Kg product of **5** for ongoing preclinical studies.

Inhibitor 5 binds DPP-4 with fast-associating and slow-dissociating profiles

Compound 5 inhibited DPP-4 activity (Table S1) reversibly and showed a clear characteristic of fast-associating and slow-dissociating inhibition (Table 1, Fig. 2a) with the association rate constant (k_{on}) of 1.29×10^7 M⁻¹s⁻¹ and dissociation rate constant (k_{off}) of 2.29×10^{-3} s⁻¹. Compared with 1, the association rate constant of 5 has increased by an order of magnitude, while the dissociation rate constant decreased slightly. Hence, 5 has a smaller $K_{\rm D}$ value than 1 ($1.77 \times 10^{-10} vs 2.38 \times 10^{-9} M$). Moreover, compound 5 binds tighter than sitagliptin $(K_{\rm D} = 1.27 \times 10^{-8} \text{ M})$ and omarigliptin $(K_{\rm D} = 2.75 \times 10^{-9} \text{ M})$ to the DPP-4 enzyme (Fig. S3). The kinetics studies also demonstrated that compound 5 binds faster than both sitagliptin and omarigliptin to the DPP-4 enzyme. The fast on-rate of 5 could increase its rebinding to DPP-4, which is the situation where a ligand, after dissociated from the target, binds to the target again rather than diffuses away from it.^{24, 32, 33} Rebinding of **5** could lead to a high local drug concentration, which is beneficial to decrease the rate of decline of target occupancy, thus resulting in a prolonged in vivo duration of action.^{24, 34} More importantly, the dissociation of bound 5 from the DPP-4 enzyme was 6.5 times slower than sitagliptin, demonstrating that the residence time $(1/k_{off})$ of 5 was 6.5 times longer than sitagliptin. Drug-target residence time has been reported to be a favorable parameter for long-lasting in vivo efficacy.^{25, 35} Collectively, the fast on-rate and slow off-rate kinetics profiles of 5 would ensure an extended overall duration of target occupancy, thus leading to a long-acting DPP-4

inhibition efficacy in vivo (Fig. S4).

Fable 1. Bindin	g kinetics	profiles	of 5
------------------------	------------	----------	------

Compound	kon (M ⁻¹ s ⁻¹)	$k_{\rm off}$ (s ⁻¹)	$K_{\rm D}({\rm M})$
1	$1.44 \pm 0.022 \times 10^{6}$	3.43±0.045×10 ⁻³	2.38×10-9
5	1.29±0.055×107	$2.29 \pm 0.078 \times 10^{-3}$	1.77×10 ⁻¹⁰
sitagliptin	$1.18 \pm 0.010 \times 10^{6}$	$1.49 \pm 0.012 \times 10^{-2}$	1.27×10 ⁻⁸
omarigliptin	$2.58\pm0.022 \times 10^{5}$	7.09±0.12×10 ⁻⁴	2.75×10-9

Fig. 2 (a) Kinetics analysis of the binding of **5** to DPP-4. (b) Crystal structure of DPP-4 in complex with candidate **5**. 2*Fo-Fc* electron density is contoured at 1σ . The electron densities of both **5** and Arg358 are clear, and their position and pose are unambiguous. (c) Single crystal X-ray structure of **5**, and comparison of the bound, unbound and global minimum conformations of **5**. The three conformations are superimposed well with each other.

Inhibitor 5 binds DPP-4 with Arg358 in a closed-up conformation

In order to verify whether **5** makes close dipole-dipole interactions with residue Arg358 in a closed-up conformation as expected, we solved the X-ray crystal structure of **5** in complex with DPP-4 (Table S2). The complex crystal structure (Fig. 2b) shows us that **5** binds at the catalytic pocket of the DPP-4 enzyme with its amino group on the dihydropyran

ring positioned appropriately to generate charge-reinforced hydrogen-bonding interactions with the side chains of Glu205, Glu206 and Tyr662 of the recognition site for the peptide substrate N-terminus. The 2,4,5-trifluorobenzene warhead penetrates into the hydrophobic S1 subsite adjacent to the catalytic triad (Ser630, Asp708, and His740). The naphthalene fragment of 5 contacts Phe357 with favorable face-to-face π - π stacking interactions. Our previous work had found that shape matching and electrostatic complementarity are two crucial factors for DPP-4 inhibitors to accommodate the widely opened S2 extended subsite that covered with relatively strong positive electrostatic potential (Fig. S5).²² For inhibitor 5, at the S2 extended subsite, the -OCH₃ at R¹ could insert into the concave surface formed by residues Glu206, Val207 Ser209 and Arg358 to make favorable van der Waals (vdW) interactions. Accompanied by -OCH₃ at R¹, the electron-withdrawing -CN at R² attracts the flexible Arg358 and forms charge-reinforced hydrogen bond with it just as expected. Moreover, the electron densities of Arg358 are clear, and its position and pose in a closed-up pattern are unambiguous. Collectively, those binding characteristics made 5 a very tight-binding DPP-4 inhibitor.

By superimposing the modeled complex structure of **5** in DPP-4 with the X-ray crystal structure, an RMSD value of 0.246 Å was obtained for the pocket-lining residues with both Arg358 and **5** aligned well with each other (Fig. S6), suggesting that the FMO-QM based drug design strategy is reasonable.

Negligible conformational reorganization between unbound and bound state of 5

The introduction of a linear and rigid -CN at R² of our scaffold not only provides a

functional group that generates relatively strong electrostatic interactions with Arg358 but also makes **5** more rigid by reducing one rotatable bond compared with our -OCH₃ substituted lead compound **1**. In solution, **5** preferentially assumes the same liner-shaped conformation (Fig. 2c, Fig. S7, Table S3) as that required for DPP-4 complexation. The RMSD value between the unbound and bound state of **5** is 0.01 Å, indicating that **5** incurred almost no conformational reorganization when going from the solution unbound state to the DPP-4 bound state. Thus, little reorganization free energy penalty is needed to be counterbalanced by the strong intermolecular interactions of the ligand and receptor, resulting in a subnanomolar binding affinity of **5**. Furthermore, both the unbound and bound conformations of **5** are very similar to its global minimum conformation (RMSD < 0.16 Å, Fig. 2c, Table S4), as are their conformational energies (Δ SPE < 0.32 kcal/mol, Table S5). The negligible conformational strain energy of **5** in its bioactive conformation could greatly contribute to its tight and stable binding to DPP-4.

Inhibitor 5 has a long half-life across preclinical species

Compound **5** has a long half-life (> 24h) in both mouse and rat (Table 3). In ICR mice, **5** achieved the maximal plasma concentration slowly ($T_{max} = 10.20$ h), displayed a large exposure (AUCs), and had a very long terminal half-life of 25.31 h for PO dosing. In SD rats, **5** had a larger exposure (15377.72 *vs* 3415.00 µg/L*h), wider distribution (2.07 *vs* 1.66 L/kg) and slower plasma clearance rate (0.066 *vs* 0.30 L/h/kg) than **1**, leading to a longer terminal half-life ($T_{1/2}$) for iv dosing (11.99 *vs* 3.87 h). While for the PO administration, $T_{1/2}$ was not observed within the experimental time period of 24 h, which indicated that **5** can maintain a

high plasma concentration for a long time (> 24 h) *in vivo*. In addition, the terminal half-life of **5** is much longer than sitagliptin (1.7 h) and omarigliptin (11 h) in rats with the same doses for iv and po administration.^{36, 37} The sustained high plasma concentration of **5** would undoubtedly contribute to a long duration of action as an inhibitor of plasma DPP-4 *in vivo*. The oral bioavailability of **5** is very high (98.54%) in rats, indicating that **5** has good gastrointestinal permeability.

