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Convergent Total Synthesis of Hikizimycin Enabled by Intermolecular 
Radical Addition to Aldehyde 

Haruka Fujino,† Takumi Fukuda,† Masanori Nagatomo, and Masayuki Inoue* 

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 

ABSTRACT: Hikizimycin (1), which exhibits powerful anthelmintic activity, has the most densely functionalized structure among 
nucleoside antibiotics.  A central 4-amino-4-deoxyundecose of 1 possesses 10 contiguous stereocenters on a C1-C11 linear chain and 
is decorated with a cytosine base at C1 and a 3-amino-3-deoxyglucose at C6-OH.  These distinctive structural features of 1 make it 
an extremely challenging target for de novo construction.  Herein, we report a convergent total synthesis of 1 from four known 
components: 3-azide-3-deoxyglucose derivative 4, bis-TMS-cytosine 5, D-mannose 9, and D-galactose derivative 10.  We first de-
signed and devised a novel radical coupling reaction between multiply hydroxylated aldehydes and α-alkoxyacyl tellurides.  The 
generality and efficiency of this process was demonstrated by the coupling of 7c and 8, which were readily accessible from two 
hexoses, 9 and 10, respectively.  Et3B and O2 rapidly induced decarbonylative radical formation from α-alkoxyacyl telluride 8, and 
intermolecular addition of the generated α-alkoxy radical to aldehyde 7c yielded 4-amino-4-deoxyundecose 6-α with installation of 
the desired C5,6-stereocenters.  Subsequent attachments of the cytosine with 5 and of the 3-azide-3-deoxyglucose with 4 were realized 
through selective activation of the C1-acetal and selective deprotection of the C6-hydroxy group.  Finally, the 3 amino and 10 hydroxy 
groups were liberated in a single step to deliver the target 1.  Thus, the combination of the newly developed radical-coupling and 
protective-group strategies minimized the functional group manipulations, and thereby enabled the synthesis of 1 from 10 in only 17 
steps.  The present total synthesis demonstrates the versatility of intermolecular radical addition to aldehyde for the first time and 
offers a new strategic design for multi-step target-oriented syntheses of various nucleoside antibiotics and other bioactive natural 
products.    

INTRODUCTION 

Nucleosides are endogenous compounds involved in cellular 
processes essential to all living organisms, such as DNA and 
RNA synthesis, cell signaling, enzyme regulation, and metabo-
lism.  Diverse nucleoside analogues are also found as secondary 
metabolites of microbial origin, and are collectively designated 
nucleoside antibiotics.1  Whereas endogenous nucleosides com-
prise a nitrogen-containing nucleobase and a furanose, nucleo-
side antibiotics include various structural modifications on both 
the nucleobase and sugar moieties, and often possess larger and 
more intricate architectures.  Reflecting the multiple fundamen-
tal functions of endogenous nucleosides, these antibiotics per-
turb a wide variety of cellular metabolic pathways and thereby 
have a broad range of biological activities, including antibacte-
rial, antifungal, antiviral, antitumor, herbicidal, insecticidal, and 
immunomodulatory properties.  Evolution has optimized the 
structures of these natural products for their dedicated functions, 
making them promising scaffolds for the development of new 
drug leads.2   

In 1971, hikizimycin (1, a.k.a. anthelmycin, Scheme 1) was 
isolated from the fermentation broth of Streptomyces A-5, an 
organism obtained from a soil sample collected at the Hikizi 
riverside in Kanagawa, Japan.3  Degradation studies of 1 having 
a molecular weight 583 identified the presence of a cytosine 
base, a 3-amino-3-deoxyglucose sugar (kanosamine), and a 
complex long-chain 4-amino-4-deoxyundecose sugar with 1 
amino and 10 hydroxy groups (2, hikosamine).  Together, these 
unique structural features place 1 among the most synthetically 
challenging of the nucleoside antibiotic natural products.  Com-
pound 1 inhibits protein synthesis by preventing peptide-

forming reactions4 and acts as a powerful anthelmintic agent 
against a variety of common parasites as well as an antibiotic 
agent.   

