Accepted Manuscript

Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bisindolylmethanes and their Corresponding Tetrahydroindolocarbazoles

Mardia T. El Sayed , Khadiga M. Ahmed , Kazem Mahmoud , Andreas Hilgeroth

PII: S0223-5234(14)01117-9

DOI: 10.1016/j.ejmech.2014.12.008

Reference: EJMECH 7568

- To appear in: European Journal of Medicinal Chemistry
- Received Date: 5 September 2014
- Revised Date: 2 November 2014
- Accepted Date: 5 December 2014

Please cite this article as: M.T. El Sayed, K.M. Ahmed, K. Mahmoud, A. Hilgeroth, Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bis-indolylmethanes and their Corresponding Tetrahydroindolocarbazoles, *European Journal of Medicinal Chemistry* (2015), doi: 10.1016/j.ejmech.2014.12.008.

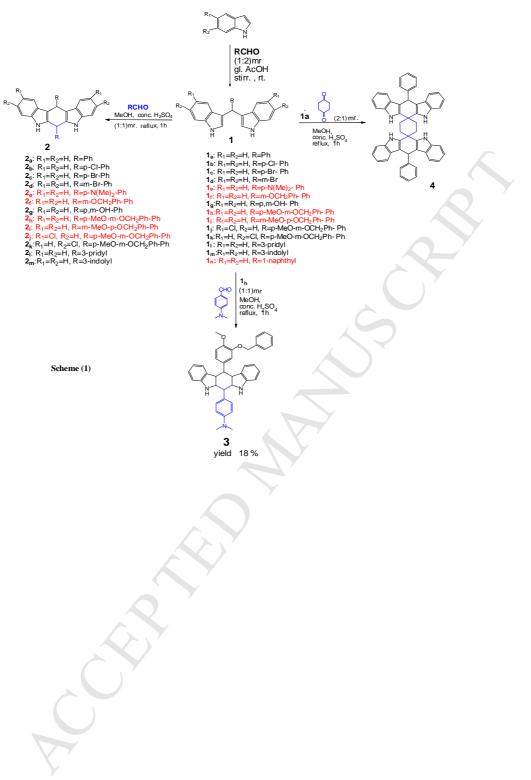
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bisindolylmethanes and their Corresponding Tetrahydroindolocarbazoles.

Mardia T. El Sayed^{a,b,*}, Khadiga M. Ahmed^c, Kazem Mahmoud^a, and Andreas Hilgeroth^a.

^aInstitute of Pharmacy, Martin-Luther University, Research Group of Drug Development and Analysis, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Saale, Germany. ^bApplied Organic Chemistry Department, National Research Centre, Cairo, Egypt., ^cNatural Compounds Laboratory, National Research Centre, Cairo Egypt.


Corresponding author: Mardia El Sayed

Mardia_elsayed2009@yahoo.com

Dear Sir,

BIMs (bis-indolylmethanes) (1_{a-n}) were synthesized *via* using glacial acetic acid as a protic acid for promotion of the condensation reaction of indoles with aldehydes in high yields (86-98 %). Corresponding tetrahydroindolo[2,3-*b*]carbazoles (2_{a-m}) were synthesized *via* condensation of BIMs with aldehydes. Ten synthesized compounds have been submitted to the national cancer institute in the USA where all the submitted samples have been selected for *one dose screening*. As a result of the *one dose screening* of BIMs $(1_{e,f,h,i,n})$ and of the indolocarbazoles $(2_{e,f,h,i,j})$ the average highest cytostatic effects was recorded here for the BIM 1_h and the indolocarbazole (2_e) that showed the lowest mean values of "47.39 %" and of "21.63 %" respectively. Both compounds $(1_h \text{ and } 2_e)$ were further tested in *five dose screening* with the tested substance (1_h) being significantly more sensitive for several cancers cell line as corresponding to their GI₅₀ values. Furthermore, the basically substituted derivative 2_e showed the highest antipoliferative activity in a nanomolar scale towards the three selected cancers cell lines Non small lung cell NCI-H460 with GI₅₀ "616 nM", Ovarian Cancer cell line OVCAR-4 with GI₅₀ "562 nM" and Breast Cancer cell line MCF7 with GI₅₀ "930 nM".

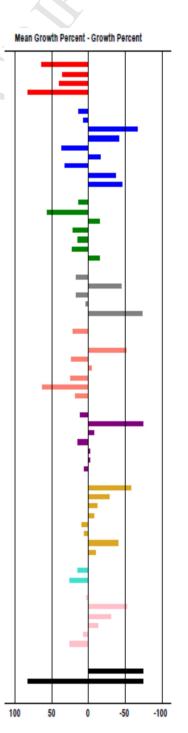
The present research proved that, all synthesized BIMs $(1_{e,f,h,i,n})$ showed best activities in the same cell lines MOLT-4 in leukaemia cell line and in IGROV1 in an ovarian cancer cell line. Also the basically substituted derivative demonstrates good activity in the renal cancer cell lines CAKI-1 and UO-31. The TGI and LC₅₀ values were higher than 100 µM so the compound 1_h showed noncritical cytotoxic properties. The basically substituted derivative 2_e gave the highest antipoliferative activity in a nanomolar ranges in selected cell lines with noncritical cytotoxic properties (17 fold higher LC₅₀ "34.6 µM" than GI_{50} "2 µM" values). Further SAR modifications in compounds 1_h and 2_e that are under investigation in our lab to discover more potent antitumor agents.

European Journal of Medicinal Chemistry

Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bisindolylmethanes and their Corresponding Tetrahydroindolocarbazoles

Mardia T. El Sayed^{a,b,*}, Khadiga M. Ahmed^c, Kazem Mahmoud^a, and Andreas Hilgeroth^a.

^aInstitute of Pharmacy, Martin-Luther University, Research Group of Drug Development and Analysis, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Saale, Germany. ^bApplied Organic Chemistry Department, National Research Centre, Cairo, Egypt., ^cNatural Compounds Laboratory, National Research Centre, Cairo Egypt.


Corresponding author: *Mardia El Sayed* Email: mardia_elsayed200@yahoo.com

Conflict of interest

The Author(s) declare(s) that they have no conflicts of interest to disclose.

Statement of significance

The present research proved that, all synthesized BIMs ($\mathbf{1}_{e,f,h,i,n}$) showed best activities in the same cell lines MOLT-4 in leukaemia cell line and in IGROV1 in an ovarian cancer cell line. Also the basically substituted derivative demonstrates good activity in the renal cancer cell lines CAKI-1 and UO-31. The TGI and LC₅₀ values were higher than 100 μ M so the compound $\mathbf{1}_h$ showed noncritical cytotoxic properties. The basically substituted derivative $\mathbf{2}_e$ gave the highest antiproliferative activity in a nanomolar ranges in selected cell lines with noncritical cytotoxic properties (17 fold higher LC₅₀ "34.6 μ M" than GI₅₀ "2 μ M" values). Further SAR modifications in compounds $\mathbf{1}_h$ and $\mathbf{2}_e$ that are under investigation in our lab wishing to discover more potent antitumor agents.

Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bisindolylmethanes and their Corresponding Tetrahydroindolocarbazoles

Mardia T. El Sayed^{a,b,*}, Khadiga M. Ahmed^c, Kazem Mahmoud^a, and Andreas Hilgeroth^a.

^aInstitute of Pharmacy, Martin-Luther University, Research Group of Drug Development and Analysis, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Saale, Germany. ^bApplied Organic Chemistry Department, National Research Centre, Cairo, Egypt., ^cNatural Compounds Laboratory, National Research Centre, Cairo Egypt.

Article history: Received: Accepted: DOI:

Key words:

Bis-indolylmethanes; tetrahydroindolo[2,3b]carbazoles; one dose screening; five dose screening; antipoliferative activity; nanomolar scale.

Abstract

BIMs (bis-indolylmethanes) (1_{a-n}) were synthesized using glacial acetic acid as a protic acid for promotion of the condensation reaction of indoles with aldehydes in high yields (86-98 %). Corresponding tetrahydroindolo[2,3-b]carbazoles (2_{a} m) were synthesized *via* condensation of BIMs with aldehydes. Ten synthesized compounds have been submitted to the national cancer institute in the USA where all the submitted samples have been selected for one dose screening. As a result of the one dose screening of BIMs $(1_{e,f,h,i,n})$ and of the indolocarbazoles $(2_{e,f,h,i,j})$ the average highest cytostatic effects was recorded here for the BIM 1_h and the indolocarbazole (2_e) that showed the lowest mean values of "47.39 %" and of "21.63 %" respectively. Both compounds $(1_h \text{ and } 2_e)$ were further tested in *five dose screening* with the tested substance (1_h) being significantly more sensitive for several cancers cell line as corresponding to their GI₅₀ values. Furthermore, the basically substituted derivative 2_e showed the highest antipoliferative activity in a nanomolar scale towards the three selected cancers cell lines Non small lung cell NCI-H460 with GI₅₀ "616 nM", Ovarian Cancer cell line OVCAR-4 with GI50 "562 nM" and Breast Cancer cell line MCF7 with GI50 "930 nM".

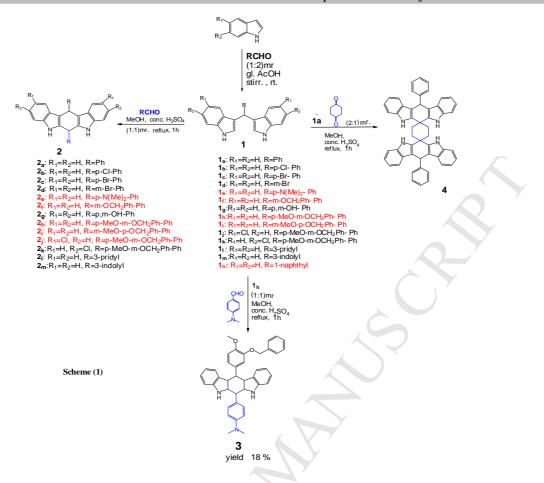
Introduction

In recent years a considerable attention has been paid on the synthetic ways leading to indole derivatives because of their biological activities. Various indole derivatives, such as 3-substituted indoles, are common components of drugs and are generally found to be of pharmaceutical interest in a variety of therapeutic areas [1]. In addition, 3-substituted indole derivatives are also versatile intermediates in organic synthesis [2], due to the feasibility of their 3-position for an electrophilic substitution. The electrophilic substitution reactions of indoles with aromatic aldehydes afford corresponding BIMs. Several catalysts such as protic acids [3-6], Lewis acids [7-10], ionic liquids [11], and others are used to promote these reactions. The 3-position of indole is the preferred site for the electrophilic substitution reactions. A simple and direct method for the synthesis of 3-alkylated indole derivatives involves the condensation of indoles or its substituted derivatives with electrophilies (aldehydes or ketones or imines). Aldehydes either aliphatic or aromatic

are the most important and widely used electrophiles such reactions. in Bisindolylalkane derivatives are found in bioactive metabolites of terrestrial and marine origin. Recently, Maciejewska et al. [12] used DNA-based electrochemical biosensors to prove that bis(5-methoxyindol-3-yl)methane [13] considerably reduces the growth of cancer cell lines such as HOP-92 (lung), A498 (renal) and MDAMB-231/1TCC (breast) Their results also indicate that BIMs could potentially be applied as chemotherapeutic agents against tumors [14]. It has been reported that, DIM-Cp-PhC₆H₅ substituted in the phenyl ring with a para-*t*-butyl, trifluoromethyl (DIM-C-p-PhCF₃) substituent and indole ring-substituted analogs are selective PPAR γ modulators [15] in several cancer cell lines with high antiproliferative activity [16 - 25]. Other study investigated the antileukaemic activity and molecular mechanisms of action of a newly synthesized ring-substituted diindolylmethane derivative, 1,1-bis[3'-(5-methoxyindolyl)]-1methane (*p*-t-butylphenyl) in acute myelogenous leukemia (AML) cells [26]. Inaddition, Indolocarbazoles have been reported as a primary compound for the synthesis of various drugs with important biological, pharmacological, and medicinal Indolocarbazoles are activities [27-32]. associated with anticancer, antimicrobial, and antifungal activities. In most cases biological activity is correlated with indolocarbazoles The containing heteroatoms. biological activity depends on the interaction potential with DNA [33,34]. Furthermore, many experimental studies have indicated that the size, shape and planarity of this structure are important criteria in such DNA interaction [35].