	Group						
	Mouse ^a	Rat ^b					
Administration	ро	ро	iv				
Dose (mg/kg)	2	2	1				
$T_{1/2}$ (h)	25.31	NC ^c	11.99 ± 1.25				
$T_{max}(h)$	10.20	6.67 ± 1.15	NC				
C_0/C_{max} (µg/L)	1773.37	1387.47 ± 145.99	2007.65 ± 217.16				
$AUC_{0-t} (\mu g/L*h)$	82006.97	23162.26 ± 3041.78	11752.88 ± 962.01				
$\begin{array}{c} AUC_{0-\infty} \\ (\mu g/L^*h) \end{array}$	85621.45	NC	15377.72 ± 1776.19				
Cl (L/h/kg)	NC	NC	0.066 ± 0.007				
$MRT_{0-\infty}$ (h)	40.68	NC	15.87 ± 1.96				
Vd _{ss} (L/kg)	NC	NC	2.07 ± 0.18				

Table 3. Preclinical pharmacokinetic profiles of 5.

^a Values are mean (n = 4). ^b Values are mean \pm SD (n = 3). ^c Not observed within the

experimental time period of 24 h. NC: Not calculated.

Pharmacodynamic profiling in ICR mice, type 2 diabetic *ob/ob* mice

On the basis of the superior properties of **5** including potent inhibitory potency *in vitro*, long residence time and favorable pharmacokinetic characteristics, it was advanced into further *in vivo* efficacy study. First, the plasma DPP-4 inhibition study of **5** was primarily evaluated in ICR mice. As shown in Figure 3a, single dose oral treatment of **5** resulted in a

time and dose-dependent inhibition of plasma DPP-4 activity in ICR mice, and **5** (3 mg/kg) displayed sustained up to 80% inhibitory effect of DPP-4 activity in 168 h (7 days) after single dose administration, which is superior to the performance of the long-acting control omarigliptin (3 mg/kg). Those results inspired us to conduct another experiment to further validate whether **5** can have a sustained bioactivity against DPP-4 in type 2 diabetic *ob/ob* mice (Fig. S8). As a result, **5** inhibited the DPP-4 activity in a dose-dependent manner (Fig. 3b), and >80% inhibitory effect of DPP-4 activity was observed through 168 h after single dose administration, which is better than trelagliptin and omarigliptin.

Fig. 3 Inhibition of DPP-4 activity in serum or plasma obtained from the normal and diabetic animal. (a) Inhibition of DPP-4 activity in serum obtained from ICR mice after a single oral

administration of **5** and omarigliptin, respectively (n = 10, male). Data are presented as the mean \pm SE. (b) Inhibition of DPP-4 activity in serum obtained from type 2 diabetic *ob/ob* mice after a single oral administration of **5**, trelagliptin and omarigliptin, respectively (n = 10, 5 male and 5 female). Data are presented as the mean \pm SE.

Effect of acute administration of 5 on serum glucose, active GLP-1 and insulin levels

Inhibition of DPP-4 augments the level of active GLP-1 and insulin by inhibiting the degradation of active GLP-1, and it returns glucose homeostasis toward physiological control levels.³⁸ Considering the favorable in vivo DPP-4 inhibition activity of 5, it was further advanced to evaluate its ability to increase active GLP-1 levels, insulin levels and improve the glucose clearance capacity. In ICR mice, 5 administered 60 min before a glucose challenge markedly reduced blood glucose $AUC_{0-120 \text{ min}}$ by 16.4% and 27.2% at the dose of 0.3 and 3 mg/kg (P < 0.05), respectively, which were similar with omarigliptin (14.6% and 22.1%) (Fig. 4a-4b). Oral glucose tolerance test (OGTT) in *db/db* mice showed that single-dose oral treatment with 5 (10 mg/kg) significantly improved the glucose tolerance capacity by decreasing the AUC_{0-120 min} of 18.3% compared with vehicle group (P < 0.05), and the pharmacodynamic effect was equipotent to trelagliptin ($\Delta AUC_{0-120 \text{ min}} = 19.3\%$) but superior to omarigliptin ($\Delta AUC_{0-120 \text{ min}} = 8.3\%$) (Fig. 4c-4d, Fig. S9). We also evaluated the GLP-1 and insulin secretion effect of 5. Upon treatment of ICR mice with 5 at 3 mg/kg, active GLP-1 level significantly increased by 2.0 and 2.6-fold compared with the vehicle control (P < 0.01) at 5 min and 10 min after the glucose challenge, which were better than omarigliptin(1.7 and 1.6-fol) (Fig. 4e). Likewise, the insulin levels were also increased by

administration of **5**, which is comparable to the efficacy of omarigliptin (Fig. 4f). This demonstrated that a single oral dose of **5** inhibited serum DPP-4 activity, which increases active GLP-1 and insulin levels and improves glucose homeostasis in normal mice and genetic-type 2 diabetic mice.

Fig. 4 Effects of a single oral administration of **5** on plasma glucose, active GLP-1, and insulin levels. (a-b) Blood glucose changes in OGTT and AUC of blood glucose between 0 and 120 min in ICR mice (n = 10, male). Compound **5**, trelagliptin, omarigliptin or vehicle was orally administered to 8h-fasted ICR mice 60 min prior to oral glucose challenge (3 g/kg). Data are presented as the mean \pm SE. (c-d) Blood glucose changes in OGTT and AUC of blood glucose between 0 and 120 min in *db/db* mice (n = 10, 5 male and 5 female). Compound **5**, trelagliptin, omarigliptin or vehicle was orally administered to 6h-fasted *db/db* mice 60 min prior to an oral glucose challenge (1.5 g/kg). Data are presented as the mean \pm SE. (e-f) Plasma active GLP-1 and insulin levels following OGTT in ICR mice (n = 10, male). Compound **5**, trelagliptin, omarigliptin or vehicle was orally administered to 8h-fasted ICR mice 60 min prior to an oral glucose load (3 g/kg). Data are presented as the mean \pm SE. (*) P < 0.05 vs vehicle; (**) P < 0.01 vs vehicle. (b.d) One-Way ANOVA with Fisher's LSD test for multi-comparisons. (e.f) Two-Way ANOVA with Fisher's LSD test for multi-comparisons.

Chronic antidiabetic effects of 5 on type 2 diabetic *db/db* mice

Encouraged by the results from the acute glucose-lowering activity, long-term antidiabetic effects of **5** once weekly were evaluated in genetic-type 2 diabetes animal models (3 and 10 mg/kg, q.w) for 8-weeks. Administration of **5** with the dose of 3 and 10 mg/kg/week caused significant reductions in FBG levels (Fig. 5a-b), and the average reduction during the entire treatment period was 24.7% and 33.1%, respectively, which were better than trelagliptin (16.8%) and omarigliptin (26.6%). Chronic administration of **5** (10

mg/kg/week) in *db/db* mice also significantly improved the glucose tolerance of the diabetic mice (P < 0.05), which is comparable to omarigliptin and better than trelagliptin (Fig. 5c-d). Remarkably, an glucose stimulated insulin secretion test revealed that treatment with **5** significantly increased insulin level and raised by 2.6 and 2.2-fold compared to the vehicle control (P < 0.01) in AUC_{0.120 min}, which are much larger than those of trelagliptin and omarigliptin at the same dose of 10 mg/kg/week (1.7 and 1.8-fold *vs* the vehicle control, P < 0.05) (Fig. 5e-f). Notably, the 10 mg/kg/week **5** performed the best (HbA1c% = 3.56%, P < 0.01) when compared with the long-acting controls trelagliptin and omarigliptin (Fig. 5g). Collectively, the long-term antidiabetic effect of **5** for once-weekly treatment is superior to both trelagliptin and omarigliptin in *db/db* mice. Since trelagliptin and omarigliptin were approved for antidiabetic treatment with a once-weekly dosing regimen, our candidate **5**, with longer and better antidiabetic efficacies in preclinical species than both trelagliptin and omarigliptin, is likely to be amenable for once-weekly dosing in human.