The exceedingly complex chemical structure and significant 
biological activity of 1 have attracted the interest of the chemi-
cal community for many decades.5  Synthetic chemists have in-
vented creative methods to approach the formidable challenges 
posed by 1.  Four groups, Secrist,6 Danishefsky,7 Fürstner,8 and 
Inoue,9 have reported different solutions for the construction of 
a protected form of hikosamine (2).  None of the groups elabo-
rated the prepared hikosamines into 1, however, highlighting 
the difficulties in discriminating and activating specific posi-
tions of the polyhydroxylated chain for the two glycosylations.  
Schreiber and Ikemoto disclosed the only total synthesis of 1 in 
1990,10 by taking advantage of a latent C2-symmetry within the 
hikosamine structure and utilizing two-directional linear trans-
formations for chain extension and oxidation from L-diisopro-
pyl tartrate (3).  Selective protection of the polyfunctionalized 
intermediates allowed for site-selective introduction of the C1-
cytosine and C6O-kanosamine moieties to produce 1 in 27 steps. 

We envisioned devising a new convergent strategy for the to-
tal synthesis of 1 because it is generally more suited for a shorter 
route than the linear counterpart, which involves stepwise ma-
nipulations from a simple starting material.11  In particular, our 
continued interest in developing radical-based strategies moti-
vated us to integrate a powerful radical coupling reaction into 
the synthesis.12,13  Herein, we detail the development of a novel 
radical-based route to hikizimycin (1) from 4 simple compo-
nents in 17 steps as the longest linear sequence.  The densely 
functionalized hikosamine structure was convergently built by 
a newly developed radical coupling reaction between an α-
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alkoxy radical and an aldehyde.  The protective group pattern 
of the coupled adduct enabled site- and stereoselective installa-
tions of the two appending structures, ultimately yielding 1.  
The new strategy and tactics developed here should have further 
applications for the total syntheses of natural products with pol-
yhydroxylated carbon chains.  

 

Scheme 1. Structure, Reactions, and Synthetic Plan of Hiki-
zimycin (1)a  

 
aBz = benzoyl, Trt = trityl, Phth = phthaloyl, TMS = trimethylsilyl. 

RESULTS AND DISCUSSION 

Synthetic Plan for Hikizimycin.  Hikizimycin (1) consists 
of three components: kanosamine, cytosine, and hikosamine (2) 
(Scheme 1).   Accordingly, 1 was retrosynthetically dissected 
into the known compounds 414 and 5, and the protected hikosa-
mine 6-α.  The C1-anomeric position of 6-α would be activated 
as an acetate for introduction of the cytosine, and its C6-alcohol 
would be discriminated from other hetero functions for O-gly-
cosylation.  In the synthetic direction, reactions with 4 and 5 at 
the C1-acetyl acetal and C6-OH must establish the C1- and 
C12-stereocenters.  To secure the requisite trans-relationship of 
the C1/2- and C12/13-substituents, the proximal C2- and C13-
hydroxy groups of 6-α and 4 were to be protected with the ben-
zoyl groups because of their neighboring-group participation 
functions.  In principle, the differentially protected hikosamine 
6-α would be directly assembled by a polar coupling between 
anion A and aldehyde 7, or a radical coupling between radical 
B and 7.15  The potential for β-elimination of the C4-nitrogen 
functionality from A and for undesired reactions of the multiple 
acyl protective groups with A, however, prevented us from 

adopting the polar reaction.16  Hence, we selected a radical re-
action instead.    

Radical reactions serve as versatile methods to forge the com-
plex architectures of highly oxygenated natural products be-
cause they are compatible with diverse oxygen and nitrogen 
functionalities, and are applicable to the formation of sterically 
hindered C–C bonds.  Even so, intermolecular radical addition 
of carbon radical B to aldehyde 7 would be highly problematic.  
As shown in Scheme 2A, the starting carbon radical 11 and al-
dehyde 12 are energetically favored over the generation of 
alkoxyl radical 13.17  Thus, β-scission of the product 13 readily 
reverses the reaction.   