Result and Discussion

All the submitted compounds [BIMs $(1_{e,f,h,i,n})$ and the indolocarbazoles $(2_{e,f,h,i,j})$] to National Cancer Institute (NCI), USA, have been selected by the NCI for anticancer

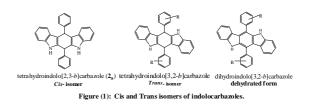

screening. The tumor growth inhibition properties of the ten compounds $\mathbf{1}_{e}, \mathbf{1}_{f}, \mathbf{1}_{h}, \mathbf{1}_{i}$ 1_n , 2_e , 2_f , 2_h , 2_i and 2_i with the NCI codes NSC D-755521/1, D-755518/1, D-755517/1, D-755519/1, D-755520/1, D-758513/1, D-758511/1, D-758510/1, D-758512/1 and D-758514/1 were evaluated. The selected compounds were screened on human tumor cell lines at 10⁻⁵ M at the 60-Cell-Line Screenings of the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI, Bethesda, Maryland, USA) under the drug discovery program of the NCI. Among the selected 10 compounds the two compounds 1_h (NSC D- 755517/1) and 2_e (D-758513/1) were further screened for five-log dose molar range as they have shown prominent cell growth inhibition at 10⁻⁵ M concentration against variety of cancers cell lines. All the one dose mean graphs, the superposition curves and the dose response curves are included in the electronic supplementary file. The 60-cell-line-screening of the NCI includes 60 different tumor cell lines, the nine various organs and tumor types derived (leukaemia, non-small-cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer).

3

Chemistry

Many procedures for the synthesis of BIMs have been published by varying the nature of the catalyst used. Generally, BIMs are synthesized by a reaction analogous to the Ehrlich test, where indoles react with aliphatic or aromatic aldehydes or ketones in presence of acid catalyst to give azafulven [36,37,38], which undergoes further addition with the second indole molecule to afford BIMs. In view of our previous work performed in our lab using glacial acetic acid as a protic acid for efficient promotion of the condensation reaction of indoles with different types of aldehydes, we have synthesized the BIMs via using glacial acetic acid with indoles and aromatic aldehydes. In brief, glacial acetic acid

4



without solvent was used to catalyze the reaction of indoles (two equivalent moles) and aryl or heteroaryl aldehydes (one equivalent mole). With our new method via glacial acetic acid as a solvent the corresponding BIMs were formed in a high yields (86-98 %) and after a few hours (4-6) hours of stirring at room temperature. Some BIMs (1_{a,b,c,d,e,k,n}) are known [39-45], their identities were proven by means of MS, NMR, IR spectra, and the other BIMs, $(1_{f,g,h,i,j,l})$, are novel and could not be found in the literature. The short reaction time and the simplicity of the reaction procedure makes this method one of the most efficient methods for the synthesis of this class of compounds.

As an extending study of our present lab work, we used the prepared BIMs 1_{a-n} as a starting materials for the synthesis of biologically active tetrahydroindolo[2,3-*b*]carbazoles of type 2_{a-m} , 3 and the extended spirocyclic biscarbazoles 4. The reaction has been done

according to the few reported cases of condensation of BIMs with aldehydes or ketones [46] in which the BIM and the aromatic aldehyde (the same aldehyde which condensed with indoles in the synthesis of the used BIM) in molar ratios (1:1) were dissolved in methanol and few drops of conc. H₂SO₄ were added dropwisly. The mixture was refluxed under stirring for about 1 h. The product precipitated and was isolated from the reaction mixture while the solution is hot yielding few amounts of the pure tetrahydroindolo[2,3-b]carbazoles of type 2_{a-m} . The rest of the compounds $\mathbf{2}_{a-m}$ could be extracted and purified from the reaction mixture affording the second crop in good to better yields, scheme (1). The formation of the tetrahydroindolo[2,3-b]carbazoles (2_{a-m}) was due to the fact that a cyclizative condensation can occur by an acid catalyzed nucleophilic attack of an indole nucleus at the 2-position, when the 2-position is free. The unsubstituted

2-position of the two indole nucleus in BIMs can react with a carbonyl group of either aldehydes or ketones, affording the tetrahydroindolo[2,3-b]carbacorresponding -zoles. The ¹H-NMR of compounds 2_{a-m} showed the two aliphatic CH protons as a single signal at δ between 5.50 to 5.90 ppm. The acid catalyzed condensation of indoles with aldehydes has been reported as a method for the preparation of substituted isomers of tetrahydroindolo[3,2-b]carbazole (trans isomer) and tetrahydroindolo[2,3-b]carbazoles (cis-isomer), figure (1) in the presence of phosphoryl chloride as the acid catalyst [47]. However the products are not stable under this condition reaction where they readily converted via oxidation with air to the dihydroindolocarbazoles. The formation of the trans isomer has also recently confirmed and published by Rong Gu and et al. [47a]. However the reaction was accomplished using indoles with aromatic aldehydes in (1:1) molar ratio in presence of 2 mol % of iodine as a catalyst in acetonitrile under reflux affording 6,12-trans-isomer which was confirmed by xray crystallography, figure (1). This behaviour is due to the presence of the free 2- and 3positions of the indole ring which both of them can undergo a neucleophilic attack at a carbonyl group leading to the expected formation of a mixture of tetrahydroindolo-[2,3-b]carbazoles and tetrahydroindolo[3,2b]carbazoles, figure (1). However the reaction of indoles with aromatic aldehydes using iodine as a catalyst is a selective reaction for the preparation of tetrahydroindolo [3,2b]carbazoles and none of the other isomer tetrahydroindolo[2,3-b]carbazoles were observed in the reaction mixture. In our reaction using BIMs and aldehydes in methanolic sulfuric acid solution, the cis isomer of tetrahydroindolo[2,3-b]carbazoles (2_{a-m}) were obtained. The products 2_{a-m} which were prepared by this method were found to be more stable than the same products using $POCl_3$ as a catalyst as they were rapidly converted into the oxidized form, figure (1).

5

In this context and as a continuation of our work concerning the synthesis of tetrahydroindolo[2,3-b]carbazoles, the reaction of BIMs $(\mathbf{1}_{h})$ (1 mole equivalent) and pdimethylaminobenzaldehyde (1 mole equivalent) has been done by the method of methanol sulphuric solution as a possible route for the synthesis of 4-(8-(3-(benzyloxy)-4methoxyphenyl)1,1a,2,2a,3,7b,8,8a-octahydroindolo[2,3-b]carbazol-2-yl)-N,N-dimethylanilin (3). TLC of the reaction mixture showed the formation of four products were identified after purification by column chromatography as BIM (1_e) as a main product with a 30 % yield, compound 2_e with a 15 % yield, compound $\mathbf{1}_{h}$ with a yield of 10 % and the formation of desired compound 3 with a 18 % yield. The reaction products were identified by ESI-MS and compared by TLC with all products which have been prepared separately. Our desired compound **3** was confirmed by the means of ¹H-NMR, ESI-MS and IR spectra, where the ¹H-NMR of **3**, indicated the singlet signal for 2-protons at 5.79 ppm for two aliphatic CH protons. The extended spirocyclic structure (4) was synthesized in a better yield of 52 %, by the way of MeOH and conc.H₂SO₄ using BIM (1_a) 2 moles equivalent and 1,4cyclohexanedione, 1 mole equivalent. The reaction solution turned from pink colour to dark violet by leaving it stirring for one hour under reflux. The product detected, purified and confirmed by means of ESI-MS (m/z: 719.29[M^+ -H], EI-MS (720[M^+] 32 %). Its ¹H-NMR spectrum showed singlet signal at $\delta =$ 5.91 ppm for 2 protons (2CH), and 2 triplet signals every one for 4 protons (2CH₂) at $\delta =$ 2.03 ppm and 2.27 ppm, also the four NH indole protons appeared at 9.94 ppm as a broad signal. These data proved the similarity

6

of the structure which confirmed additionally by its ¹³C-NMR spectrum.

In vitro cancer screen

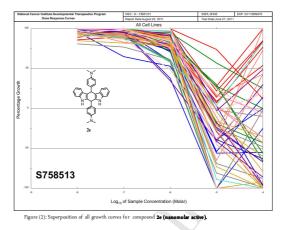
All the submitted compounds BIMs $(1_{e,f,h,i,n})$ and the indolocarbazoles $(2_{e,f,h,i,j})$ to National Cancer Institute (NCI), USA, have been selected by the NCI for anticancer screening. The tumour growth inhibition properties of the ten compounds 1_e , 1_f , 1_h , 1_i , 1_n , 2_e , 2_f , 2_h , 2_i and 2_j with the NCI codes NSC D-755521/1, D-755518/1, D-755517/1, D-755519/1, D-755520/1, D-758513/1, D-758511/1, D-758510/1, D-758512/1 and D-758514/1. The selected compounds were screened on 60-human tumour cell lines at 10^{-5} M at the 60-Cell-Line Screenings of the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI, Bethesda, Maryland, USA) under the drug discovery program of the NCI. Among the selected 10 compounds the two compounds $\mathbf{1}_{h}$ (NSC D- 755517/1) and 2_{e} (D-758513/1) were further screened for five-log dose molar range as they have shown prominent cell growth inhibition at 10⁻⁵ M concentration against variety of cancers cell lines. The 60-cell-linescreening of the NCI includes 60 different tumour cell lines, the nine various organs and tumour types derived (leukaemia, non-smallcell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer).

All the five selected BIMs $(1_{e,f,h,i,n})$, by the NCI for in vitro anticancer assay were evaluated for their anticancer activity. Primary in vitro One dose anticancer assay was performed in full NCI 60 cell panel leukaemia, melanoma representing and cancers of lung, colon, brain breast, ovary, kidney and prostate in accordance with the protocol of the NCI, USA. The compounds were added at a single concentration (10^{-5} M) and the culture was incubated for 48 h. End point determinations were made with a protein binding dye, Sulforhodamine B. Results for each compound were reported as a mean graph of the percent growth of the treated cells when compared to the untreated control cells. After obtaining the results for one dose assay, analysis of historical Development Therapeutics (DTP) Programme was performed and compound 1_h (NSC D-755517/1) which satisfied predetermined as effective inhibition criteria was selected for NCI full panel 5 dose assays. The tested BIMs showed a distinctive pattern of selectivity with regard to sensitivity against individual cell lines all the percent growth inhibition and the mean growth percent has been collected in table (1). Compound 1_h (NSC D-755517/1) broad spectrum cell growth exhibited leukaemia cancer cell inhibition against MOLT-4 (growth inhibition 20.53 %), non small lung cancer cell NCI-H460 (growth inhibition 9.25 %), colon cancer cells HCT-116 and HT29 with recorded growth inhibition values 19.91 % and 20.89% respectively, melanoma cancer cell M14 (growth inhibition 19.50 %), ovarian cancer cell IGROV1 (growth inhibition 23.79 %), and renal cancer cells (CAKI-1 and UO-31) with growth inhibition 15.65 % and 18.10 % respectively. This data confirmed that as a result of a Single dose assay concentration of 10⁻⁵ M the average highest cytostatic effects were recorded for the compound 1_h (NSC D-755517/1) that showed the lowest over all mean value (47.39 %), see maen graph figures in the supporting information file. The two substituted derivatives $\mathbf{1}_{g}$ and $\mathbf{1}_{i}$ were observed as moderate cytostatic properties with over all values 75.51 % and 86.38 mean % respectively, especially for the cancer cell lines "leukaemia MOLT-4, non small lung cancer NCI-H460, ovarian cancer cell lines IGROVI and OVCAR-3 and renal cancer cell lines CAKI-1 and UO-31" with growth percent values in a range from 58.65 % to 34.07 %. Compounds $\mathbf{1}_{e}$ and $\mathbf{1}_{l}$ were shown as inactive cytostatics against all selected cell lines with a mean values 101.60 % and 92.63 % respectively. Table (1) showed the sixty human tumour cell line anticancer screening data at single dose assay (10⁻⁵ M) as percent

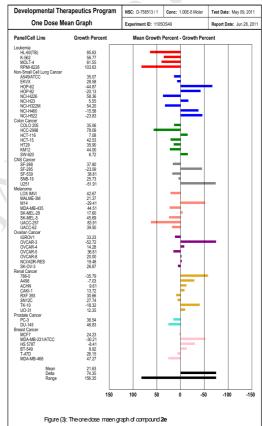
7

growth inhibition of BIMs $(\mathbf{1}_{e,f,h,i,n})$, see all the figures of the one dose mean graph for all the tested compounds in the supporting information file.