GLP-1 and its analogs have been demonstrated to reduce the body weight in both diabetic animal models and clinical studies. Inhibition of DPP-4 activity prevented degradation and enhanced the biological activity of active GLP-1.³⁹ However, the fasting body weight and postprandial body weight after chronic administration of **5** increased gradually as those of vehicle, omarigliptin and trelagliptin, demonstrating that **5** (both 3 and 10 mg/kg/week) is well tolerated in *db/db* mice, and do not cause abnormally weight gain. These results are similar to the reports of several other studies of DPP-4 inhibitors. The possible reasons might be due to the less effect of the enhanced endogenous active GLP-1 caused by DPP-4 inhibition rather than that of the injection of exogenous GLP-1 or its

2
2
3
4
5
6
0
7
8
a
10
10
11
12
13
1.3
14
15
16
17
17
18
19
20
21
21
22
23
24
25
25
20
27
28
29
30
21
31
32
33
34
25
55
36
37
38
20
72
40
41
42
43
11
44
45
46
47
48
40
49
50
51
52
52
55
54
55

analogs.39	In	addition,	all	animals	tolerated	exposure	to	therapeutic	concentrations	of
compound	5 w	ithout any	' sig	ns of dist	ress or disc	comfort.				

ACS Paragon Plus Environment

Fig. 5 Long-term antidiabetic efficacies of **5** in diabetic *db/db* mice with 3 and 10 mg/kg/week for 8 weeks (n = 10, 5 male and 5 female). (a) Fasting blood glucose (FBG) changes, (b) Mean reduction rate of FBG, (c) Blood glucose changes in OGTT, (d) AUC of blood glucose between 0 and 120 min (the areas under the curve are indicators of glucose clearance), (e) Plasma insulin levels following OGTT, (f) AUC of insulin between 0 and 60 min (the areas under the curve are indicators of insulin secretion), (g) Plasma HbA1c levels, and (h) Fasting body weight (FBW). OGTT was conducted after 7 weeks treatment of **5** after an oral glucose load (1.5 g/kg). Plasma insulin levels after an oral glucose load (1.5 g/kg). Plasma insulin levels after an oral glucose load (1.5 g/kg) were performed after 8 weeks treatment of **5**. Data are presented as the mean \pm SE. (*) P < 0.05 vs vehicle; (**) P < 0.01 vs vehicle. (a,e.h) Two-Way ANOVA with Fisher's LSD test for multi-comparisons. (d,f,g) One-Way ANOVA with Fisher's LSD test for multi-comparisons.

Preclinical safety studies

Blockage of the human potassium channel hERG (human Ether-à-go-go-Related Gene) can prolong the cardiac action potential and the QT-interval, which is a major concern in drug discovery and development. The selectivity of **5** against hERG was tested using Patch-clamp experiments, and the results showed that the IC_{50} value of **5** on hERG is larger than 40.00 μ M.

We also conducted preclinical safety studies of **5** in ICR mice. For a single dose oral toxicity study, **5** was well tolerated at 300 mg/kg with no obvious toxicity. For 14 consecutive days of oral toxicity study, **5** was well tolerated at a dose of 30 mg/kg once daily

based on clinical signs, but no histopathology was performed. Body weight and organ index, blood parameter examination and serum biochemical metabolites of the ICR mice were comparable to those of the control group (Table S6-S9).

Discussion and Conclusions

Our previously discovered inhibitor 1 unexpectedly induced Arg358 to form a closed-up conformation, which may be one crucial structural determinant for 1's slow binding kinetics profile. With the attempt to optimize both the binding kinetics and pharmacokinetic properties of 1 to get a super long-acting antidiabetic candidate for once-weekly dosing, we intended to lock Arg358 in a closed-up conformation in the following structural optimization. The FMO-QM method helped us quantitatively evaluate the specific contribution made by the two -OCH₃ groups in 1 that attract Arg358, and further guided us to perform structural optimization at R². By elaborately introducing a linear 2.4 Å -CN group, which is an electronegative H-bond acceptor, to mimic the role of the -OCH₃ group at R² cooperating with the other -OCH₃ at R^1 in 1 to attract Arg358, 5 displayed a slightly stronger electronic, charge transfer and dispersion interactions with Arg358 than 1. X-ray crystal structure of 5 in complex with DPP-4 disclosed that 5 is expectedly inducing Arg358 into the same closed-up conformation as that in the complex crystal structure of 1. Subsequent SPR assay demonstrated that 5 binds faster and tighter to DPP-4 than 1 and sitagliptin, while the disassociating rate is slightly slower than 1 but an order of magnitude slower than sitagliptin. Pharmacokinetic studies provided that 5 has a larger exposure, wider distribution and slower clearance rate than 1, thus leading to a longer half-life than 1. Those distinctive binding

kinetics and pharmacokinetic characteristics made **5** a potent and orally available DPP-4 inhibitor with longer and better antidiabetic efficacy than **1** and the once-weekly controls trelagliptin and omarigliptin in preclinical species, suggesting that compound **5** holds promise for an efficacious and safe clinical candidate for the once-weekly treatment of T2DM to improve ease of use and compliance.

Both the fast-associating and slow-dissociating binding kinetics profiles and the pharmacokinetic profiles of **5** contribute to its long-acting antidiabetic efficacy *in vivo*. The fast on-rate of **5** can increase its rebinding to DPP-4. Rebinding is helpful to maintain a high degree of target occupancy. The slow off-rate of **5** can ensure a long drug-target residence time, which is beneficial for a long duration of action *in vivo*. The long terminal half-life is favorable for sustaining a high plasma concentration of **5** to inhibit the soluble DPP-4 enzyme in the blood. With a large volume of distribution, **5** may also inhibit the membrane-bound DPP-4 in the tissues, such as liver and small intestine. This may also be conductive to the long duration of action. Therefore, both the special binding kinetic profiles and pharmacokinetic profiles are supposed to be main drivers of the long-lasting antidiabetic efficacy of **5** as an inhibitor of DPP-4 *in vivo*.

Arg358 is one of the most important residues of the S2 extended subsite, which is flexible in apo and holo structures of the DPP-4 enzyme,⁴⁰ and its orientation influences the shape and physicochemical properties of the S2 extensive subsite of DPP-4.⁴¹ Although many DPP-4 inhibitors have been discovered, as far as we know, there is no specific structure-based drug design work conducted against Arg358 with the aim of fixing its flexible sidechain in a closed-up conformation. In our case, we successfully locked Arg358 in a

closed-up conformation to accommodate the substitutions at R¹ and R² of our scaffold by using the FMO method. And this induced conformational change of Arg358 is supposed to be one structural determinant that contributes to the slow dissociation kinetics of the inhibitors. The FMO-QM method can be served as a useful tool in guiding structural optimization where some key residues are preferentially targeted in a ligand-protein complex.

Experimental Section

1. Computational Methods

The FMO-QM method was developed by Kitaura and co-workers, which can accurately quantify the binding interactions of ligand-residue pairs.²⁸⁻³¹ It has been successfully applied in many biological systems to study ligand-protein interactions, in which the *ab initio* FMO method clearly outperformed the molecular mechanics (MM) based scoring functions in predicting binding energies.⁴²⁻⁴⁵ Compared with MM based methods, the major advantages of FMO method is its consideration of dynamic polarization and charge transfer of the ligand-protein system when computing electrostatic interaction.

Structure Preparation. Molecular Operating Environment (MOE, version 2014.09) program was used to prepare the complex structure of the ligand and DPP-4 for the FMO calculation. All water molecules were removed. The missing hydrogen atoms of the crystal structure of I in complex with DPP-4 (PDB: 5J3J, chain B) were added and the protonation state of the acidic and basic amino acid residues was predicted using the Protonate 3D module. Default settings including pH of 7.0, a cutoff of 15 Å for the generalized Born/volume integral methodology and solvent dielectric constant of 80 were applied. Then, a structural minimization was conducted to the complex with each atom restrained to deviate up to 0.5 Å from its original position in the crystal structure by using the semi-empirical Amber10:EHT forced field that implemented in the MOE program. The refined complex structure was then used for the subsequent FMO calculation.