 

Scheme 2. (A) Calculated Energy of Radical Addition to Al-
dehyde (B) Et3B/O2-Mediated Formation and Reactions of 
α-Alkoxy Radical 

 

We previously reported an Et3B/O2-promoted radical cou-
pling using α-alkoxyacyl telluride 14 and electron-deficient 
double bonds (Scheme 2B).18  The first part of this reaction in-
volves the generation of an Et radical from Et3B and O2,19 for-
mation of acyl radical C through C–Te homolysis, and decar-
bonylation to produce α-alkoxy radical D.20  Conjugate addition 
of D to enone 15 and capture of the resultant radical intermedi-
ate with Et3B then gives boron enolate E and an Et radical.  Pro-
tonation of E affords the two-component adduct 16.  We de-
cided to exploit this reagent system for aldehyde 17 due to the 
facile radical initiating and terminating roles of Et3B.  Namely, 
Et3B and O2 would initiate the radical process to produce α-
alkoxy radical D from 14 and then terminate the process by the 
formation of borinate ester F with ejection of an Et radical.  Un-
like the corresponding alkoxyl radical, the polar intermediate F 
would not easily undergo the reverse β-scission reaction.21  Fi-
nally, hydrolysis of F would give alcohol 18.   

These considerations led us to select α-alkoxyacyl telluride 8 
as a precursor of radical B (Scheme 1).  The sterically cumber-
some C4N-phthalimide group of 8 was expected to control the 
trans-relationship of the C4-imide and the C5-carbon chain 
upon the radical addition.22  Since we could not predict the C6-
stereoselectivity a priori, stereocontrolling effects of the protec-
tive groups (R) of 7 had to be investigated during the course of 
the study (see Scheme 4 below).  Compounds 7 and 8 were fur-
ther traced back to D-mannose (9) and D-galactose derivative 
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(10), which together carry the 6 stereocenters of the target 1 (C2, 
C3, C7, C8, C9, and C10).  This utilization of the original chi-
ralities of the two hexoses would greatly contribute to stream-
line the route to 1.23  Hence, our original strategy toward 1 pos-
tulated an optimally convergent route, in which three hexoses 
(4, 9, and 10) and silylated cytosine 5 were to be coupled and 
elaborated.    

Optimization of Intermolecular Radical Addition Condi-
tions.  Our initial effort to devise the key radical coupling was 
conducted as a model study using the sugar-derived α-alkoxy-
acyl telluride 1918a and 3-phenylpropanal (20) (Table 1).  Me3Al 
(entry 1),24 Me2Zn (entry 2),25 and Et3B (entry 3) were selected 
as representative radical initiators.  Consequently, Et3B was 
found to be far superior to Me3Al and Me2Zn for promoting the 
radical addition.  When 19 and 20 (3 equiv) were treated with 
Et3B (5 equiv) in CH2Cl2 under air at room temperature, the req-
uisite adduct 21 was obtained in 28% yield along with 22 (39%), 
which was formed through direct hydrogen-atom abstraction 
(entry 3).26  In contrast, the use of Me3Al and Me2Zn under air 
only generated 2% and 4% of 21, respectively.  Lowering the 
temperature to -30 °C (entry 4) in the presence of Et3B increased 
the yield of 21 to 40%.  Thus, the presumed scenario illustrated 
in Scheme 2B was realized using simple and mild reaction con-
ditions.   

 

Table 1. Investigation of Radical Initiatorsa 

 

entry initiator solvent 
yields(%)b 

21 22 

1 Me3Al THF 4 10 
2 Me2Zn CH2Cl2 2 3 
3 Et3B CH2Cl2 28c 39 
4d Et3B CH2Cl2 40c,e 47 

aConditions: 19 (1 equiv), 20 (3 equiv), initiator (5 equiv), solvent 
(0.1M), open air, 25 °C. bYields were calculated from 1H-NMR analy-
sis. cdr = 1.8 : 1 (entry 3) or 2.4 : 1 (entry 4) (The stereochemistries 
were not determined). dReaction was conducted at -30 °C. eIsolated 
yield. 