Compound under investigation 1_h (NSC D-755517/1) exhibited remarkable anticancer activity against most of the tested cell lines representing nine different subpanels with GI₅₀ values between " $1.20 - 9.56 \mu$ M" as shown in table (2). Whereas three cell lines of non small lung cancer cell subpanel namely HOP-62, melanoma cancer cell line MALME-3M and breast cancer cell line HS 578T were found to be insensitive at the highest tested concentration 100 µM therefore a sign of ">" is used as prefix to the concentration. With regard to the sensitivity against some individual cell lines, compound 1_h (NSC D-755517/1) showed obvious activity toward CNS cancer cell lines SNB-7 and U251, Melanoma cell lines MDA-MB-43 and UACC-62, renal cancer cell lines A498 and RXF 393 and breast cancer cell line MDA-MB-468, (GI₅₀ value ranging from 1.20 to 1.87 µM). The criterion for selectivity of a compound depends upon the ratio obtained by dividing the full panel MID (the average sensitivity of all cell lines toward the test agent) by their individual subpanel MID (the average sensitivity of all cell lines of a particular subpanel toward the test agent). Ratios between 3 and 6 refer to moderate selectivity, ratios greater than 6 indicate high selectivity toward the corresponding cell line, while compounds not meeting either of these criteria rated non-selective. As per this criterion, compound under investigation was found to be non selective toward all the cell panels, table (2). The five dose screening for $\mathbf{1}_{h}$ gave the parameters log GI₅₀, log TGI and log LC_{50} , see mean graph of the five dose in the supporting information file, which are summarized in table (2). In the full NCI screening data report, three additional numbers are printed at the base of each of the three respective mean-graphs provided. These numbers are the MG-MID (Average), the Delta and the Range. The MG-MID or the average is the calculated logarithmic of a mean panel of GI_{50} , TGI or LC_{50} . The *Delta* is the differences of concentrations with parameters between the most sensitive cell line and the mean. Similarly, the Range is the number of \log_{10} units by which the delta of the most sensitive line(s) of the panel differs from the delta of the least sensitive lines. On the other hand the given Delta and Range values quite accurately reflect a true range of differential sensitivity among the full panel of cell lines to the compound under investigation. Likewise, the given MG-MID (Average) value quite accurately reflects a true overall panel-average sensitivity of the cell lines to this agent, and therefore is a useful basis for comparison of overall potency of the given agent with related or unrelated compounds. Compound 1_h has average GI₅₀ responses at micromolar concentrations (11 µM), cytostatic effects at micromolar concentrations (95.5 µM) and the average cytotoxic effects on cancer cell lines at micromolar concentrations "LC₅₀ (100 μ M) value which is 10 fold higher than GI_{50} (11 µM) value". Based on all these data compound $\mathbf{1}_{h}$ showed a high degree of variability in its response. Compound $\mathbf{1}_{h}$ with GI₅₀ values in the micromolar range is more effective than the cytostatic drugs Etoposid, Melphalan and Irinotecan (GI₅₀ values of 38.9 µM, 14.5 µM and 14.1 μ M respectively) [49_h].


We further developed the series of the substituted bis(indolyl)phenylmethanes (BIMs) with the synthesis of new structures as substituted tetrahydroindolo[2,3aryl b]carbazoles to constrain the flexibility of the molecule. The NCI selected five derivatives of these substituted indolocarbazoles for the onedose screening program at a concentration of 10^{-5} µM. The selected substances (2_{e.f.h.i}) showed a distinctive pattern of selectivity with regard to sensitivity against individual cell lines all the percent growth inhibition and the mean growth percent has been collected in table (3). Compound 2_e exhibited broad spectrum cell growth inhibition against non

small lung cancer cell NCI-H23 (growth inhibition 5.55 %), colon cancer cell lines HCT-116 and SW-620 (growth inhibition 7.08 % and 6.72 %), renal cancer cell line ACHN, CAKI-1 and UO-31 (growth inhibition 9.61 %, 13.72 % and 12.35 % respectively) and breast cancer cell line BT-549 (growth inhibition 8.92 %) at single dose assay concentration of 10^{-5} M. The average highest anticancer activity were scored for the compound 2_e that showed the lowest mean value (21.63 %). The two substituted derivatives 2_h and 2_i were observed as moderate cytostatic properties with mean values of 84.67 % and of 76.84 % respectively and the other two derivatives 2_f and 2_j were shown as inactive cytostatics.


Compound under investigation 2_e (D-758513/1) exhibited remarkable anticancer activity against most of the tested cell lines representing nine different subpanels with GI₅₀ values between 1.07 and 5.65 μ M except the two cancer cell lines non small cell lung cancer NCI-H460 and breast cancer cell line MCF7 with GI₅₀ values of 6.22 and 9.29 μ M respectively, table (4). From the five- dose screening for $\mathbf{2}_e$ and similar to compound $\mathbf{1}_h$ the criterion for selectivity of a compound 2_{e} indicated that it also non selective toward the cancer subpanels with selectivity ratio in range of 0.62 - 1.46, table (4). Compound 2_e has average GI₅₀ responses at a micromolar concentrations (2 µM), cytostatic effects at micromolar concentrations (48.9 μ M) and the average cytotoxic effects on cancer cell lines at micromolar concentrations $(34.6 \,\mu\text{M})$ which is 17 fold higher than GI₅₀. Furthermore, the basically substituted derivative 2_e gave the antiproliferative activity highest being "nanomolar active" towards the selected cancer cell lines which is non small lung cancer cell line NCI-H460 with $GI_{50} = 616 \text{ nM}$ and the ovarian cancer cell line OVCAR-4 with $GI_{50} = 562$ nM with non critical cytotoxic properties. Based on these data we observed that compound 2_e is more effective than the cytostatic drugs etoposid, melphalan and irinotecan (GI₅₀ values of 38.9 µM, 14.5 µM and 14.1 µM respectively).

Structure activity relationship (SAR)

Structure-activity correlation of the synthesized BIMs revealed that, by a

8

comparison of $\mathbf{1}_i$ and $\mathbf{1}_h$ the position of the functional groups is of great importance of being either *meta* or *para*. Where the *para*methoxy is much more favourable than meta substituent. Moreover the comparison of $\mathbf{1}_{h}$ with $\mathbf{1}_{\mathbf{f}}$ indicated that the methoxy function in addition to a benzyloxy group ensures mainly increased activity. If the methoxy function is positioned in meta position the effect is similar concerning no favour of a meta methoxy function as indicated by a comparison of $\mathbf{1}_{i}$ and $\mathbf{1}_{\mathbf{f}}$. The lipophilic fixed substituent in the naphthyl derivative $\mathbf{1}_n$ is not favourable compared to the rotable benzyloxy substituent in compound $\mathbf{1}_{f}$. BIM $\mathbf{1}_{e}$ containing the basic substituent (NMe₂) which was unfavourable

concerning the all over anticancer activities whereas, its activities in a renal cancer cells indicated different anticancer activities comparable to compound $\mathbf{1}_{f}$. In conclusion, all BIMs $(1_{e,f,h,i,n})$ showed best activities in the same cell lines MOLT-4 as a leukaemia cell line, IGROV1 and as an ovarian cell line and the cell lines CKAI-1 and UO-31 renal cancer cell lines. Also the basically substituted derivative demonstrates good activity for leukaemia cell line MOLT-4, non small cell lung cancer NCI-H460, colon cancer cell lines HCT-116 and HT29, melanoma cell line M14, ovarian cancer cell line IGROV1, the renal cancer cell lines CAKI-1 and UO-31, and the breast cancer cell line MCF7. Moreover compound $\mathbf{1}_h$ showed non critical cytotoxic properties.

The structure activity relationship our synthesized indolocarbazoles indicated that, the basicly substituted derivative has the highest activity which recorded the very potent and broad spectrum of activity against several cancers cell lines indicated with the negative values of percent growth (-7.03 % to -52.72 %) promoted at one dose with GI_{50} value of $(1.07 \ \mu M \text{ to } 5.65 \ \mu M)$ against almost all the selected cell lines at five dose assay. The chloro-substitution on the indole phenyl ring is unfavorable with a main loss of activity in the selected cancer cell lines. Comparing compound 2_h with 2_i a para-benzyloxy substituent increases the activity in some novel sensitive cell line (NCI-H522 as non small lung cancer cell lines and CAKI-1 and UO-31 as renal cancer cell. By comparison of compound 2_h and 2_f a *para*-methoxy substituent ensures the activity, especially in selected cancer cell lines. The para-benzyloxy compound 2_i is more active than the *meta*benzyloxy compound 2_f . The basically substituted derivative 2_e gave the highest antipoliferative activity in a nanomolar ranges in selected cell lines (non small lung cancer cell NCI-H460 and ovarian cancer cell OVCAR-4) with non critical cytotoxic properties because LC₅₀ value (34.6 μ M) is 17 fold higher than GI_{50} (2 μ M) value. However, this compound was found to be non selective toward the cancer subpanels. See figure (2) and (3) illustrating the superposition of all growth curves for compound 2e (nanomolar active) and its one dose mean graph.

Experimental

The melting points were measured on a Boetius-Mikroheiztisch the company "VEB weighing, Rapido Radebeul/VEB NAGEMA "measured and are uncorrected. The carbon, hydrogen and nitrogen content of the substances was performed on a "CHNS-932" automatic analyzer of the company "LECO Corporation" in the automatic Micro chemical halogen determined. The content was determined by titration in semi micro method determined. For the analyzes TLC were with aluminium foil fluorescent indicator from Merck KGaA (silica gel 60 F254, layer thickness 0.2 mm) used. R_f -values (run level relative to the solvent front), The separations were with column chromatography at atmospheric pressure on silica gel 60 (Grain size from 0.063 to 0.200 mm) from Merck KGaA. The NMR spectra were recorded on a "Gemini 2000" (400/100 MHz). The ATR spectra were recorded on a FT-IR spectrometer "IFS 28" by "Bruker", the KBr spectra on a FT-IR Spectrometer "Spectrum BX" "the Company "Perkin-Elmer" measured. The ESI mass spectra were recorded on a "Finnigan LCQ Classic" by "thermal Electron measured" the sample was injected directly. The 60-Cell-Line Screenings of the Developmental Therapeutics Program (DTP) were examined in the National Cancer Institute (USA) on a possible human tumor cell lines.

9

General procedure for the preparation of compounds 1_{a-n} :

In a flask containing 5 ml of glacial acetic acid and 2 mmol of indole (0.234 gm) or 5chloroindole 0.303 gm or 6-chloroindole 0.303 gm was added under stirring until all the indole was dissolved. Then 1 mmol of the appropriate aromatic or heterocyclic aldehyde was added under vigorous stirring. The reaction mixture was allowed to stir over 4 to 6 h, where the reaction solution turned from light yellow to light pink to dark red colour. The product was detected by TLC (100 % CH_2Cl_2), and when the reaction was finished 10 ml of water were added and the solution was extracted with ethylacetate, washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuum. The product was purified by passing over a column and eluted with dichloromethane.

3,3'-(Phenylmethylene)bis(1*H*-indole) (1_{a}) [39-45]: pink powder, 90 % yield, C₂₃H₁₈N₂, 322.40 g/mol, mp:126-127[°]C, ESI-MS: 321.32[M⁺-H], IR (ATR,cm⁻¹)3141(NH), ¹H-NMR(400 MHz,acetone-d₆) δ (ppm): 5.90(s, 1H, CH), 6.79(d, 2H, J=1.5Hz), 6.87(t, 2H, J=7.2Hz), 7.04(t, 2H, J=7.6Hz), 7.16(d, 1H, J=7.3Hz), 7.25(t, 2H, J=7.5Hz), 7.32-7.39(m, 13 C-NMR(100 6H), 9.99(s, 2H, 2NH), MHz,CDCl₃) δ (ppm): 40.26(CH), 110.94, 119.68, 120.59, 121.79, 121.85, 123.49, 123.99, 125.99, 126.98, 128.08, 128.59, 136.55, 143.88, EA: Calcd. C, 85.68, H, 5.63, N, 8.69, Found C, 85.72, H, 5.58, N, 8.66, R_f 0.76(CH₂Cl₂).

3,3'-((4-Chlorophenyl)methylene)bis(1H-

indole) (1_b) [39-45]: pink powder, Mp:104-106 °C, in 99% yield, C₂₃H₁₇ClN₂, 356.85 g/mol, ESI-MS: 355.11[M⁺-H], IR(ATR,cm⁻¹): 3410(NH), ¹H-NMR(400 MHz,DMSO-d₆) δ (ppm): 5.85(s, 1H, CH), 6.83(d, 2H, J=7.2Hz), 6.86(t, 2H, J=7.4Hz), 7.04(t, 2H, J=7.6Hz), 7.28(d, 2H, J=7.9Hz), 7.29-7.36(m, 6H), 13 C-NMR(100 10.83(s, 2H, 2NH), MHz,DMSO-d₆): 59.65(CH), 111.38, 117.48, 118.14, 118.89, 119.85, 123.48, 124.99, 127.84, 129.97, 130.16, 136.49, 143.87. EA. Calcd. C, 77.41; H, 4.80; Cl, 9.94; N, 7.85, found C, 77.50, H, 5.01, Cl, 10.00, N, 7.89. R_f. $0.87(CH_2Cl_2)$

3,3'-((4-bromophenyl)methylene)bis(1H-

indole) (1_c) [39-45]: yellow crystals, Mp 100-103 0 C, in yield 76%, C₂₃H₁₇BrN₂, 401.30 g/mol, ESI-MS: 402 [M⁺+H], IR(ATR,cm⁻¹): 4356(NH), ¹H-NMR(400 MHz,acetoned₆) δ (ppm): 5.91(s, 1H, CH), 6.79(d, 2H, J=7.2Hz), 6.87(t, 2H, J=7.5Hz), 7.07(t, 2H, J=7.4Hz), 7.28(d, 2H, J=8Hz), 7.36-7.40(m, 6H), 10.93(s, 2H, 2NH), ¹³C-NMR (100MHz, acetone-d₆): 57.50(CH), 111.40, 117.48, 118.14, 118.99, 119.89, 120.80, 120.99, 123.48, 124.99, 127.89, 129.99, 136.50, 144.02, $R_f 0.65(CH_2Cl_2)$.