Compounds 2-5 were close analogs to 1, so they were likely to exhibit a binding pattern similar to 1. Therefore, we generated the binding conformations for compounds 2-5 in

complex with DPP-4 in two steps: 1) superimpose the inhibitor to the binding pose of **1** in the crystal structure using SHAFTS,^{46, 47} which is an in-house software for 3D small molecular similarity calculation and structural alignment based on both feature and shape matches; 2) prepare and minimize the complex structure using the procedures described above.

FMO calculation. In general, the FMO calculation consists of four steps: 1) Fragment a large molecular system into a number of small monomer fragments; 2) Calculate *ab initio* molecular orbital on each monomer (fragment) in the Coulomb field exerted by all remaining monomers repeatedly until all monomer electron densities become self-consistent, whereby intra-fragment charge transfer is taken into account; 3) Compute self-consistent field (SCF) for each dimer (fragment pair), through which inter-fragment charge transfer and other quantum effects are accounted for; 4) Calculate inter-fragment interaction energy and total energy of the whole system. The detailed principle and methodology of FMO can be found in the literature.²⁸⁻³¹

In this study, the FMO input files were prepared in Facio (version 19.1.5) to include residues around 4.5 Å of the ligand and cut them off into one-residue-per-fragment at C α of each residue. The ligand was also treated as one fragment. All FMO calculations were performed using GAMESS (version Dec, 2014),^{48, 49} which is a general *ab initio* quantum chemistry package, at the correlated second-order Møller-Plesset (MP2) level⁵⁰ with the 6-31G* basis set. Because all the FMO calculations in the present work were performed in vacuum condition, we treated the amino group in each DPP-4 inhibitor as uncharged NH2 to avoid overestimation of the charge-charge electrostatic interactions.

After FMO calculation, a list of pair interaction energies (PIEs) between fragments was

 obtained. The PIE between any two fragments i and j (ΔE_{ij}^{int}) is composed of four energy terms (eq 1): electrostatics (ΔE_{ij}^{es}), charge-transfer (ΔE_{ij}^{ct}), dispersion (ΔE_{ij}^{di}) and exchange-repulsion (ΔE_{ij}^{ex}):

$$\Delta E_{ij}^{\text{int}} = \Delta E_{ij}^{es} + \Delta E_{ij}^{ct} + \Delta E_{ij}^{di} + \Delta E_{ij}^{ex}$$
(1)

In our study, fragment *i* is the ligand, and *j* is any one of the pocket-lining residues. It is worth noting that the Δ symbols refer to the differences between the total QM energies of a fragment pair *ij* and two individual fragments *i* and *j*, both of which are computed at the bound state of the protein-ligand complex. Thus, the sum of the PIEs of the system represents the binding stability of the protein-ligand complex, which is correlated with but not the same as the binding free energy.^{49, 51}

2. Animals study

Male ICR mice (7-8 weeks) and male SD rats (7-8 weeks) were purchased from Shanghai SLAC Laboratory Animal Co., Ltd. B6.V-Lep^{ob/+} (ob/+) mice and BKS.Cg-m+/+Lepr^{db}/J(db/+) were imported from Jackson Laboratory (Bar Harbor, ME, USA) and bred in-house for obtaining the spontaneous diabetic *ob/ob* mice and *db/db* mice, and littermates for control at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences. The animals were maintained under a 12-h light-dark cycle with free access to water and food. Animal experiments were approved by the Animal Care and Use Committee, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (IACUC Number: 2015-04-LJ-10).

3. In vitro bioassay, crystal structure determination and pharmacokinetic assay in SD rats

The *in vitro* DPP-4 inhibition study (at least three independent experiments), binding kinetics study using surface plasmon resonance, the cocrystallization of DPP-4 with compound **5** as well as structure determination, and the pharmacokinetic assay in SD rats were all conducted using the same method of operation reported in our previous work.²²

4. Pharmacokinetic studies in ICR mice

Male ICR mice (n = 4 in each group) were randomly assigned to treatment groups. After 2 h-fasted, baseline blood was collected into a tube containing EDTA. Animals were then treated orally with compound **5** (2 mg/kg). Subsequently, blood per animal was collected at 1, 2, 4, 6, 8, 24, 48, 72, 96 and 120 h. All samples were centrifuged at 10000 rpm for 2 min, and the plasma was harvested. Aliquots of plasma samples were stored at -80 °C until analysis. Compound **5** serum concentrations were determined by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Pharmacokinetic parameters were determined from compound **5** serum concentrations by noncompartmental methods using WinNonLin® Professional Version 4.1 (Pharsight Corp., Mountain View, CA).

5. Effects on DPP-4 activity in ICR mice

Male mice were randomly assigned to treatment groups (n = 10 in each group). After 2 h-fasted, baseline blood was collected into a tube containing EDTA. Animals were then treated orally with vehicle (0.5% sodium carboxymethyl cellulose, 10 mL/kg), compound 5

(0.03, 0.1, 0.3, 1 and 3 mg/kg, 10 mL/kg) or omarigliptin (0.03, 0.1, 0.3, 1 and 3 mg/kg, 10 mL/kg). Subsequently, blood per animal was collected at 1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144 and 168 h. All samples were centrifuged at 10000 rpm for 2 min, and the plasma was harvested. Aliquots of plasma samples were stored at -80 °C until analysis.

For the measurement of *in vivo* DPP-4 activity, a continuous fluorometric assay using Gly-Pro-AMC as substrates was applied, which can release the fluorescent AMC group after being cleaved by DPP-4. For the plasma samples, the reaction solution was made up of 50% plasma samples, Gly-Pro-AMC, buffer (100)μM and mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.5, 0.1 mg/mL BSA) in a total reaction volume of 20 µL. For the serum samples, the reaction solution was made up of 5 µL serum samples, 10 µM Gly-Pro-AMC, and buffer (100 mM HEPES, pH 7.5, 0.1 mg/mL BSA) in a total reaction volume of 10 μ L. Liberation of AMC was monitored continuously in a 384-well plate in 5 min at 37 °C using an excitation wavelength of 360 nm and an emission wavelength of 460 nm. The data are reported as % activity calculated as follows: % activity = $(Vts/Vcs) \times 100$, where Vts is the rate of reaction of treated sample and Vcs is the rate of reaction of each animal's baseline level (the value obtained immediately before compound administration).

6. Effect on oral glucose tolerance test in ICR mice

To examine the effect of compound **5** on blood glucose after an oral glucose challenge in male ICR mice (n=10 in each group), compound **5** (0.03, 0.3, 3 mg/kg), omarigliptin (0.03, 0.3, 3 mg/kg) or vehicle (0.5% sodium carboxymethyl cellulose) was orally administered to 8

h-fasted ICR mice 1 h prior to the oral glucose challenge (3 g/kg). Blood glucose was estimated using a glucometer (Accu-Chek; Roche) at 60 min before the glucose load and 0, 15, 30, 60, 90 and 120 min post-glucose challenge. The area under the curve (AUC) for the glucose tolerance test was calculated using the trapezoidal method. To examine the acute effect of compound **5** (0.3, 1, 3 mg/kg) and omarigliptin (1 mg/kg) on the serum active GLP-1 level and insulin level, blood samples were collected 0, 5 and 10 min after the glucose challenge and placed in Eppendorf tubes containing the DPP-4 inhibitor valine pyrrolidide (Millipore, DPP-4-010) with a final concentration of 1% blood samples and 25 mg/mL EDTA to measure serum active GLP-1[7-36 amide] levels (Millipore, EGLP-35K) and insulin levels (Millipore, EZRMI-13BK).