In the next model study, we heightened the challenge by in-
creasing the structural complexity of the acceptor from 3-phe-
nylpropanal (20) to the right-half aldehyde 7 of the hikosamine 
structure.  Prior to the coupling, differentially protected tetra-
benzoyl 7a and bis-acetonide 7b/c were prepared as radical ac-
ceptors (Scheme 3).  The pyranose ring of D-mannose (9) was 
opened using EtSH and HCl to afford dithioacetal 23.  Ben-
zoylation of the four hydroxy groups of 23, followed by hydrol-
ysis of the dithioacetal with mercury salts, gave rise to 7a.  Al-
ternatively, the primary alcohol of pentaol 23 was selectively 
capped with the TBDPS group and the remaining secondary al-
cohols were protected with the two acetonides by treatment with 
2,2-dimethoxypropane and (+)-CSA, leading to 24.27  The pro-
tective group at the primary OH of 24 was transformed from 
TBDPS to Bz via the standard 2-step procedure to generate 26.  
Dithioacetals 24 and 26 were separately converted to 7b and 7c, 
respectively, by HgCl2-mediated hydrolysis.  

Scheme 3. Synthesis of Differentially Protected Aldehydes 
7a, 7b, and 7ca 

 
aReagents and conditions: (a) EtSH, 0.5M HCl in MeOH, 25 °C; (b) 
benzoyl chloride (BzCl), pyridine, 25 °C, 51% (2 steps); (c) HgCl2, 
HgO, acetone, MeCN, H2O, 60 °C, 99%; (d) tert-butyldiphe-
nylchlorosilane (TBDPSCl), Et3N, molecular sieves 4A, N,N-dimethyl-
4-aminopyridine, THF, 50 °C, 79% (2 steps); (e) (+)-10-camphorsul-
fonic acid ((+)-CSA), (MeO)2CMe2, 25 °C, 70%; (f) n-Bu4NF, THF, 
50 °C; (g) BzCl, pyridine, 50 °C, 100% (2 steps); (h) HgCl2, HgO, 
CH2Cl2, MeCN, H2O, 25 °C, 7b: 90% from 24, 7c: 97% from 26. 
TBDPS = tert-butyldiphenylsilyl. 

 

Scheme 4. Intermolecular Radical Addition of α-Alkoxy 
Carbon Radicals to Aldehydesa 

 
aConditions: acyltellurides 19 or 27 (1 equiv), aldehyde 7a or 7b (3 
equiv), Et3B (5 equiv), CH2Cl2 (0.1M), open air, –30 °C. 

 

Two differentially protected 7a and 7b were submitted to the 
radical coupling reactions to evaluate the effects of the protec-
tive groups on the reactivity and stereoselectivity (Scheme 4).  
The Et3B/O2-mediated reaction between 19 and 7a under the 
optimized conditions in Table 1 indeed furnished the coupling 
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adduct 28.  The X-ray crystallographic structure of one of the 
obtained isomers 28-α accentuated the hindered nature of the 
newly linked bond between the tetrasubstituted and trisubsti-
tuted carbons.  Despite the modest yield (36%) and low C6-ste-
reoselectivity (28-α : 28-β = 1 : 1.1), it was noteworthy that the 
highly oxygenated structure with the nine consecutive asym-
metric centers was constructed in a single coupling.  The yield 
and C6-stereoselectivity were further improved by altering the 
acceptor from 7a to 7b.  Submission of 19 and 7b to Et3B and 
O2 at –30 °C produced a 2.1 : 1 mixture of 29-α and 29-β in 
66% yield.28  When the D-ribose-derived 2718a was applied to 
the same conditions, 30-α was isolated as a sole isomer in 77% 
yield.  The second model study also allowed us to define the 
structure of the right-half fragment as 7c for the total synthesis 
of 1 (Scheme 1).  The bis-acetonide moiety of 7c would control 
the requisite C6α-stereocenter for 6-α, while the Bz group at 
C11-OH of 7c instead of the TBDPS group of 7b would be ben-
eficial for its simultaneous removal with other nucleophile-sen-
sitive protective groups (e.g., C2/3O-Bz and C4N-Phth).   