10

3,3'-((3-Bromophenyl)methylene)bis(1H-

indole) (1_d) [39-45]: red crystals, Mp. 93-95 ⁰C, yield 98%, C₂₃H₁₇BrN₂, 401.30 g/mol, ESI-MS: 401.26[M⁺+H], 399.31 [M⁺-H], IR (ATR, cm^{-1}) : 3405(NH), 1 H-NMR(400 MHz,DMSO-d₆): δ (ppm): 5.86(s, 1H, CH), 6.85-6.86(m, 3H), 7.03(t, 2H, J=7.6Hz), 7.22(t, 1H, J=7.8Hz), 7.28(d, 2H, J=7.9Hz), 7.34-7.37(m, 5H), 7.49(s, 1H), 10.84(s, 2H, 2NH), ¹³C-NMR (100 MHz,DMSO-d₆) δ (ppm): 39.16(CH), 111.38, 117.20, 118.16, 118.80, 120.84, 121.25, 123.51, 126.32, 127.23, 128.54, 130.08, 130.69, 136.42, 147.78, EA. Calcd. C, 68.84, H, 4.27, Br, 19.91, N, 6.98, found C, 68.90, H, 4.30, Br, 19.95, N, 7.00, R_f $0.74(CH_2Cl_2).$

4-Di(1*H*-indol-3-yl)methyl)-*N*,*N*-dimeth-

vlaniline (1) [39-45]: pink powder, Mp. 225-226 °C, yield 91, C₂₅H₂₃N₃, 365.47 g/mol, ESI-MS: $366.25[M^++H], 364.38[M^+-H],$ $IR(ATR, cm^{-1})$: 3314(NH), 1 H-NMR(400 MHz,DMSO- d_6) δ (ppm): 4.60(s,br., 6H, 2CH₃), 5.89(s, 1H, CH), 6.84-6.88(m, 4H), 7.03(t, 2H, J=7.99Hz), 7.28(d, 2H, J=7.9Hz), 7.34(d, 2H, J=8.1Hz), 7.49(t, 4H, J=10.6Hz), 10.84(s, 2H, 2NH), ¹³C-NMR(100 MHz, DMSO-d₆) δ (ppm): 40.13(CH₃), 43.62(CH₃), 45.07(CH), 111.39, 114.52, 117.43, 118.13, 118.85, 119.08, 120.83, 121.40, 123.47, 124.23, 126.37, 129.47, 136.46, 141.84, EA calcd. C, 82.16; H, 6.34; N, 11.50, found C, 82.20, H, 6.37, N, 11.53, R_f 0.29(CH₂Cl₂).

3,3[/](3-Benzyloxy)phenyl)methylene)bis(1*H*-

indole (1_f): white powder, Mp. 190-192⁰C, yield 87%, $C_{30}H_{24}N_2O$, 428.52g/mol, ESI-MS. 428.24[M⁺-H], IR(ATR,cm⁻¹): 3425(NH), ¹H-NMR(400 MHz,acetone-d₆) δ (ppm): 5.01(s, 2H, CH₂), 5.90(s, 1H, CH), 6.82(d, 2H, J=7.5Hz), 6.85(d, 2H, J=7.2Hz), 6.90(t, 2H, J=7.5Hz), 7.00-7.11(m, 4H), 7.18(t, 1H, J=7.9Hz), 7.26-7.33(m, 2H), 7.37-7.39(m, 6H), 9.95(s, br., 2H, 2NH), ¹³C-NMR(100 MHz, acetone-d₆) δ (ppm): 41.18(CH), 70.31(CH₂-O), 112.06, 112.91, 116.41, 119.26, 119.63, 120.21, 121.98, 122.13, 123.51, 124.45, 128.04, 128.32, 128.37, 129.07, 129.23, 129.69, 137.98, 138.38, 147.55, 159.66, EA calcd. C, 84.08; H, 5.65; N, 6.54, found C, 84.12, H, 5.55, N, 6.58, R_f 0.79(CH₂Cl₂).

4-(Di(1*H***-indol-3-yl)methyl)benzene-1,2-diol** (**1**_g): light brown powder, Mp 105-107⁰C, yield 73%, C₂₃H₁₈N₂O₂, 354.40 g/mol, ESI-MS: 392.89[M⁺+K], 354.25[M⁺], 353.24[M⁺-H], IR(ATR,cm⁻¹): broad 3400(NH and OH), ¹H-NMR(400 MHz,acetone-d₆)δ(ppm): 5.77(s, 1H, CH), 6.45(s, 1H), 6.76(d, 2H, J=8.9Hz), 6.86-6.89(m, 2H), 7.04(s, 2H), 7.29(s, 1H), 7.35(s, 4H), 7.55(s, 1H), 9.89(s, 2H, 2NH), EA calcd. C, 77.95; H, 5.12; N, 7.90, found C, 78.01, H, 5.20, N, 7.96, R_f 0.62(CH₂Cl₂).

3,3'-(3-Benzyloxy)-4-methoxyphenyl)meth-

ylene)bis(1*H*-indole (1_h): orange crystals, Mp 75-78°C, 89%, yield $C_{31}H_{26}N_2O_2$, 458.55g/mol, ESI-MS 481.16 $[M^++Na],$ 457.24[M⁺-H], IR (ATR,cm⁻¹): 3398 (NH), ¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 3.71(s, 3H, OMe), 4.95(s, 2H, CH₂), 5.71(s, 1H, CH), 6.74-6.76(m, 2H), 6.81-6.86(m, 4H), 7.02(t, 2H, J=7.5Hz), 7.06(s, 1H), 7.23(d, 2H, J=7.9Hz), 7.29-7.31(m, 6H), 7.34(s, 1H), 10.73(s, 2H, 2NH), ¹³C-NMR (100 MH, 55.59(CH), DMSO-d₆): 59.70(OMe), 70.08(OCH₂), 111.29, 111.98, 114.94, 118.00, 118.24, 119.03, 120.71, 123.29, 126.24, 127.63, 127.75, 127.86, 128.18, 126.56, 128.35, 136.49, 137.09, 137.39, 147.14, 147.38, EA calcd.C, 81.20; H, 5.72; N, 6.11, found C, 81.22, H, 5.75, N, 6.14, R_f 0.79 $(CH_2Cl_2).$

3,3'-((4-Benzyloxy)-3-methoxyphenyl)meth-

ylene)bis(1*H*-indole (1_i): light orange crystals, Mp 215-219^oC, yield 92%, $C_{31}H_{26}N_2O_2$, 458.55 g/mol, ESI-MS: 457.20[M⁺-H], IR(ATR,cm⁻¹): 3416(NH), ¹H-NMR(400 MHz,acetone-d₆) δ (ppm): 3.70(s, 3H, OMe), 5.04(s, 2H, CH₂), 5.85(s, 1H, CH), 6.81(s, 2H), 6.85-6.92(m, 4H), 7.04(t, 2H, J=7.6Hz), 7.09(s, 1H), 7.29(d, 1H, J=7.5Hz), 7.33-7.37(m, 6H), 7.47(d, 2H, J=7.7Hz), 9.95(s, 2H, 2NH), 13 C-NMR(100 MHz,acetone-d₆) δ (ppm): 40.75(CH), 56.19(OMe), 71.61(OCH₂), 112.05, 112.10, 114.33, 114.93, 119.23, 120.09, 120.32, 121.47, 121.98, 124.32, 124.47, 128.12, 128.45, 128.49, 129.12, 138.08, 138.83, 139.31, 147.72, 150.64, EA calcd. C, 81.20; H, 5.72; N, 6.11, found C, 81.02, H, 5.90, N, 6.22, R_f 0.71 (CH₂Cl₂).

11

3,3'-((3-Benzyloxy)-4-methoxyphenyl)methylene)bis(5-chloro-1H-indole (1_i): yellow powder, Mp 82-85[°]C, yield 91%, $C_{31}H_{24}Cl_2N_2O_2$, 527.44 g/mol, ESI-MS: 528.18[M⁺+H], IR(ATR,cm⁻¹): 3369(NH), ¹H-NMR(400 MHz, CDCl₃)δ (ppm): 3.77(s, 3H, OMe), 4.93(s, 2H, CH₂), 5.52(s, 2H, CH), 6.41(d, 2H, J=7.6Hz), 6.73(t, 4H, J=7.3Hz), 7.02(d, 2H, J=7Hz), 7.13(d, 2H, J=8.6Hz), 7.18(dd, 6H, J=3.1, 7.1Hz), 7.88(s, 2H, 2NH), 13 C-NMR(100 MHz, acetone- d_6) δ (ppm): 39.39(CH), 55.99(OMe), 71.03(OCH₂), 111.76, 112.12, 115.37, 119.15, 111.51, 122.31, 124.77, 124.99, 121.20, 126.91, 127.46, 127.50, 127.66, 127.96, 128.64, 135.04, 135.74, 137.10, 147.63, 148.36, EA calcd. C, 70.59; H, 4.59; Cl, 13.44; N, 5.31, found C, 70.62, H, 4.55, Cl, 13.55, N. 5.51. R_f 0.68 (CH₂Cl₂).

3,3'-((3-(Benzyloxy)-4-methoxyphenyl)me-

thylene)bis(6-chloro-1*H*-indole (1_k): light orange crystals, Mp 85-87°C, yield 93%, $C_{31}H_{24}Cl_2N_2O_2$, 527.44 g/mol, ESI-MS $IR(ATR,cm^{-1}): 1253(C-O),$ $526.14[M^+-H],$ 2866, 2928(CH), 3420(NH), ¹H-NMR(400 MHz,DMSO-d₆):δ (ppm): 3.70(s, 3H, OMe), 4.94(s, 2H, OCH₂), 5.69(s, 1H, CH), 6.77(d, 2H, J=2Hz), 6.79(d, 1H, J=1.9Hz), 6.84(t, 2H, J=7.9Hz), 7.00(d, 1H, J=2Hz), 7.17(d, 2H, J=8.6Hz), 7.30(t, H, J=5.7Hz), 7.37(d, 2H, J=1.6Hz), 10.91(s, 2H, 2NH), ¹³C-NMR(100 MHz, DMSO-d₆) $\delta(ppm)$: 26.78(CH), 55.99(OMe), 70.41(OCH₂), 111.47, 112.41, 115.11, 118.79, 118.95, 120.83, 121.08, 125.79, 126.10, 127.02, 128.17, 125.02, 128.29, 128.71, 128.89, 137.22, 137.40,

137.59, 147.70, 147.99, EA calcd. C, 70.59; H, 4.59; Cl, 13.44; N, 5.31, found C, 70.63, H, 4.72, Cl, 13.53, N, 5.34, R_f 0.68 (CH₂Cl₂).

3,3'-(Pyridin-3-ylmethylene)bis(1*H*-indole

(1): light pink powder, Mp 98-101 $^{\circ}$ C, yield 95%, C₂₂H₁₇N₃, 323.39 g/mol, ESI-MS: 324.16[M⁺+H], IR(ATR,cm⁻¹): 3403(NH), ¹H-NMR(400 MHz,DMSO- d_6) δ (ppm): 5.70(s, 1H, CH), 5.88(s, 1H, CH), 6.84(t, 4H, J=7.1Hz), 7.01(t, 2H, J=7.6Hz), 7.22-7.29(m, 3H), 7.32(d, 2H, J=8.1Hz), 7.65(d, 1H, J=7.9Hz), 8.34-8.37(m, 1H), 8.58(d, 1H, J=7.9Hz), 10.84(s, 2H, 2NH), ¹³C-NMR (100 MHz, DMSO- d_6) δ (ppm): 54.79(CH), 54.78(CH), 111.45, 117.07, 118.24, 118.83, 120.94, 123.15, 123.56, 126.29, 135.47, 136.51, 140.15, 146.99, 149.50, EA C, 81.71; H, 5.30; N, 2.99, found C, 81.90, H, 5.35, N, 13.02, Rf 0.46 (7% MeOH/CH₂Cl₂).