7. Effect on DPP-4 activity in *ob/ob* mice

Eight-week-old *ob/ob* mice (n = 10 in each group, 5 male and 5 female) were randomly assigned to treatment groups. After 2 h-fasted, baseline blood was collected into a tube containing EDTA. Mice were then treated orally with vehicle (0.5% sodium carboxymethyl cellulose, 10 mL/kg), compound **5** (0.3, 1, 3, 1 and 10 mg/kg), omarigliptin (3 mg/kg) or trelagliptin (3 mg/kg). Subsequently, blood per animal was collected at 1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144 and 168 h. All samples were centrifuged at 10000 rpm for 2 min, and the plasma was harvested. Aliquots of plasma samples were stored at -80 °C until analysis. The measurement of *in vivo* DPP-4 activity was the same as the method with ICR mice.

8. Effect on oral glucose tolerance test in *db/db* mice

To examine the effect of compound **5** on blood glucose after an oral glucose challenge in six-week-old db/db mice (n=10 in each group, 5 male and 5 female), compound **5** (3 and 10 mg/kg), omarigliptin (10 mg/kg), tregliptin (10 mg/kg) or vehicle (0.5% sodium carboxymethyl cellulose) was orally administered to 6h-fasted db/db mice 60 min prior to the oral glucose challenge (1.5 g/kg). Blood glucose was estimated using a glucometer at 60 min before the glucose load and 0, 15, 30, 60, 90 and 120 min post-glucose challenge. The area under the curve (AUC) for the glucose tolerance test was calculated using the trapezoidal method.

9. Long-term antidiabetic effects in *db/db* mice

Six-week-old *db/db* mice were divided into 5 groups (n=10 in each group, 5 male and 5 female) based on non-fasting and 6h-fasting blood glucose, serum insulin levels, postprandial body weight (PBW, non-fasting body weight) and 6-fasting body weight (FBW). Lean littermates were used as the lean control. Compound **5** (3 and 10 mg/kg), omarigliptin (10 mg/kg), trelagliptin (10 mg/kg) or vehicle (0.5% sodium carboxymethyl cellulose) was orally administered once weekly for 8 weeks. Non-fasting glucose and fasting blood glucose, postprandial body weight and 6-fasting body weight were determined at 7-d intervals. After 7 weeks of treatment, the 6h-fasted animal was challenged by 1.5 g/kg glucose. Blood glucose was estimated using a glucometer at 0, 15, 30, 60, 90 and 120 min post-glucose challenge. After 8 weeks of treatment, the 6h-fasted animal was challenged by 1.5 g/kg glucose. Blood samples were collected at 0, 15, 30 and 60 min post-glucose challenge to test plasma insulin levels. After 8 weeks of treatment, blood samples were collected after 6h of fasting for HbAlc

level measurement on the 67th day (Xin Jiang Kang Cheng, F1105). Detailed dosing regimen was provided in the supplemental material (Fig. S11).

10. Statistical analysis

The results are presented as the means \pm SEM. Differences between the groups were analyzed using one-way ANOVA or two-way ANOVA by GraphPad Prism version 7.00 for Windows (GraphPad Software, La Jolla California USA). P < 0.05 was regarded as statistically significant.

11. Safety Statement

No unexpected or unusually high safety hazards were encountered.

12. Chemistry reagents and methods

All commercial chemicals and solvents are reagent grade and were used without further purification unless otherwise noted. ¹H NMR spectra were recorded on a Bruker AV-400 instrument in CDCl₃ or DMSO- d_6 . Some ¹H NMR spectra were recorded on a Varian InNova-500 spectrometer in DMSO- d_6 . Data for ¹H NMR were reported as chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration. Data for ¹³C NMR were reported as a chemical shift. Low-resolution mass spectra were performed liquid on а chromatography-mass spectrometer (LC-MS), using an Agilent 1200/6120 series with an Eclipse XDB-C18 column at 25 °C. The gradient solvent system was from 80% A and 20% B to 10% A and 90% B (A = 10 mM HCOONH₂ aqueous solution, B = CH₃CN) for 15 min

with a flow rate of 0.4 mL/min. High-resolution mass (HRMS, ESI) spectral data were acquired by use of a Bruker Daltonics 7T mass spectrometer in positive ion mode and GCT Premier HRMS instrument (EI). Purity of final compound 5 was determined with a Shimadzu LC Solution 15C series HPLC system using C-18 column (Inertsil ODS-3 5 μ m. 4.6 mm \times 250 mm) operating at 35 °C. Elution was carried out using water as mobile phase A, and acetonitrile as mobile phase B. Elution conditions at 0 min, phase A 20% + phase B 80%; at 25 min, phase A 20% + phase B 80%. The flow-rate of the mobile phase was 0.5 mL/min and the injection volume of the sample was 5 μ L. The determine wavelength was 254 nm. The purity of compound 5 was \geq 95% determined by HPLC analysis. Enantiomeric excesses (ee) were determined by chiral HPLC analysis using Chiralcel Chiralpak AD (0.46 cm \times 25 cm). The gradient solvent system was 80% A and 20% B for 30 min (A = Hexane, B = IPA) with a flow rate of 0.5 mL/min. Melting point was tested using a WRS-1B digital melting point apparatus. Flash chromatographic separations were performed using silica gel (particle size 0.040-0.045 mm). Solvents were removed by rotary evaporation under vacuum using a standard rotovap equipped with a cold alcohol condenser. All filtrations were performed with a vacuum unless otherwise noted.

(2*S*,3*R*)-2-Amino-9-methoxy-3-(2,4,5-trifluorophenyl)-2,3-dihydro-1*H*-benzo[*f*]chromen e-8-carbonitrile (5)

To a stirred suspension of the racemic compounds (**6a**, **6c**) derived from last step in ethanol (500 mL) and 6 N HCl (300 mL) was added zinc powder (157.5 g, 2.41 mol). After being stirred for 10-24 h at RT, the mixture was filtered, and the filtrate was adjusted to pH

10-11 using saturated Na₂CO₃ solution and extracted with ethyl acetate (3×500 mL). The organic solvent was washed with saturated brine and dried over anhydrous sodium sulfate before removed by evaporation. The solution was concentrated and purified by silica gel chromatography to get desired trans-racemic products 5 74.5 g, 80% yield. To a solution of the racemic product (5, 74 g, 192.7 mmol) in THF/H₂O (310 mL, V_{THF} : V_{H2O} = 10:1) was added (+)-Dibenzoyl-D-tartaric acid (72.52 g, 202.4 mmol). The reaction mixture was stirred to clarification and heated to reflux for 1 h then at RT for 1h, then the solution was stirred and cooled down to 25 °C for 1 h before it was filtrated to give the filter cake as a white solid while washed with cold THF. Next, to a solution of the filter cake in THF/ H₂O (220 mL, V_{THF} : $V_{H2O} = 10:1$) was heated to reflux for 1 h then at RT for 1 h, the solution was allowed to come to 5 °C for 1 h and filtrated to give the qualified sample before washed with cooled THF and dried. To a solution of the qualified sample in EtOH/H₂O (V_{EtOH} : $V_{H2O} = 1:10$) was basified to a pH of 10 with a 25% aqueous solution of NaOH, the solution was allowed to come to 30 °C for $2\sim3$ h before filtered to give the product of 5, the same procedure was repeated once more to improve the enantiomeric excess of the compound. Yield 5 27.38 g as a white solid (37% yield, $ee \ge 99$ %). Its absolute configuration was confirmed by X-ray crystallography. Crystals suitable for X-ray crystallographic analysis were obtained from a solution in CH3CN by vapour diffusion. Mp: 203.7-205.1 °C . ¹H NMR (500 MHz, DMSO- d_6): δ 8.40 (s, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.70-7.59 (m, 2H), 7.24 (s, 1H), 7.04 (d, J = 9.0 Hz, 1H), 4.97 (d, J = 7.6 Hz, 1H), 4.04 (s, 3H), 3.45-3.36 (m, 2H), 2.83 (dd, $J_1 = 16.5$ Hz, $J_2 = 10.0$ Hz, 1H), 1.68 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 157.0, 154.9, 136.9, 136.5, 128.8, 123.3, 117.8, 117.2, 113.6, 106.9, 106.7, 106.6, 106.4, 102.3, 99.5, 77.1, 56.6,