The radical addition reactions shown in Scheme 4 introduced 
the two stereocenters highlighted in pink and cyan circles.  The 
stereochemical outcomes are attributable to the protective 
groups of both the radical donors (19/27) and acceptors (7a/b).  
Et3B/O2 promotes the decarbonylative radical formation of G 
and H from tellurides 19 and 27, respectively (Scheme 5).  The 
bond formation at the α-alkoxy position proceeds from the bot-
tom convex face of the acetonide-protected 5/5-cis-fused bicy-
cle of G and H, establishing the pink-highlighted carbon center.  
Installation of the cyan-highlighted C6-stereogenic center 
would be explained by the conformational preferences of the 
acceptors 7a and 7b.  Felkin-Ahn-type transition states 7a-α and 
7a-β are energetically comparable and both accept the radical 
to generate a comparable amount of 28-α and 28-β, respectively.   
On the other hand, 7b-β has a severe steric interaction between 
the radical and the methyl group of the 6/6-cis-fused bicycle 
(highlighted in gray), and thus becomes higher in energy than 
7b-α, which leads to the desired C6α-stereochemistry.  Hence, 
the distinct three-dimensional structure of 7b fixed by the two 
acetonides is likely to reflect the selective generation of 29-α 
and 30-α.   

 

Scheme 5. Rationale for the Stereochemical Outcomes 

 

 

Total Synthesis of Hikizimycin.  Having determined the 
conditions and stereocontrolling factors for the crucial radical 
coupling, we set out to prepare the radical donor 8 for the total 
synthesis of hikizimycin (1) (Scheme 6).  Benzoylation of the 

commercially available D-galactose derivative 10 with BzCl 
and pyridine capped the equatorial C2- and C3-OHs and left the 
axial C4-OH untouched to afford 31.  The hydroxy group of 31 
was transformed to the NPhth group of 33 via Tf2O/pyridine-
promoted triflation and subsequent C4-stereochemical inver-
sion using potassium phthalimide (32).  Treatment of 33 with 
Ac2O in the presence of AcOH and H2SO4 exchanged the me-
thyl and trityl groups for acetyl groups, producing a 1 : 8.3 mix-
ture of 34-α and 34-β.  The following 2 steps were used to syn-
thesize pure 34-α.29  The axially-oriented chloride of 35 was in-
stalled by subjecting the C1-diastereomers to MeOCHCl2 and 
ZnCl2,30 and was replaced with the equatorial C1-acetoxy group 
of 34-α by the action of Hg(OAc)2. 31  The primary acetoxy 
group of 34-α was then chemoselectively reduced with i-
Bu2AlH, and the liberated primary alcohol of 36 was oxidized 
to the corresponding carboxylic acid of 37 using PhI(OAc)2 and 
catalytic AZADOL.32  The requisite radical donor 8 was deri-
vatized from 37 in one pot through formation of the activated 
ester, followed by attack of an anionic phenyltelluride prepared 
from (PhTe)2 and i-Bu2AlH.33   

We next realized the unprecedented intermolecular radical 
addition of the densely functionalized fragments 8 to 7c.  A 
mixture of α-alkoxyacyltelluride 8, aldehyde 7c (3 equiv), and 
Et3B (5 equiv) in CH2Cl2 (0.1 M) was exposed to air at -30 °C 
to deliver 6-α along with the minor C6-epimer 6-β in 65% com-
bined yield (6-α : 6-β = 2.2 : 1).34  Accordingly, the desired 6-α 
with its 10 contiguous stereocenters was constructed by stere-
oselectively forging the hindered C5–C6 bond.  As expected 
from the model experiments in Scheme 4, the desired C6-selec-
tivity was attributable to the bis-acetonide structure of 7c.  On 
the other hand, the complete C5-stereoselectivity can be ration-
alized by the three-dimensional arrangement of the C4N-
phthalimide group.  Et3B and O2 induce the elimination of 
EtTePh and carbon monoxide from telluride 8, thereby abolish-
ing the C5-stereochemical information upon forming α-alkoxy 
radical B.  Pyran B can adopt the chair form Ba and the boat 
form Bb as representative conformations.  Although Ba has 
more sterically preferred equatorial substituents than Bb, the 
C1-radical of Bb is more stereoelectronically favorable than Ba.  
Specifically, both Ba and Bb have secondary orbital interac-
tions between the C1-radical and the pyran oxygen lone pair, 
yet only Bb has a stabilizing interaction between the singly oc-
cupied orbital and the co-planar σ*-orbital of the C4–N bond.35  
As a result, Bb has a lower energy than Ba, which was further 
corroborated by the DFT calculation of the stable radical con-
formation at the UM06-2x/6-31+G(d) level of theory (298 K, 1 
atm) (Figure 1).  The β-oriented bulky C4-NPhth of Bb only 
permits an α-approach by 7c to install the correct C5α-stereo-
chemistry. Therefore, the strategically selected protective 
groups contributed to the stereoselective construction of the two 
tertiary carbons at C5 and C6.   
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Scheme 6. Total Synthesis of Hikizimycina 