Tri(1*H***-indol-3-yl)methane (1_m):** light yellow powder, Mp 235-240 ⁰C, C₂₅H₁₉N₃, 361.44 g/mol, yield 98%, ESI-MS: 360.32[M⁺-H], IR(ATR,cm⁻¹): 3424(NH), ¹H-NMR(400 MHz,acetone-d₆): δ (ppm): 6.19(s, 1H, CH), 6.85-6.93(m, 6H), 7.03(t, 4H, J=7.6Hz), 7.37(t, 3H, J=7.8Hz), 7.48(t, 2H, J=7.4Hz), 9.88(s, 3H, 3NH), ¹³C-NMR(100 MHz,acetone-d₆): δ (ppm): 31.33(CH), 111.13, 118.95, 119.08, 120.12, 121.09, 123.17, 124.60, 127.35, 128.17, 137.19, EA calcd. C, 83.08; H, 5.30; N, 11.63, found C, 83.09, H, 5.33, N,11.71, $R_f 0.73(CH_2Cl_2)$.

3,3'-(Naphthalen-1-ylmethylene)bis(1H-

indole (1_n): white powder, Mp 252-255 0 C, yield 97%, C₂₇H₂₀N₂, 372.46 g/mol, ESI-MS 371.30[M⁺-H], IR(ATR,cm⁻¹): 3407(NH), ¹H-NMR(400 MHz,DMSO-d₆) δ (ppm): 5.71(s, 1H, CH), 6.59(s, 1H), 6.68(d, 2H, J=7Hz), 6.81(t, 2H, J=7.5Hz), 6.99(t, 2H, J=7.6Hz), 7.23(d, 4H, J=8.1Hz), 7.32(t, 2H, J=9Hz), 7.41(t, 2H, J=7.7Hz), 7.73(d, 1H, J=8Hz), 7.88(d, 1H, J=7.5Hz), 8.22(d, 1H, J=8Hz), 10.74(s, 2H, 2NH), ¹³C-NMR(100 MHz,DMSO-d₆) δ (ppm): 35.33(CH), 111.41, 117.62, 118.15, 118.84, 120.77, 123.84,

124.13, 125.15, 125.19, 125.42, 125.68, 126.43, 126.54, 128.42, 131.23, 133.49, 136.56, 140.18, EA calcd. C, 87.07; H, 5.41; N, 7.52, $R_f 0.87$ (CH₂Cl₂).

12

General procedure for the preparation of compounds 2_{a-m}

In a round bottom flask containing 1mmol of BIMs derivatives $\mathbf{1}_{a-n}$ was stirred with 50ml MeOH under heating until it completely dissolved. The aromatic or heterocyclic aldehyde 1mmol which has been used for the synthesis of the BIMs was added and the reaction mixture was stirred under heating until the reaction solution became clear. Then a few drops of conc. H₂SO₄ were added. The reaction solution became pink turned to dark red by refluxing for about 1h. Upon the reaction completion, as monitored by TLC (100%CH₂Cl₂) the reaction was worked up by adding 50ml water, which was neutralized by NH₄OH addition, extracted with ethylacetate 100ml for two times, washed with water and then brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude reaction mixture was purified via column chromatography on silica gel using (30%EtAc/hexane) as a solvent to afford the alternative carbazole derivatives 2_{a-n} [4].

2,8-Diphenyl-1,2,3,8-tetrahydroindolo[2,3-

b]carbazole (2_a) [46]: Color and shape: light brown powder, Mp 352-355°C, yield 81%, C₃₀H₂₂N₂, 410.51g/mol, ESI-MS: 409.35[M⁺-H], IR(ATR,cm⁻¹): 3389(NH), ¹H-NMR(400 MHz, DMSO-d₆)δ(ppm): 5.66 (s, 2H, 2CH), 6.74(t, 2H, J=7.5Hz), 6.74(t, 2H, J=7.5Hz), 6.91(t, 2H, J=7.6Hz), 7.05(d, 2H, J=7.9Hz), 7.15-7.26(m, 8H), 7.30(d, 4H, J=7.1Hz), 10.63(s, 2H, 2NH), 13 C-NMR(100 MHz, DMSO- d_6) δ (ppm): 30.57(CH), 39.40(CH), 109.67, 110.85, 117.93, 118.24, 120.31, 125.46, 126.14, 128.01, 128.23, 128.98, 129.79, 136.38, 136.88, 143.84, EA calcd. C, 87.77; H, 5.40; N, 6.82, found C, 87.79, H, 5.36, N, 6.86, R_f 0.89 (CH₂Cl₂)

2,8-Bis(4-Chlorophenyl)-1,2,3,8-tetrahydroindolo[2,3-b]carbazole (2_b) [46]: light green 0 C, yield 56%, powder, Mp 339-342 $C_{30}H_{20}Cl_2N_2$, 479.40 g/mol, ESI-MS: 478.27[M⁺-H], IR(ATR,cm⁻¹): 3414(NH), ¹H-NMR (400 MHz, DMSO-d₆) δ (ppm): 5.69(s, 2H, 2CH), 6.78(t, 2H, J=7.5Hz), 6.84(t, 2H, J=7.6Hz), 6.93(t, 2H, J=7.4Hz), 7.06(dd, 2H, J=8, 15.2Hz), 7.21(d, 2H, J=8Hz), 7.24-7.32(m, 3H), 7.40(d, 1H, J=8Hz), 7.67(d, 1H, J=8.3Hz), 7.75(d, 1H, J=8.3Hz), 10.57(s, 1H, NH), 10.72(s, 1H, NH), ¹³C-NMR(100 MHz, DMSO-d₆)δ (ppm): 38.66(CH), 40.17(CH), 109.54, 111.10, 118.32, 120.73, 125.40, 128.18, 129.26, 130.23, 130.88, 131.93, 132.68, 136.19, 137.09, 142.89, EA calcd. C, 75.16; H, 4.21; Cl, 14.79; N, 5.84, found C, 75.18, H, 4.24, Cl, 14.82, N, 5.79, R_f 0.96 $(CH_2Cl_2).$

2,8-Bis(4-bromophenyl)-1,2,3,8-tetrahydroindolo[2,3-b]carbazole (2_c): yellow powder, Mp >350 0 C, yield 87%, C₃₀H₂₀Br₂N₂, 568.30 g/mol, ESI-MS: 569.19[M⁺+H], 567.12[M⁺-H], IR(ATR,cm⁻¹): 3436(NH), ¹H-NMR(400 MHz, DMSO-d₆)δ(ppm): 5.66(s, 2H, 2CH), 6.78(t, 2H, J=7.5Hz), 6.94(t, 2H, J=7.5 Hz), 7.05(d, 2H, J=7.9 Hz), 7.12-7.29(m, 6H), 7.43(d, 4H, J=8Hz), 10.71(s, 2H, 2NH), ¹³C-NMR(100 DMSO-d₆ MHz,)δ(ppm): 39.02(CH), 39.99(CH), 110.22, 112.34, 119.05, 120.22, 126.40, 128.80, 130.55. 136.40, 137.62, 139.00, 143.01, EA calcd. C, 63.40; H, 3.55; Br, 28.12; N, 4.93, found C, 63.42, H, 3.58, Br, 28.16, N, 4.98, R_f 0.87 $(CH_2Cl_2).$

4,4'-(8,3,2,1-Tetrahydroindolo[2,3-*b***]carbazole-2,8-diyl)bis(***N***,***N***-dimethyl aniline) (2_d) [46]: dark gray powder, Mp 324-325°C, yield 91 %, C_{34}H_{32}N_4, 496.64g/mol, ESI-MS 497.21[M⁺+H], IR: (ATR, cm⁻¹):3304(NH),¹H-NMR(400 MHz,DMSO-d₆)\delta(ppm): 3.05(s, 12H, 4Me), 5.73(s, 2H, 2CH), 6.78(t, 2H, J=7.5Hz), 6.94(t, 2H, J=7.5Hz), 7.09(d, 2H, J=7.9Hz), 7.23(d, 2H, J=8.1Hz), 7.35-7.41(m, 8H), 10.73(s, 2H, 2NH), ¹³C-NMR(100 MHz,DMSO-d₆)\delta (ppm): 38.59(Me),** 44.58(Me), 52.81(CH), 109.59, 111.06, 118.27, 118.34, 120.66, 125.39, 127.80, 129.61, 133.32, 136.24, 137.01, EA calcd. C, 82.22, H, 6.49, N, 11.28, found C, 82.25, H, 6.51, N, 11.38, R_f 0.66 (CH₂Cl₂).

13

2,8-Bis(3-bromophenyl)-1,2,3,8-tetrahydro-

indolo[2,3-b]carbazole (2_e) : light green ^oC, yield 54 %, powder, Mp 255-257 $C_{30}H_{20}Br_2N_2$, 568.30 g/mol. ESI-MS: 569.16[M^+ +H], 567.01[M^+ -H], IRATR,cm⁻¹): 3390(NH), ¹H-NMR(400 MHz,DMSO-d₆): δ (ppm): 5.75(s, 2H, 2CH), 6.82(t, 4H, J=7.4Hz), 6.97(t, 2H, J=7.3Hz), 7.09(d, 2H, J=7.9Hz), 7.26(d, 2H, J=7.5Hz), 7.27-7.34(m, 4H), 7.47(s, 2H), 10.81(s, 2H, 2NH), ¹³C-MHz,DMSO-d₆): NMR(100 40.12(CH), 109.39, 111.15, 118.31, 120.82, 121.53, 125.32, 127.55, 128.07, 129.32, 130.88, 136.03, 137.06, 146.41, 146.68, EA calcd. C, 63.40; H, 3.55; Br, 28.12; N, 4.93, found C, 63.40, H, 3.58, Br, 28.18, N, 5.00, R_f 0.92 (CH_2Cl_2)

2,8-Bis(3-(benzyloxy)phenyl)-1,2,3,8-tetra-

hydroindolo[2,3-b]carbazole $(2_{\rm f})$: white powder, Mp 275-279 ⁰C, yield 72 %, $C_{44}H_{34}N_2O_2$, 622.75 g/mol, ESI-MS: $623.26[M^++H], 621.31[M^+-H], IR(ATR,cm^{-1}):$ 3390(NH), ¹H-NMR(400 MHz,DMSO-d₆): δ (ppm): 5.00(s, 4H, 2CH₂), 5.62(s, 2H, 2CH), 6.76(t, 4H, J=7.3Hz), 6.82(d, 2H, J=7.9Hz), 6.93(t, 2H, J=7.2Hz), 7.03(d, 2H, J=7.7Hz), 7.14(t, 2H, J=8Hz), 7.23(d, 2H, J=7.9Hz), 7.24-7.32(m, 6H), 7.37(d, 4H, J=6.7Hz), 10.62(s, 2H, 2NH), EA calcd. C, 84.86; H, 5.50; N, 4.50, found C, 84.89, H, 5.54, N, 4.53, Rf 0.85(CH₂Cl₂).

4,4-(1,2,3,8-Tetrahydroindolo[2,3-*b*]carbazole-2,8-diyl)dibenzene-1,2-diol (2_{*p*}):

dark brown powder, Mp 273-275 0 C, yield 45 %, C₃₀H₂₂N₂O₄, 474.51 g/mol, ESI-MS: 475.10[M⁺+H], 473.09[M⁺-H], IR(ATR,cm⁻¹): 3250(OH), 3430(NH), ¹H-NMR(400 MHz, acetone-d₆): δ (ppm): 5.53(s, 2H, 2CH), 6.65(d, 2H, J=2Hz), 6.74(d, 7H, J=7.9Hz), 6.78-6.92(m, 4H), 6.94(t, 2H, J=7Hz), 7.18(d, 2H, J=7.9Hz), 7.25(d, 2H, J=8Hz), 7.59(s,br., 4H, 4OH), 9.75(s, 2H, 2NH), ¹³C-NMR(100 MHz, acetone-d₆): δ (ppm):40.67(CH), 111.42, 111.79, 115.93, 116.39, 119.32, 119.97, 121.05, 121.69, 127.63, 136.81, 138.28, 138.55, 144.82, 145.94, EA calcd. C, 75.94; H, 4.67; N, 5.90, found C, 75.99, H, 4.69, N, 5.93, R_f 0.54 (10% MeOH/CH₂Cl₂).