48.3, 31.5, 22.5. HRMS (ESI): [M+H]⁺ 385.1158, found 385.1163. Purity >98% in HPLC analysis.

trans-9-Methoxy-2-nitro-3-(2,4,5-trifluorophenyl)-2,3-dihydro-1*H*-benzo[*f*]chromene-8carbonitrile (6a/6c)

Sodium borohydride (13.75 g, 0.36 mol) was added in portions to a solution of compound 7 (100.0 g, 0.24 mol) in tetrahydrofuran and methanol (1.1 L, $V_{THF}/V_{CH3OH} = 10/1$) at 15 °C. The reaction is allowed to stir at 15 °C for 2 h before quenched carefully with water at the same temperature, the resulting resolution was adjusted to pH 2-3 using hydrochloric acid and stirred for additional 1 h at 25 °C. The reaction was warmed to RT then isolated by centrifugation and filtration to get the crude two pair of isomers. DIPEA (5 mL) was added to a solution of the crude isomer racemic products in methanol (100 mL) at 60 °C under the N₂ atmosphere, the reaction mixture was stirred for 5-10 h. After the reaction, the excess base and solvent were removed under reduced pressure to provide racemic products (6a and 6c, Fig. S12) as a white amorphous powder which was directly applied to next step without further purification. ¹H NMR (400 MHz, DMSO- d_6): δ 8.48 (s, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.83-7.71 (m, 2H), 7.30 (s, 1H), 7.15 (d, J = 8.9 Hz, 1H), 6.01-5.80 (m, 2H), 4.05 (s, 3H), 3.88-3.70 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.37, 154.11, 153.52, 137.00, 136.04, 129.73, 129.03, 126.62, 117.86, 117.45, 116.96, 111.72, 111.00, 102.89, 102.58, 100.36, 81.58, 71.27, 56.92, 26.81, 25.73. LC-MS (ESI): [M-H]⁻ m/z 413.08, found 413.1; HRMS (EI): [M] + m/z 414.0827, found 414.0826.

9-Methoxy-2-nitro-3-(2,4,5-trifluorophenyl)-3H-benzo[f]chromene-8-carbonitrile (7)

A three-necked reaction kettle fitted with a water segregator, was charged with a toluene (1 L) mixture of 6-cyano-7-methoxy-2-hydroxy-1-naphthaldehyde (8) (100.0 g, 0.44 mol, 1.0 equiv), (E)-1,2,4-trifluoro-5-(2-nitrovinyl)benzene (9) (100.0 g, 0.50 mol, 1.15 equiv) and L-(-)-piperidine-2-carboxylic acid (27.97 g, 0.23 mol, 0.5 equiv). The content was heated to 120-130 °C for a period of 12-15 h under the N₂ atmosphere, the formed water was separated by a water segregator. After the reaction was complete (monitored by TLC), the slurry was then cooled to room temperature before filtration. The wet cake was washed with cold methanol to afford yellow solid 179.4 g. The solid product was collected and then diluted with CH₃OH (600 mL). The slurry was stirred at 60±5 °C for 1-2 h, after the slurry was cooled to RT, a centrifuge separate the wet cake which was next washed with methanol and dried at ambient temperature in a vacuum oven to afford yellow solid 7 146.5 g, 75% yield. ¹H NMR (400 MHz, DMSO- d_6): δ 9.18 (s, 1H), 8.48 (s, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.92 (s, 1H), 7.76-7.70 (m, 1H), 7.62-7.55 (m, 1H), 7.10 (d, J = 8.8 Hz, 1H), 7.04 (s, 1H), 4.16 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 158.43, 155.40, 137.42, 136.91, 136.61, 135.15, 128.51, 123.90, 120.88, 117.53, 116.92, 110.70, 107.72, 103.48, 101.37, 68.05, 57.40, 55.36, 31.41, 22.52, 14.40. LC-MS (ESI): m/z [M+H]+ 413. 32, found 413.1; HRMS (EI): [M] + m/z 412.0671, found 412.0668.

6-Cyano-7-methoxy-2-hydroxy-1-naphthaldehyde (8)

To a vigorously stirred suspension of anhydrous AlCl₃ (220.0 g, 1.64 mol) and KI (288.0 g, 1.73 mol) in dry acetonitrile (1 L) was added 6-cyano-2,7-dimethoxy-1-naphthaldehyde **11**

(100.0 g, 0.41 mol). After addition, the reaction solution was stirred at 80 °C for 4-6 h. After completion of reaction (monitored by TLC), the slurry was cooled to room temperature, the mixture was then quenched with 6 N HCl (0.7 L) and aged for additional 1 h before filtration. The desired product **8** precipitated out from the reaction mixture, the wet cake was washed with 20% acetonitrile and dried at ambient temperature in a vacuum oven to afford white solid **8** 84.0 g, 89% yield. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.14 (s, 1H), 10.68 (s, 1H), 8.58 (s, 1H), 8.35 (s, 1H), 8.03 (d, *J* = 9.2 Hz, 1H), 7.11 (d, *J* = 8.8 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 192.38, 167.14, 159.33, 138.75, 136.84, 136.08, 122.11, 118.02, 116.71, 112.41, 103.01, 99.71, 56.61. LC-MS (ESI): [M-H]⁻ m/z 226.06, found 226.1; HRMS (EI): [M]⁺ m/z 227.0582, found 227.0583.

(E)-1,2,4-Trifluoro-5-(2-nitrovinyl)benzene (9)

To a solution of MeOH, water and 2.5 N NaOH (30.0 g, 750.0 mmol, $V_{MeOH}/V_{water}/V_{NaOH} = 1/1/1$) was added to a solution of 2,4,5-trifluorobenzyaldehyde (100.0 g, 624.6 mmol) and MeNO₂ (40.6 mL, 750.0 mmol) in MeOH (3 L) dropwise over 30-60 min, while the internal temperature was maintained between 5-10 °C. Then, the reaction solution was agitated another 30 min at 0-10 °C and added dropwise to a solution of ZnCl₂ (425.6 g, 3.12 mol) in conc. HCl (130 mL) and water (170 mL) for 2-4 h. After addition, the slurry was allowed to warm to ambient temperature and stirred for 1 h before filtration. The filter cake was washed with 40% MeOH aqueous solution and vacuum-dried at ambient temperature to give light yellow products **9** 99.0 g, 78% yield. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.95 (d, *J* = 14.0 Hz, 1H), 7.65 (d, *J* = 14.0 Hz, 1H), 7.39-7.33 (m, 1H), 7.12-7.05 (m, 1H). ¹³C NMR

(100 MHz, DMSO-*d*₆) δ 157.4, 152.3, 147.2, 139.7, 130.3, 118.2, 114.9, 107.0. LC-MS (ESI): [M+H]⁺ m/z 204.02, found 204.1.