 
aReagents and conditions: (a) BzCl, pyridine, 25 °C, 58%; (b) trifluoromethanesulfonic anhydride (Tf2O), pyridine, 0 °C; (c) phthalimide potassium 
salt (32), DMF, 25 °C, 82% (2 steps); (d) H2SO4, AcOH, Ac2O, CH2Cl2, 25 °C, 80% (34-α: 34-β = 1 : 8.3); (e) MeOCHCl2, ZnCl2, CH2Cl2, reflux; 
(f) Hg(OAc)2, AcOH, 25 °C, 92% (2 steps); (g) i-Bu2AlH, THF, -78 °C; (h) 2-hydroxy-2-azadamantane (AZADOL), PhI(OAc)2, MeCN, pH 7 buffer, 
85% (2 steps); (i) i-BuOCOCl, N-methylmorpholine (NMM), THF, 0 °C; (PhTe)2, i-Bu2AlH, THF, 25 °C, 88%; (j) Et3B, air, CH2Cl2, -30 °C, 65% 
(6-α : 6-β = 2.2 : 1); (k) BnO(=NPh)CF3, trifluoromethanesulfonic acid (TfOH), molecular sieves 5A, 1,4-dioxne, reflux; (l) HS(CH2)3SH, BF3ꞏOEt2, 
MeCN, 25 °C; (m) Ac2O, pyridine, 50 °C; (n) 5, trimethylsilyl trifluoromethanesulfonate (TMSOTf), PhNO2, 130 °C; i-PrOH, 25 °C; BzCl, pyridine, 
25 °C, 19% (4 steps from a 2.2 : 1 mixture of 6-α and 6-β); (o) 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), CH2Cl2, 60 °C, (p) 4, TMSOTf, 
CH2Cl2, 0 °C, 42: 39% (2 steps), 12-epi-42: 22% (2 steps); (q) n-BuNH2, MeOH, reflux; H2, Lindlar catalyst [(5% Pd-CaCO3, Pb(OAc)2, quinoline), 
500 wt%], H2O, 25 °C, 50%. Bn = benzyl. 

 
Figure 1. The DFT-optimized structure of radical B (UM06-
2X/6-31G+(d), 298 K, and 1 atm). 

 

Having prepared the protected hikosamine 6-α, the final chal-
lenging task was the stepwise attachments of the cytosine and 
kanosamine moieties to this large and complex structure under 
acidic conditions.  To prepare for these two glycosylations, the 
protective groups were manipulated in the following 3 steps.  
The C6-alcohol of 6-α was protected as the acid-resistant ben-
zyl ether of 38 using N-phenyl-2,2,2-trifluoroacetimidate and 
catalytic TfOH.36  Chemoselective removal of the acid-labile 
acetonides of 38 was realized by application of the reagent 