2,8-Bis(3-(benzyloxy)-4-methoxyphenyl)-1,2,3,8-tetrahydroindolo[2,3-*b*]carbazole

 (2_h) : white powder, Mp 310-313^oC, yield 84 %, C₄₆H₃₈N₂O₄, 682.80g/mol, Mp 310-313⁰C, ESI-MS: 705.19[M⁺+Na], 681.41[M⁺-H], IR (ATR, cm^{-1}) : 3389(NH), 1 H-NMR(400 MHz,DMSO-d₆): δ (ppm): 3.66(s, 6H, 2OMe), 5.53(s, 4H, 2CH₂), 5.69(s, 2H, 2CH), 6.69-6.78(m, 4H), 6.82(d, 2H, J=8.3Hz), 6.92(t, 2H, J=7.3Hz), 6.98(d, 2H, J=7.9Hz), 7.06(d, 2H, J=7.7Hz), 7.19(d, 2H, J=10.4Hz), 7.22-7.26(m, 4H), 7.32(dd, 4H, J=3, 6.6Hz), 7.41(d, 4H, J=7.9Hz), 10.51(s, 2H, 2NH), ¹³C-NMR(100 (ppm):38.97(CH), MHz,DMSO-d₆): δ 55.63(OMe), 70.09(OCH₂), 109.68, 110.00, 111.55, 112.44, 114.04, 118.35, 119.21, 119.44, 120.55, 121.00, 123.50, 127.20, 127.55, 127.61, 128.24, 137.19, 137.96, 138.40, 146.83, 149.75, EA calcd.C, 80.92; H, 5.61; N, 4.10, found C, 80.95, H, 5.62, N, 4.16, R_f 0.71(CH₂Cl₂).

2,8-Bis(4-(benzyloxy)-3-methoxyphenyl)-1,2,3,8-tetrahydroindolo[2,3-*b*]carbazole

(2_i): Color and shape: dark green powder, Mp 289-291 ^oc, yield 88%, C₄₆H₃₈N₂O₄, 682.80 g/mol, ESI-MS 683.20[M⁺+H], IR(ATR,cm⁻¹): 3301(NH), ¹H-NMR(400 MHz,acetone-d₆): δ (ppm): 3.70(s, 6H, 2OMe), 5.04(s, 4H, 2CH₂), 5.84(s, 2H, 2CH), 6.81(d, 4H, J=1.7Hz), 6.84-6.92(m, 4H), 7.04(t, 4H, J=8Hz), 7.09(d, 2H, J=1.9Hz), 7.28(d, 2H, J=7.3Hz), 7.33-7.37(m, 4H), 7.46(d, 4H, J=7Hz), 9.95(s, 2H, 2NH), ¹³C-NMR(100 MHz,acetone-d₆): δ (ppm): 39.87(CH), 55.31(OMe), 70.72(OCH₂), 110.98, 111.22, 113.44, 113.98, 114.04, 119.20, 119.44, 120.58, 121.10, 118.35. 123.59, 127.23, 127.56, 127.61, 128.24, 137.19, 137.94, 138.42, 146.83, 149.75, EA calcd. C, 80.92; H, 5.61; N, 4.10, found C, 80.95, H, 5.64, N, 4.17, R_f 0.65(CH₂Cl₂).

14

2,8-Di(pyridin-3-yl)-1,2,3,8-tetrahydroin-

dolo[2,3-b]carbazole (2_j): light pink powder, Mp 129-132 ^oC, yield 58 %, $C_{28}H_{20}N_4$, 412.49 g/mol, ESI-MS 413[M⁺+H], EI-MS 412[M⁺]10%, 334[M⁺-pyridine]5%, 323[M⁺pyridine.CH]100%,

45[indolyl.CH.indolyl]80%, $IR(ATR, cm^{-1})$: 3398(NH), 1 H-NMR(400 1338(C=N), MHz,DMSO-d₆): δ (ppm): 5.43(s, 1H, CH), 5.89(s, 1H, CH), 6.86(d, 4H, J=7.3Hz), 7.02(t, 2H, J=7.5Hz), 7.22-7.25(m, 1H), 7.28(d, 2H, J=8Hz), 7.35(d, 2H, J=7.5Hz), 7.66-7.69(m, 2H), 8.35(d, 1H, J=7.6Hz), 8.51(d, 1H, 8.57(dd, 1H, J=1.6, 11.6Hz), J=7.6Hz), 2NH), 13 C-NMR(100 10.86(s, 2H, MHz,DMSO-d₆) δ (ppm):37.72(CH),

53.34(CH), 101.78, 112.04, 117.67, 118.85, 119.42, 121.55, 123.85, 124.15, 126.89, 134.13, 134.75, 136.09, 137.12, 140.75, 147.56, 148.39, 150.04, 150.06, EA calcd. C, 81.53; H, 4.89; N, 13.58, found C, 81.50, H, 4.95, N, 13.62, R_f 0.49 (7% MeOH /CH₂Cl₂).

2,8-Di(1H-indol-3-yl)-1,2,3,8-tetrahydroin-

dolo[2,3-*b*]carbazole (2_k) : light yellow powder, Mp 190-193 °C, yield 47 %, $C_{34}H_{24}N_4$, 488.58 g/mol, ESI-MS $489.18[M^++H]$, IR(ATR,cm⁻¹): 3406(NH), ¹H-NMR(400 MHz,acetone- d_6): δ (ppm): 5.85(s, 2H, 2CH), 6.81-6.89(m, 2H), 7.00-7.07(m, 2H), 7.14(t, 2H, J=7Hz), 7.31-7.37(m, 4H), 7.46(d, 2H, J=7.2Hz), 7.48-7.55(m, 4H), 7.74(s, 1H), 8.16(s, 1H), 9.95(s, 2H, 2NH), 10.13(s, 2H, 2NH), ¹³C-NMR(100 MHz, acetone-d₆): δ (ppm):27.42(CH), 111.22, 112.00, 115.23, 118.55, 119.38, 120.28, 120.55, 121.89, 122.10, 124.52, 124.61, 129.00, 130.32, 138.00, 138.26, 142.55, EA calcd. C, 83.58; H, 4.95; N, 11.47, found C, 83.55, H, 5.01, N, 11.49, R_f 0.65 (CH₂Cl₂).

2,8-Bis(3-(benzyloxy)-4-methoxyphenyl)-6,10-dichloro-1,2,3,8-tetra-hydroindolo[2,3-

b]carbazole (2₁): brown powder, Mp 320-322 ⁰C, yield 89 %, C₄₆H₃₆Cl₂N₂O₄, 751.70 g/mol,

ESI-MS: $752.10[M^++H],$ 749.17[M⁺-H], $IR(ATR,cm^{-1}):$ 3304(NH), 1 H-NMR(400 MHz,DMSO-d₆): δ (ppm): 3.70(s, 6H, 2OMe), 4.97(s, 4H, 2OCH₂), 5.60(s, 2H, 2CH), 6.82(dd, 2H, J=1.9, 8.2Hz), 6.90(d, 2H, J=8.2Hz), 6.97(dd, 2H, J=2, 8.6Hz), 7.05(dd, 4H, J=1.9, 8.6Hz), 7.23-7.27(m, 8H), 7.33(dd, 4H, J=2.6, 6.7Hz), 10.81(s, 2H, 2NH), ¹³C-DMSO- d_6) δ (ppm): NMR (100)MHz, 26.29(CH), 55.53(OMe), 70.13(OCH₂), 109.45, 112.19, 112.54, 114.48, 117.67, 120.85, 122.64, 126.86, 127.72, 120.44, 127.89, 128.19, 128.34, 133.00, 135.56, 135.81, 136.89, 138.57, 147.56, 148.00, EA calcd. C, 73.50; H, 4.83; Cl, 9.43; N, 3.73, found C, 73.52, H, 4.85, Cl, 9.45, N, 3.75, R_f 0.85(CH₂Cl₂).

2,8-Bis(3-(benzyloxy)-4-methoxyphenyl)-

5,11-dichloro-1,2,3,8-tetra hydroindolo[2,3**b**]carbazole (2_m) : white powder, Mp 322- 324° C, yield 90%, C₄₆H₃₆C₁₂N₂O₄, 751.70 g/mol, ESI-MS: 751.27[M⁺], 752.30[M⁺+H], 750.26[M⁺-H], IR(ATR,cm⁻¹): 3348(NH), 1 H-NMR(400 MHz, acetone- d_6): δ (ppm): 3.69(s, 6H, 2OMe), 4.94(s, 4H, 2OCH₂), 5.52(s, 2H, 2CH), 6.71(dd, 2H, J=1.9, 8.6Hz), 6.81(s, 4H), 6.96(d, 4H, J=7.2Hz), 7.17-7.21(m, 8H), 7.30(dd, 4H, J=2, 7.5Hz), 10.31(s, 2H, 2NH), 13 C-NMR(100 MHz, acetone-d₆) δ(ppm): 30.55(CH), 56.00(OMe), 74.05(OCH₂), 108.99, 112.89, 112.99, 114.50, 115.20, 120.00, 120.95, 122.90, 126.58, 117.68, 127.72, 127.89, 128.18, 128.34, 135.56, 135.81, 136.89, 138.55, 147.56, 148.05, EA calcd. C,73.50; H, 4.83; Cl, 9.43; N, 3.73, found C,73.49, H, 4.88, Cl, 9.39, N, 3.80, R_f 0.79 (CH₂Cl₂).

Procedure for the preparation of 4-(8-(3-(Benzyloxy)-4-methoxyphenyl)-1,2,3,8-tetra hydroindolo[2,3-*b*]carbazol-2-yl)-*N*,*N*-dimethylaniline (3): BIM (1_i) 1mmol, 0.5 gm was dissolved in 25 ml of MeOH, and 1mmol 0.149 mg of p-*N*,*N*dimethylaminobenzaldehyde was added to the reaction mixture. The reaction was allowed to stir under reflux until all the reactants had dissolved. After that few drops of conc. H₂SO₄ were dropwisly added. Then the reaction was allowed to stirring under reflux for about one hour. TLC of the reaction mixture showed the formation of four products. The reaction was worked up by adding 10 ml of water, neutralization with a solution of NH₄OH, extracted by CH₂Cl₂, dried over anhydrous Na₂SO₄, evaporated and purified by column chromatography eluted with CH₂Cl₂ to separate the four products that were identified as compound $\mathbf{1}_{e}$ as a main product with a 30 % yield, compound $\mathbf{1}_{d}$ in a 15 % yield, compound $\mathbf{1}_{h}$ with a 10 % yield and our desired compound 3 in a 18 % yield, as light pink powder, C₄₀H₃₅N₃O₂, 589.72 g/mol, Mp 299-301[°]C, ESI-MS: 590.26[M⁺+H], $IR(ATR,cm^{-1})$: 3416(NH), 1 H-NMR(100 MHz,acetone-d₆): δ (ppm): 2.03(s, 6H, 2Me), 3.78(s, 3H, OMe), 4.98(s, 2H, CH₂), 5.79(s, 2H, 2CH), 6.73(s, 2H), 6.85-6.91(m, 4H), 7.03(t, 2H, J=7.2Hz), 7.09(d, 2H, J=7.9Hz), 7.27-7.37(m, 8H), 9.93(s, br., 2H, 2NH), R_f 0.55 (CH₂Cl₂).

15

Procedure of the preparation of the Spirocyclic structure (4):

In a round bottom flask containing 50ml of MeOH 2 mmol (0.65 mg) of BIMs derivatives $\mathbf{1}_{\mathbf{a}}$ was added under stirring until it completely dissolved. Cyclohexane-1,4-dione (1mmol, 0.112 mg) was added to the reaction mixture. When the reaction solution became clear, few drops of conc. H₂SO₄ were added slowly. The reaction solution became pink and the colour turned to dark violet by leaving it stirring under reflux for one hour. Upon the reaction completion as monitored by TLC (100 % CH₂Cl₂) the reaction was worked up by added of 50 ml of water, neutralized by NH₄OH, extracted with ethylacetate 200 ml two times washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude reaction mixture was purified via column chromatography on silica gel eluted with (30 % EtAc/hexane) to afford compound 4 in a moderate yield 52%, as light

16

pink powder, Mp 149-152 °C, C₅₂H₄₀N₄, 720.90 g/mol, ESI-MS 719.29[M⁺-H], EI-MS: 720 $[M^+]$ 32 %, 322 [3,3'-(phenylmethylene)bis(1H-indole)] 100 %, 245 [indolyl.CH.indolyl] 75 %, 117 [indolyl] 75%, 90 [Ph.CH] 31 %, IR(ATR,cm⁻¹): 3409 (NH), ¹H-NMR(400 MHz,acetone-d₆): δ (ppm): 2.03(t, 4H, 2CH₂, J=7Hz), 2.27(t, 4H, 2CH₂, J=11.4Hz), 5.91(s, 2H, 2CH), 6.79(s, 2H), 6.88(t, 2H, J=7.5Hz), 7.04(t, 4H, J=7.6Hz), 7.11-7.20(m, 4H), 7.25(t, 4H, J=7.5Hz), 7.35(dd, 4H, J=7.9, 15.8Hz), 7.38(d, 4H, J=8Hz), 7.47(t, 2H, J=8.8Hz), 9.94(s, br., 2H, 2NH), 13 C-NMR(100 MHz, acetone $d_6)\delta(ppm):26.69(CH_2),$ 26.96(CH₂), 29.66(CH), 29.69(C), 110.22, 111.73, 117.21, 118.48, 120.39, 122.24, 123.27, 125.58, 125.65, 126.72, 127.82, 128.22, 128.50, 128.82, 128.84, 129.46, 130.09, 130.86, 130.89, 134.11, 137.03, 140.96, R_f 0.97 (CH₂Cl₂).