6-Cyano-2,7-dimethoxy-1-naphthaldehyde (11)

To a solution of TiCl₄ (267.4 g, 1.41 mol) and 1,1-dichloromethyl methyl ether (80.5 g, 0.70 mmol) in dichloromethane (1 L) at 0 °C was added dropwise compound **12** (100 g, 0.47 mol) in DCM (2 L), maintaining the temperature below 5 °C. After completion of the addition, the reaction mixture was stirred at room temperature for 12-36 h. 1 N aqueous hydrochloric acid (835 mL) was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with DCM. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄. The solution was concentrated and purified by recrystallization to give the desired **11** 101.8 g, 90% yield. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.71 (s, 1H), 8.77 (s, 1H), 8.50 (s, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 4.09 (s, 3H), 3.98 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 191.54, 166.43, 159.85, 137.79, 135.80, 135.39, 122.53, 116.22, 115.25, 111.17, 104.06, 101.80, 56.59, 56.26. LC-MS (ESI): [M+H] ⁺ m/z 242.07, found 242.1; HRMS (EI): [M] ⁺ m/z 241.0739, found 241.0742.

Ancillary Information

Supporting Information Availability

The Supporting Information is available free of charge on the ACS Publications website. Additional data and figures including FMO computational results, crystal X-ray structure data of **5**, RMSDs and single point energies (SPE) for the unbound, bound and minimum energy conformations of **5**, detailed dosing regimen of the long-term and body weight of the *db/db* mice, ¹H, ¹³C NMR and ESI-mass spectra of products, and HPLC of compound **5**, the molecular formula strings (CSV).

Abbreviations Used

DPP-4, dipeptidyl peptidase 4; T2DM, type 2 diabetes mellitus; HbA1c, hemoglobin A1c; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose co-transporter 2; FMO, fragment molecular orbital; QM, quantum mechanics; MM, molecular mechanics; PIE, pair interaction energy; PIEDA, pair interaction energy decomposition analysis; ESP, electrostatic surface potential; RMSD, root mean square deviation; SPE, single point energy; OGTT, oral glucose tolerance test; FBG, fasting blood glucose; FBW, fasting body weight; PBW, postprandial body weight; hERG, human Ether-à -go-go-Related Gene

Accession Code

The coordinate and structure factor files for DPP-4 in complex with compound **5** is 5ZID. Authors will release the atomic coordinates and experimental data upon article publication.

Corresponding Author Information

*For Z.Z.: phone: +86-21-64250213; E-mail: zhjzhao@ecust.edu.cn

*For J.Y.L.: phone: +86-21-50801313; E-mail: jyli@simm.ac.cn

*For H.L.: Phone: +86-21-64250213; Email: hlli@ecust.edu.cn

Acknowledgments

This work was supported by the National Key Research and Development Program [2016YFA0502304 to H.L.]; the National Natural Science Foundation of China (grant 81825020 to H.L., 81803437 to S.L.); the National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China (Number: 2018ZX09711002); the Chinese Academy of Sciences (XDA12040204), the Fundamental Research Funds for the Central Universities, Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501. Shiliang Li is sponsored by Shanghai Sailing Program (No. 18YF1405100). Honglin Li is also sponsored by National Program for Special Supports of Eminent Professionals and National Program for Support of Top-notch Young Professionals.

Conflict of interest

The authors declare no conflict of interest

Author contributions

S.L., C.Q. and S.C. performed research and drafted the manuscript, they contributed equally to the study. S.L. and H.L. designed the compound, performed the computational work and interpreted the data. C.Q., H.X., X.F., M.Z., and Z.Z were in charge of compound synthesis. C.Q. obtained the single crystal X-ray structure of **5**. F.W. and L.Z. expressed and purified the DPP-4 protein, co-crystalized DPP-4 with inhibitor, and solved the X-ray crystal structure. J.W. and L.Z. performed surface plasmon resonance affinity measurements. M.S., D.L and C.X. tested in vitro and *in vivo* plasma DPP-4 inhibition. S.C., J.Y.L., Q.J. and R.W. performed the PK studies and investigated the acute and chronic antidiabetic efficacy of the compounds in mouse model systems. J.L and H.J. helped analyze the data and commented on the manuscript. H.L., Z.Z. and J.Y.L. conceived and supervised the overall project. All authors revised and approved the manuscript being submitted.

Reference

(1) <u>http://www.idf.org/diabetesatlas</u> (accessed Jan. 31th, 2018).

(2) Tahrani, A. A.; Bailey, C. J.; Del Prato, S.; Barnett, A. H. Management of type 2 diabetes: new and future developments in treatment. *Lancet* **2011**, *378* (9786), 182-197.

(3) Reusch, J. E.; Manson, J. E. Management of type 2 diabetes in 2017: getting to goal.
 JAMA 2017, *317* (10), 1015-1016.

(4) Deacon, C. F.; Lebovitz, H. E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. *Diabetes Obes. Metab.* **2016**, *18* (4), 333-347.

(5) Waldrop, G.; Zhong, J.; Peters, M.; Rajagopalan, S. Incretin-based therapy for diabetes: what a cardiologist needs to know. *J. Am. Coll. Cardiol.* **2016**, *67* (12), 1488-1496.

(6) Mulvihill, E. E.; Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. *Endocr. Rev.* **2014**, *35* (6), 992-1019.

(7) Kushwaha, R. N.; Haq, W.; Katti, S. Discovery of 17 gliptins in 17-years of research for the treatment of type 2 diabetes: a synthetic overview. *Chem. Biol. Interface* **2014**, *4* (3), 137-162.

(8) Scheen, A. J. Once-weekly DPP-4 inhibitors: do they meet an unmet need? *Lancet Diabetes Endo.* **2015**, *3* (3), 162-164.

(9) Burness, C. B. Omarigliptin: first global approval. Drugs 2015, 75 (16), 1947-1952.

(10) McKeage, K. Trelagliptin: first global approval. Drugs 2015, 75 (10), 1161-1164.

(11) Yamada, T.; Shojima, N.; Noma, H.; Yamauchi, T.; Kadowaki, T. Weekly versus daily dipeptidyl peptidase 4 inhibitor therapy for type 2 diabetes: systematic review and meta-analysis. *Diabetes Care* **2018**, *41* (4), e52-e55.

(12) Suzuki, K.; Hasegawa, K.; Watanabe, M. Efficacy and patient satisfaction of dipeptidyl peptidase-4 inhibitor after switching from once-daily DPP-4 inhibitor to once-weekly regimen. *J. Clin. Med. Res.* **2018**, *10* (8), 641.

(13) Pipeline drug evidence review: Marizev (omarigliptin) vs. Januvia (sitagliptin).Advera Health Analytics. 2016, Available from: <u>www.adverahealth.com</u>.

(14) Stoimenis, D.; Karagiannis, T.; Katsoula, A.; Athanasiadou, E.; Kazakos, K.;
Bekiari, E.; Matthews, D. R.; Tsapas, A. Once-weekly dipeptidyl peptidase-4 inhibitors for
type 2 diabetes: a systematic review and meta-analysis. *Expert Opin. Pharmacother.* 2017, *18*(9), 843-851.

(15) Gantz, I.; Chen, M.; Suryawanshi, S.; Ntabadde, C.; Shah, S.; O'Neill, E. A.; Engel,
S. S.; Kaufman, K. D.; Lai, E. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. *Cardiovasc. Diabetol.* 2017, *16* (1), 112.

(16) Khalse, M.; Bhargava, A. A review on cardiovascular outcome studies of dipeptidyl peptidase-4 inhibitors. *Indian J. Endocrinol. Metab.* **2018**, *22* (5), 689.

(17) Inagaki, N.; Onouchi, H.; Maezawa, H.; Kuroda, S.; Kaku, K. Once-weekly trelagliptin versus daily alogliptin in Japanese patients with type 2 diabetes: a randomised, double-blind, phase 3, non-inferiority study. *Lancet Diabetes Endo.* **2015**, *3* (3), 191-197.

(18) Kaku, K. Safety evaluation of trelagliptin in the treatment of Japanese type 2 diabetes mellitus patients. *Expert Opin. Drug Saf.* **2017**, *16* (11), 1313-1322.