combination of BF3ꞏOEt2 and 1,3-propane dithiol in MeCN 
without affecting the potentially reactive C1-acetal or benzyl 
ether.37  The resultant tetraol was converted to the correspond-
ing pentaacetate 39 using Ac2O and pyridine.  Next, introduc-
tion of the cytosine required rather forcing conditions.  The 
freshly prepared bis-TMS-cytosine 5 and 39 were heated to 
130 °C in PhNO2 in the presence of TMSOTf to induce the for-
mation of the adduct.10,38  The C20-amine was benzoylated with 
BzCl and pyridine in one pot, leading to C1α-benzoylcytosine 
40 as a single isomer.  Prior to the glycosylation of the kanosa-
mine sugar, C6-alcohol was released from benzyl ether 40 by 
employing DDQ under anhydrous conditions to produce 41 
without removing or transposing the multiple acyl groups.  
TMSOTf-promoted glycosylation of 41 with the trichloroace-
timidate 439,40 in turn proceeded at 0 °C, affording C12β-kanos-
amine 42 as the major isomer (42 : 12-epi-42 = 1.8 : 1).   There-
fore, the requisite C1α–N and C12β–O linkages were stereose-
lectively formed, presumably because the strategically placed 
C2O- and C13O-benzoyl groups secured the trans-addition of 
the incoming nucleophiles by neighboring-group participation.      

The last mission of the total synthesis of 1 from the protected 
hikizimycin 42 necessitated detachment of the seven Bz, four 
acetyl, and one phthaloyl groups, and reduction of the C14-az-
ide functionality.  We developed an efficient one-pot procedure 
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to attain these multiple reactions.  All 12 acyl groups were sim-
ultaneously removed by applying n-BuNH2 in refluxing MeOH 
to deprotect the 10 hydroxy and 2 amino groups.41  In the same 
flask, reduction of the C14-azide substituent was accomplished 
chemoselectively over the unsaturated cytosine ring by hydro-
genolysis using the Lindlar catalyst in H2O.10  This protocol 
gave rise to the targeted hikizimycin (1) from 42 in 50% yield.  
The structural integrity of the fully synthetic 1 with its 15 ste-
reocenters was confirmed by comparing the analytical data, in-
cluding 1H, 13C NMR, IR, and [α]D, with those of the natural 
and reported 1.10   

CONCLUSION  

In summary, we achieved a convergent total synthesis of 
hikizimycin (1) from the three hexose and cytosine structures 
(4, 5, 9, and 10).  Remarkably, the exceptionally complex struc-
ture of 1 was assembled in 17 steps from 10 without any extra 
carbon extension or oxygen atom introduction.  The synthetic 
route was realized by devising a novel radical coupling strategy 
and applying a judicious protective group strategy.  First, we 
established the conditions for the radical coupling between α-
alkoxyacyl tellurides and aldehydes.  Although intermolecular 
radical addition to an aldehyde is energetically disfavored, the 
reagent combination of Et3B and O2 uniquely promoted the re-
action due to its radical initiating and terminating properties.  
Thus, the highly oxygenated radical acceptor 7c and donor 8 
were derivatized from 9 and 10, respectively, and coupled by 
the action of Et3B and air.  This mild, yet powerful reaction 
linked the hindered tertiary carbons and installed the desired 
C5,6-stereocenters, thereby constructing the hikosamine struc-
ture 6-α with its 10 contiguous stereocenters.  The cytosine and 
hikosamine moieties were then attached by two TMSOTf-pro-
moted glycosylations in a C1,12-stereoselective fashion.  Im-
portantly, the strategically introduced protective groups of the 
polyfunctionalized intermediates controlled the stereochemical 
outcomes.  While the bis-acetonide and C4-NPhth structures fa-
vorably affected the C5α- and C6α-stereoselectivity of the rad-
ical addition, the proximal benzoyl groups secured the C1β- and 
C12β-glycosidic linkages.  Lastly, transformation of the pro-
tected hikizimycin 42 into 1 were attained in one pot by detach-
ment of the 12 protective groups and hydrogenation of the one 
azide function.   
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Because of its excellent functional group compatibilities, 
radical addition to aldehydes is particularly advantageous for 
expeditious construction of densely functionalized molecules.  
We hope that the described radical chemistry will provide new 
insights for retrosynthetic analyses in the field of organic chem-
istry and have broad applications for the total synthesis of other 
bioactive nucleoside antibiotics and natural products.    
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