In-vitro Cancer Screen

The screening is a two-stage process, beginning with the evaluation of all compounds against the 60 cell lines at a single dose of 10^{-5} M. The output from the single dose screen is reported as a mean graph and is available for analysis by the COMPARE program. Compounds which exhibit significant growth inhibition are evaluated against the 60 cell panel at five concentration levels. The human tumor cell lines of the cancer-screening panel are grown in RPMI 1640 medium containing 5 % fetal bovine serum and 2 µM L-glutamine. For a typical screening experiment, cells are inoculated into 96 well microtiter plates in 100 mL at plating densities ranging from 5000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at 37 C, 5 % CO, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of

drug addition (Tz). Experimental drugs are solubilized in dimethylsulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate is dissolved and diluted to twice the desired final maximum test concentration with complete medium containing 50 mg/ml gentamicin. Additional four, 10-fold or 1/2 log serial dilutions are made to provide a total of five drug concentrations plus control. Aliquots of 100 ml of these different drug dilutions are added to the appropriate microtiter wells already containing 100 ml of medium, required resulting in the final drug concentrations. Following drug addition, the plates are incubated for an additional 48 h at 37 °C, 5 % CO, 95 % air, and 100 % relative humidity. For adherent cells, the assay is terminated by the addition of cold TCA. Cells are fixed in situ by the gentle addition of 50 ml of cold 50 % TCA (final concentration, 10 % TCA) and incubated for 60 min at 4 C. The supernatant is discarded, and the plates are washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 ml) at 0.4% in 1 % acetic acid is added to each well, and plates are incubated for 10 min at room temperature. After staining, unbound dye is removed by washing five times with 1 % acetic acid and the plates are air dried. Bound stain is subsequently solubilized with 10 µM trizma base, and the absorbance is read on an automated plate reader at a wavelength of 515 nM. For suspension cells, the methodology is the same except that the assay is terminated by fixing settled cells at the bottom of the wells by gently adding 50 ml of 80 % TCA (final concentration, 16 % TCA). Using the seven absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. Percentage growth inhibition is calculated as: [(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti > / = Tz, [(Ti-Tz)/Tz] x 100 for concentrations for

which Ti Tz. Three dose response <calculated for parameters are each experimental agent. Growth inhibition of 50% (GI₅₀) is calculated from [(Ti-Tz)/(C-Tz)] x 100 = 50, which is the drug concentration resulting in a 50 % reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation. The drug concentration resulting in total growth inhibition (TGI) is calculated from (Ti = Tz). The LC₅₀ (concentration of drug resulting in a 50 % reduction in the measured protein at the end of the drug treatment as compared to that at the beginning) indicating a net loss of cells following treatment is calculated from [(Ti-Tz/Tz] x 100 = -50. Values are calculated for each of these three parameters if the level of activity is reached; however, if the effect is not reached or is exceeded, the value for that parameter is expressed as greater or less than the maximum or minimum concentration tested [49].

Conclusion:

The present research proved that, all synthesized BIMs $(1_{e,f,h,i,n})$ showed best activities in the same cell lines MOLT-4 in leukaemia cell line and in IGROV1 in an ovarian cancer cell line. Also the basically substituted derivative demonstrates good activity in the renal cancer cell lines CAKI-1 and UO-31. The TGI and LC₅₀ values were higher than 100 μ M so the compound $\mathbf{1}_{h}$ showed noncritical cytotoxic properties. The basically substituted derivative 2_e gave the activity highest antiproliferative in а nanomolar ranges in selected cell lines with noncritical cytotoxic properties (17 fold higher LC_{50} "34.6 μ M" than GI_{50} "2 μ M" values). Further SAR modifications in compounds $\mathbf{1}_{h}$ and 2_e that are under investigation in our lab wishing to discover more potent antitumor agents.

References

[1] Sundberg, R. J. The Chemistry of Indoles; Academic: NewYork, **1996**; p 113. [2] (a): Moore, R. E.; Cheuk, C.; Yang, X. Q.; Patterson, G.M. L.; Bonjouklian, R.; Smita, T. A.; Mynderse, J.;Foster, R. S.; Jones, N. D.; Skiartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1987, 52, 1036 – 1043; (b): Garnick, R.L.; Levery, S. B.; LeQuesne, U. P. J. Org. Chem. 1978, 43,1226 – 1229; (c): Moore, R. E.; Cheuk, C.; Patterson, G. M.L. J. Am. Chem. Soc. 1984, 106, 6456 – 6457.

17

[3] a) Nagarajan, R.; Perumal, P. T. *Chem. Lett.* 2004, *33*, 288., b) Chakrabarty, M.;
Mukherjee, R.; Mukherji, A.; Arima, S.;
Harigaya, Y. *Heterocycles*, 2006, *68*, 1659., c)
Karthik, M.; Tripathi, A. K.; Gupta, N. M.;
Palanichamy, M.; Murugesan, V. *Catal. Commun.* 2004, *5*, 371., d) Penieres-Carrillo,
G.; García-Estrada, J. G.; Gutiérrez-Ramírez, J.
L; Alvarez-Toledano, C.; *Green Chem.* 2003, *5*, 337.

[4] a) Ramesh, C.; Ravindranath, N.; Das, B.
J. Chem. Res. (S) 2003, 72., b) Nagawade, R.
R.; Shinde, D. B., Bull. Korean Chem. Soc.
2005, 26, 1962., c) Bandgar, B. P.; Shaikh, K.
A. J. Chem. Res. 2004, 34., d) Mohammad poor-Baltork, I.; Memarian, H. R.; Khosropour, A. R.; Nikoofar, K. Lett. Org. Chem. 2006, 3, 768.,

[5] a) Thirupathi Reddy, Y.; Narsimha Reddy,
P.; Sunil Kumar, B.; Rajitha, B.; *Indian, J. Chem.* 2005, 44B, 2393., b) Kamal, A.; Khan,
M. N. A.; Reddy, K. S.; Srikanth, Y. V. V.;
Ahmed, S. K.; Kumar, K. P.; Murthy, U. S. N. *J. Enzyme Inhib. Med. Chem* 2009, 24, 559.

c) Amoroso, A.; Radice, M.; Segall, A.; Rodero, L.; Hochenfellner, F.; Pizzorno, M. T.; Moretton, J.; Garrido, D.;Gutkind, G. *Pharmazie* **2000**, *55*, 151 - 152.

[6] Golob, T.; Biberger, C.; Walter, G.; Angerer, E. *Arch.Pharm.* 2000, *333*, 305 - 311.
[7] Frederich, M.; Jacquier, M.-J.; Thepenier, P.; Mol, P. D.; Tits, M.; Philippe, G.; Delaude, C.; Angenot, L.; Zeches-Hanrot, M. *J. Nat. Prod.* 2002, *65*, 1381 - 1386.

[8] Fertuck, K. C.; Kumar, S.; Sikka, H. C.; Matthews, J. B.;Zacharewski, T. R., *Toxicol. Lett.* **2001**, *121*, 167 - 178. [9] Bor-Cherng Honga, Yea-Fen Jianga, Yi-Ling Changb and Shiow-Ju Leeb, *J.Chin. Chem. Soc.*, **2006**, Vol. 53, No. 3, 647-662.

[10] Chinni SR, Sarkar FH. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. *Clin Cancer Res.* **2002**; 8, 1228 - 1236.

[11] (a): Ji, S.-J.; Zhou, M.-F.; Wang, S.-Y.;
Loh, T.-P. *Synlett* **2003**, 2077 – 2079. (b): Gu,
D.-G.; Ji, S.-J.; Jiang, Z.-Q.; Zhou, M.-F.; Loh,
T.-P. *Synlett*, **2005**, 959 – 962.

[12] Maciejewska, D.; Szpakowska, I.;
Wolska, I.; Niemyjska, M.;Mascini, M.; Maj-Zurawska, M. *Bio electrochemistry* 2006, 69,1.
[13] Maciejewska, D.; Niemyjska, M.;
Wolska, I.; Waostowski, M.;Rasztawicka, M. *Z. Naturforsch., B: Chem. Sci.* 2004, 59, 1137.

[14] Maciejewska, D.; Wolska, I.; Niemyjska,M.; Zero, P. J. Mol. Struct.2005, 753, 53.

[15] Jingjing G., Sudhakar C., Syng-ook L., Sung Dae C., Ping L., Sabitha P., Stephen S. *Cancer Chemother Pharmacol*, **2010**, *66*, 141 -150.

[16] (a): Hiramatsu, K.; Hanaki, H.; Ino, T.;
Yabuta, K.; Oguri, T.; Tenover, F. C.
Methicillin-Resistant Staphylococcus aureus
Clinical Strain with Reduced Vancomycin
Susceptibility. *J.Antimicrob. Chemother.* 1997, 40, 135 – 136., (b): Boucher, H. W.; Talbot, G.
H.; Bradley, J. S.; Edwards, J. E., Jr.; Gilbert,
D.; Rice, L. B.; Scheld, M.; Spellberg, B.;
Bartlett, J. Bad Bugs, No Drugs: No
ESKAPE! An Update from the Infectious
Diseases Society of America. *Clin. Infect. Dis.*2009, 48, 1–12.

[17] (a): Arret, B., Johnson, O.P. and Kirshbaur, A., J. pharm. Sci., **1971**, 60, 1689 -94., (b): Code of Federal regulations title 21, Food and Drugs, part 436, subpart D 1983, Microbiological assay method P. 242-259. Office of Federal Register, National Archives and Records Service, Administration, Washington D.C. 119.

[18] Jun, H., Ismael, S., Sudhakar, C. and Stephen S. *Molecular Carcinogenesis*. **2008**, *47*, 492 – 507.

[19] Kathy V., Yunpeng S., Arthur E., Henry G., Roger S., Shaheen K., Stephen S. *Breast Cancer Res Treat*, **2008**, *109*, 273 - 283.

[20] Ping L., Maen A. and Stephen S. *Mol Cancer Ther*, **2006**, *5*, 2324 - 2336.

18

[21] Wassim K., Sudhakar C., Maen A., Gina N., Stephen S., and Ashish M., *Cancer Res*, **2006**; *66*, (1).

[22] Chunhua Q., Derek M., Jessica S., Kyle S., Weston P., Roger S., Timothy P., Maen A., Ismael S., and Stephen S. *Mol Cancer Ther*, **2004**, *3*, 247 - 260.

[23] Teruo I., Sabitha P., Sudhakar C., Sung-Dae C., Stephen S., and Ashish M. *Mol Cancer Ther*, 2008, 7, 3825 - 3833.

[24] Sandeep S., Indira J., Gayathri C., Michael W. and Stephen S. *Internationa J. of Oncology*, **2009**, *35*, 1191 - 1199.

[25] Dae C., Ping L., Maen A., Kyungsil Y., Shengxi L., Jingjing G., Sabitha P., Sudhakar C., and Stephen S. *Molecular Carcinogenesis*, 2008, 47, 252 – 263.

[26] Rooha C., Ismael J., Zeev E., David H., James A., Stephen H., Michael A. and Marina K. *Cancer Res*, **2005**, *65* (7), 2890-8.

[27] a) von Angerer, E.; Prekajac, J.; Strohmeier, J. *J. Med. Chem.* **1984**, *27*, 1439 - 1447.

b) von Angerer, E.; Prekajac, J. J. Med. Chem.
1986, 29, 380 - 386., c) Katritzky, W. J. Heterocyc. Chem. 1988, 25, 671 - 675., d)
Pappa, H.; Segall, A.; Pizzorno, M. T.; Radice, M.; Amoroso, A.; Gutkind, G. Il Farmaco
1994, 49, 333 - 336.

[28] Segall, A.; Pappa, H.; Casaubon, R.; Martin, G.; Bergoc, R.; Pizzorno, M. T. *Eur. J. Med. Chem.* **1995**, *30*, 165, 160.

[29] Macchia, M.; Manera, C.; Nencetti, S.; A.; Rossello, Brocalli, G.; Limonta, D. *Il Farmaco* **1996**, *51*, 75 - 78.

[30] Segall, A.; Pappa, H.; Pizzorno, M. T.; Radice, M.; Amoroso, A.; Gutkind, G. *Il Farmaco* **1996**, *51*, 513 - 516.