(19) FDA Drug Safety Communication: FDA adds warnings about heart failure risk to labels of type 2 diabetes medicines containing saxagliptin and alogliptin. <u>www.fda.gov</u>, (20) Green, J. B.; Bethel, M. A.; Armstrong, P. W.; Buse, J. B.; Engel, S. S.; Garg, J.;
Josse, R.; Kaufman, K. D.; Koglin, J.; Korn, S. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. *N. Engl. J. Med.* 2015, *373* (3), 232-242.

(21) Duan, L.; Rao, X.; Xia, C.; Rajagopalan, S.; Zhong, J. The regulatory role of DPP4 in atherosclerotic disease. *Cardiovasc. Diabetol.* **2017**, *16* (1), 76.

(22) Li, S.; Xu, H.; Cui, S.; Wu, F.; Zhang, Y.; Su, M.; Gong, Y.; Qiu, S.; Jiao, Q.; Qin, C.; Shan, J.; Zhang, M.; Wang, J.; Yin, Q.; Xu, M.; Liu, X.; Wang, R.; Zhu, L.; Li, J.; Xu, Y.; Jiang, H.; Zhao, Z.; Li, J.; Li, H. Discovery and rational design of natural-product-derived 2-phenyl-3, 4-dihydro-2 H-benzo [f] chromen-3-amine analogs as novel and potent dipeptidyl peptidase 4 (DPP-4) inhibitors for the treatment of type 2 diabetes. *J. Med. Chem.* 2016, *59* (14), 6772-6790.

(23) Walkup, G. K.; You, Z.; Ross, P. L.; Allen, E. K.; Daryaee, F.; Hale, M. R.;
O'Donnell, J.; Ehmann, D. E.; Schuck, V. J.; Buurman, E. T. Translating slow-binding inhibition kinetics into cellular and in vivo effects. *Nat. Chem. Biol.* 2015, *11* (6), 416-423.

(24) Vauquelin, G. Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding. *Br. J. Pharmacol.* **2016**, *173* (15), 2319-2334.

(25) Copeland, R. A. The drug-target residence time model: a 10-year retrospective. *Nat. Rev. Drug Discov.* **2016**, *15*, 87-95.

(26) Dahl, G.; Akerud, T. Pharmacokinetics and the drug-target residence time concept.*Drug Discov. Today* 2013, *18* (15-16), 697-707.

(27) Tonge, P. J. Drug-target kinetics in drug discovery. ACS Chem. Neurosci. 2017, 9

(1), 29-39.

(28) Fedorov, D. G.; Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 2007, 28 (1), 222-237.

(29) Fedorov, D. G.; Nagata, T.; Kitaura, K. Exploring chemistry with the fragment molecular orbital method. *PCCP* **2012**, *14* (21), 7562-7577.

(30) Fedorov, D. G.; Kitaura, K. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. *J. Phys. Chem. A* **2007**, *111* (30), 6904-6914.

(31) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment molecular orbital method: an approximate computational method for large molecules. *Chem. Phys. Lett.* **1999**, *313* (3-4), 701-706.

(32) Vauquelin, G.; Charlton, S. J. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. *Br. J. Pharmacol.* **2010**, *161* (3), 488-508.

(33) de Witte, W.; Vauquelin, G.; van der Graaf, P.; de Lange, E. The influence of drug distribution and drug-target binding on target occupancy: The rate-limiting step approximation. *Eur. J. Pharm. Sci.* **2017**, *109*, S83-S89.

(34) de Witte, W. E.; Danhof, M.; van der Graaf, P. H.; de Lange, E. C. In vivo target residence time and kinetic selectivity: the association rate constant as determinant. *Trends Pharmacol. Sci.* **2016**, *37* (10), 831-842.

(35) Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Drug-target residence time and its implications for lead optimization. *Nat. Rev. Drug Discov.* **2006**, *5* (9), 730-739.

(36) Biftu, T.; Sinha-Roy, R.; Chen, P.; Qian, X. X.; Feng, D.; Kuethe, J. T.; Scapin, G.;

Gao, Y. D.; Tan, Y. W.; Krueger, D.; Bak, A.; Eiermann, G.; He, J. F.; Cox, J.; Hicks, J.;
Lyons, K.; He, H. B.; Salituro, G.; Tong, S. R.; Patel, S.; Doss, G.; Petrov, A.; Wu, J.; Xu, S.
S.; Sewall, C.; Zhang, X. P.; Zhang, B.; Thornberry, N. A.; Weber, A. E. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. *J. Med. Chem.* 2014, *57* (8), 3205-3212.

(37) Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G.
J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.;
Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu,
L.; Thornberry, N. A.; Weber, A. E.
(2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-

yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. *J. Med. Chem.* **2005**, *48* (1), 141-151.

(38) Pratley, R. E.; Salsali, A. Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. *Curr. Med. Res. Opin.* **2007**, *23* (4), 919-931.

(39) Liu, X.; Zhang, L. N.; Feng, Y.; Zhang, L.; Qu, H.; Cao, G. Q.; Leng, Y. Acute and chronic administration of SHR117887, a novel and specific dipeptidyl peptidase-4 inhibitor, improves metabolic control in diabetic rodent models. *Acta Pharmacol Sin* **2012**, *33* (8), 1013-22.

(40) Nojima, H.; Kanou, K.; Terashi, G.; Takeda-Shitaka, M.; Inoue, G.; Atsuda, K.; Itoh,
C.; Iguchi, C.; Matsubara, H. Comprehensive analysis of the co-structures of dipeptidyl
peptidase IV and its inhibitor. *BMC Struct. Biol.* 2016, *16* (1), 11.

(41) Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.;

Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. *Biochem. Biophys. Res. Commun.* **2013**, *434* (2), 191-196.

(42) Mazanetz, M. P.; Ichihara, O.; Law, R. J.; Whittaker, M. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. *J. Cheminform.* **2011**, *3* (1), 2.

(43) Heifetz, A.; Trani, G.; Aldeghi, M.; MacKinnon, C. H.; McEwan, P. A.; Brookfield,
F. A.; Chudyk, E. I.; Bodkin, M.; Pei, Z.; Burch, J. D. Fragment molecular orbital method applied to lead optimization of novel interleukin-2 inducible T-cell kinase (ITK) inhibitors. *J. Med. Chem.* 2016, *59* (9), 4352-4363.

(44) Heifetz, A.; Chudyk, E. I.; Gleave, L.; Aldeghi, M.; Cherezov, V.; Fedorov, D. G.;
Biggin, P. C.; Bodkin, M. J. The Fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. *J. Chem. Inf. Model.* 2015, *56* (1), 159-172.

(45) Sriwilaijaroen, N.; Magesh, S.; Imamura, A.; Ando, H.; Ishida, H.; Sakai, M.; Ishitsubo, E.; Hori, T.; Moriya, S.; Ishikawa, T. A novel potent and highly specific inhibitor against influenza viral N1-N9 neuraminidases: insight into neuraminidase-inhibitor interactions. *J. Med. Chem.* **2016**, *59* (10), 4563-4577.

(46) Liu, X.; Jiang, H.; Li, H. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening. *J. Chem. Inf. Model.* **2011**, *51* (9), 2372-2385.

(47) Lu, W.; Liu, X.; Cao, X.; Xue, M.; Liu, K.; Zhao, Z.; Shen, X.; Jiang, H.; Xu, Y.;Huang, J.; Li, H. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 2.

Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. *J. Med. Chem.* **2011**, *54* (10), 3564-3574.

(48) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen,
J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. General atomic and molecular electronic structure system. *J. Comput. Chem.* 1993, *14* (11), 1347-1363.

(49) Fedorov, D. G. The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2017**, 7 (6), e1322.

(50) Fedorov, D. G.; Kitaura, K. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. *J. Chem. Phys.* **2004**, *121* (6), 2483-2490.

(51) Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V. Fragmentation methods: a route to accurate calculations on large systems. *Chem. Rev.* 2011, *112* (1), 632-672.