[31] Amoroso, A.; Radice, M.; Segall, A.; Rodero, L.; Hochenfellner, F.; Pizzorno, M. T.; Moretton, J.; Garrido, D.;Gutkind, G. *Pharmazie* **2000**, *55*, 151 - 152.

[32] a) Segall, A.; Pizzorno, M. T. *Pharmazie* **2000**, *55*, 766 - 767., b) Martin, G.; Cocca, C.;
Rivera, E.; Cricco, G.; Segall, A.; Pappa, H.;
Casaubon, R.; Caro, R.; Pizzorno, M.

T.;Bergoc, R. J. Exp. Ther. Oncol. 2002, 2, 77 - 84.

[33] LePecq, J. B.; Dat-Xoung, N.; Gosse, C.; Paoletti, C. *Proc. Natl. Acad. Sci.* **1974**, *71*, 5078.

[34] Pelaprat, D.; Oberlin, R.; Le Guen, I.; Roques, B. P.; LePecq, J. B. *J. Med. Chem.* **1980**, *23*, 1330.

[35] (a): Martin, G.; Cocca, C.; Rivera, E.;
Cricco, G.; Caro, R.; Segall, A.; Pappa, H.;
Casaubon, R.; Pizzorno, M. T.;Bergoc, R. M.
J. Exp.Ther. Oncol. 2002, 2, 77 - 84. (b):
Dantas, S. O.; Lavarda, F. C.; Galvao, D. S.;
Laks, B. J.Mol.Struc. Theochem. 1992, 253,
319. (c): Dantas, S. O.; Galvao, D. S. J. Mol.
Struc. Theochem. 1992, 43, 257.

[36] Reviews: (a): J. Sapi and G.Massiot, Monoterpenoid Indole Alkaloids, in The Chemistry of Heterocyclic Compounds, Suppl. Vol. 25, Part 4, ed. J. E. Saxton and E. C. Taylor, Wiley, Chichester, **1994**, ch. 7; (b): J. Bonjoch and D. Sole´, *Chem. Rev.*, **2000**, *100*, 3455; (c): H.-J. Kno¨ lker and K. R. Reddy, *Chem. Rev.*, **2002**, *102*, 4303; (d): M. Somei and F. Yamada, *Nat. Prod. Rep.*, **2005**, *22*, 73.
[37] Ehrlich, P. *Med. Woche* **1901**, 151.

[38] Cook, A. H.; Majer, J. R., J. Chem. Soc. **1944**, 486.

[39] a) Preparation of Bis(indole)Bemeithanesin AqueSous Mediumih Liao, Jwu-Ting Chen, Shiuh-Tzung Liu, *Synthesis* **2007**, No. 20, 3125 – 3128., b) Aswathanarayana S., Putta M., Monatshefte fur Chemie, **2008**, *139*, 111 – 115.

[40] Manas Chakrabarty,a, Nandita Ghosh,a Ramkrishna Basaka and Yoshihiro Harigayab, *Tetrahedron Letters*, **2002**, *43*, 4075 – 4078.

[41] Depu Chen, Libing Yu and Peng George Wang, *Tetrahedron Letters*, **1996**, Vol. *37*, No. 26, pp. 4467 - 4470.

[42] G. V. M. Sharma, J. Janardhan Reddy, P. Sree Lakshmi and Palakodety Radha Krishna, *Tetrahedron Letters*, **2004**, *45*, 7729 – 7732.

[43] Govindarajulu Babu, Nimmagadda Sridhar and Paramasivan T.Perumal, Synthetic Communications, **2000**, *30* (9), 1609 - 1614.

[44] Chinnian J Magesh, Rajagopal Nagarajan, Mani Karthik, Paramasivan T Perumal, Applied Catalysis A: General, **2004**, Volume 266, Issue 1, 12 July, Pages 1 - 10.

19

[45] a) Saeidnia, Samira Sheikhshoaie, Iran, *Chin. J. Chem.* **2010**, 28, 601 - 604., b)Manas Chakrabarty and Sandipan Sarkar, *Tetrahedron Letters*, **2002**, 43, 1351 – 1353.

[46] (a): Von Dobeneck and Maas, *Chem. Ber.* **1954**, 87, 455 - 463 (b): Wan-Ru C., Dawn Y., Khalid A., Carol G. and Ling J., *J. Med. Chem.* **2007**, *50*, 3412 - 3415, (c): A. Treibs an, H. G. Kolm, *Ann.*, **1958**, *614*, 199. (d): David StC. Black, Andrew J. Ivory and Naresh Kumar, *Terrohedron* **1995**, Vol. *51*. No. 43, pp. 11801 - 11808. (e): Noland, E. and Venkites, A., Cyclizative Condensations. IV. 3,3'-Alkylidenebisindoles from Methyl Ketones, and Their Conversion to Indolo[2,3b]carbazoles1, J.Org. Chem. 1961, 26, 4241.

[47] (a): Rong Gu, Sven Van Snick, Koen Robeyns, Luc Van Meervelt and Wim Dehaen, *Org. Biomol. Chem.*, **2009**, *7*, 380 – 385. (b): Y. Kanaok, I., Miyashita, and O. Yonemits, Chmicalic communication, The Plancher Rearrangement of 2,3-Disubstituted 3H-Indoles, **1969**, 1365.

[48] M. Jereb et al. *Tetrahedron*, Iodinecatalyzed transformation of molecules containing oxygen functional groups, (**2011**), *67*, 1355 - 1387.

[49] (a): Grever, M. R.; Schepartz, S. A.; Chabner, B. A. Semin. Oncol. 1992, 19, 622 -638. (b): Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757 -766. (c): Monks, A.; Scudiero, D. A.; Johnson, G. S.; Paull, K. D.; Sausville, E. A. Anti-Cancer Drug Des. 1997, 12, 533 - 541. (d): Weinstein, J. N.; Myers, T. G.; O'Connor, P. M.; Friend, S. H.; Fornace Jr., A. J.; Kohn, K. W.; Fojo, T.; Bates, S. E.; Rubinstein, L. V.; Anderson, N. L.; Buolamwini, J. K.; van Osdol, W. W.; Monks, A. P.; Scudiero, D. A.; Sausville, E. A.; Zaharevitz, D. W.; Bunow, Viswanadhan, V. N.; Johnson, G. S.; B.; Wittes, R. E.; Paull, K. D. Science 1997, 275, 343 - 349. (e): Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. J.

Natl. Cancer Inst. **1989**, *81*, 1088 - 1092. (f): Boyd, M. R.; Paull, K. D. *Drug Dev. Res.* **1995**, *34*, 91 - 109. (g): Shoemaker, R. H. *Nat. Rev.* **2006**, *6*, 813 - 823. (h): http://www.ncbi.nlm.nih.gov/pmc/articles/PM <u>C2868078/</u>. (i) S.A.F. Rostom, Bioorg. Med. Chem. 14, **2006**, 6475e - 6485. (j): Malleshappa N. and et. al. *European Journal of Medicinal Chemistry*, **2011**, *46*, 4411 -4418.

20

Tables:

Table (1): 60 human tumour cell line anticancer screening data at single dose assay (10⁻⁵ M) as percent growth inhibition of BIMs.

Panel/Cell Line		Growth Per	cent		
	BIM (1 _h)	BIM (<mark>1</mark> e)	BIM (1g)	BIM (<mark>1</mark> i)	BIM (<mark>1</mark>)

ACCEPTED MANEuropean Journal of Medicinal Chemistry

21

Leukaemia		04 20	65 81	82.70	00.02
CCRF-CEM HL-60(TB)	41.24 47.74	94.29 128 50	65.84 85.73	82.70	90.92 100.22
HL-60(1B) K-562	47.74 37.52	128.59 91.47	85.73 63.92	97.61 71.05	76.69
K-562 MOLT-4	20.53	96.36	52.47	58.65	75.09
RPMI-8226	20.53 42.97	96.36 94.00	52.47 75.01	94.76	93.10
SR	38.00	100.85	67.99	77.82	89.79
Non-Small Cell Lung C		100.85	07.99	//.82	89.79
A549/ATCC	44.24	98.14	70.37	80.66	78.08
EKVX	44.24 33.06	94.88	70.13	75.34	92.09
HOP-62	85.39			89.05	96.56
HOP-02 HOP-92	37.86	103.12 97.98	117.07 77.26	74.21	65.77
NCI-H226	75.60	103.98	96.26	86.74	95.12
NCI-H23	48.28	105.48	83.58	83.17	90.04
NCI-H322M	53.46	89.81	76.91	72.67	94.19
NCI-H460	<mark>9.25</mark>	111.93	40.92	87.36	90.80
NCI-H522	44.03	103.14	81.51	90.05	88.29
Colon Cancer		104.12	00.17	102.00	102.49
COLO 205	28.69	104.13	98.17	102.68	103.48
HCC-2998	52.61	107.97	89.58	102.35	101.88
HCT-116	<mark>19.91</mark>	89.91	49.68	63.15	78.21
HCT-15	43.97	100.56	71.42	80.96	93.30
HT29	20.89	100.05	67.05	80.75	92.07
KM12	28.51	102.97	61.54	88.20	83.31
SW-620	37.08	93.36	66.72	84.23	87.23
CNS Cancer					
SF-268	52.76	116.79	67.22	89.60	99.12
SF-295	41.84	98.27	90.26	86.27	75.79
SF-539	75.91	91.54	90.70	97.53	104.56
SNB-19	56.58	109.25	88.91	101.55	113.06
SNB-75	64.21	92.69	69.63	80.78	76.20
U251	39.48	111.50	71.87	94.01	91.64
Melanoma					
LOX IMVI	35.11	96.58	70.34	84.68	91.70
MALME-3M	76.44	108.26	86.23	95.57	104.86
M14	<mark>19.50</mark>	102.85	60.84	94.58	91.67
MDA-MB-435	39.23	100.64	66.55	97.07	104.96
SK-MEL-2	62.89	108.23	87.10	106.14	117.60
SK-MEL-28	75.02	115.84	94.00	107.74	110.32
SK-MEL-5	53.71	102.49	69.90	89.22	104.38
UACC-257	64.60	113.36	88.90	97.97	97.73
UACC-62	67.03	92.49	65.78	75.87	90.79
Ovarian Cancer					
IGROV1	<mark>23.79</mark>	99.14	51.22	53.76	92.57
OVCAR-3	42.79	108.57	57.39	95.78	89.75
OVCAR-4	68.99	108.38	85.86	93.36	105.91
OVCAR-5	52.85	102.74	84.10	77.30	92.79
OVCAR-8	54.18	100.41	84.14	99.85	98.97
NCI/ADR-RES	43.84	105.48	83.51	95.00	95.63
SK-OV-3	82.74	105.24	99.10	92.84	100.06
Renal Cancer		105.24	99.10	2.04	100.00
786-0	66.10	101.34	93.63	96.46	105.42
A498	63.36	101.34	104.66	89.10	95.52
ACHN	37.06	93.95	63.05	74.33	86.38
CAKI-1	15.65	93.93 74.45	34.27	57.43	53.07
					94.67
RXF 393	71.08	115.46	90.57 71.34	110.45	
SN12C	45.51	103.75	71.34	87.36	103.59
UO-31	<mark>18.10</mark>	64.28	42.30	<mark>51.55</mark>	66.86
Prostate Cancer	21.21	00 06	50 40	67.70	60.02
PC-3	31.31	88.06	58.42	67.79	69.02
DU-145	63.31	120.00	74.41	109.45	105.82
Breast Cancer		105.01			104.00
MCF7	21.93	105.91	52.85	76.47	104.09
MDA-MB-231/ATCO		104.98	86.20	68.39	79.28
BT-549	80.58	109.82	102.59	99.13	102.05
T-47D	43.17	89.79	65.05	72.49	99.38
MDA-MB-468	56.56	110.54	97.31	119.11	101.32
Mean	47.39 %	101.60 %	75.51 %	86.38 %	92.63 %
	Selected for 5-dose	Non selected	Non selected	Non selected	Non selected

Table (2): NCI in vitro testing result of compound $\mathbf{1}_h$ (NSC D-755517/1) at five dose level in $\mu M.$

Panel/Cell Line	<u>GI₅₀</u>			TGI	LC ₅₀	LogGI ₅₀	Log TGI	Log LC ₅₀
	Concentration	h						
	per cell line	MID^{b}	selectivity ratio					
			(MID ^a :MID ^b)					

ACCEPTED MANEuropean Journal of Medicinal Chemistry

22

								-
Leukemia		6.44	0.79					
CCRF-CEM	6.91			> 1.00	> 1.00	-5.16	> -4.00	> -4.00
HL-60(TB)	8.67			> 1.00	> 1.00	-5.06	> -4.00	> -4.00
K-562	6.49			> 1.00	> 1.00	-5.19	> -4.00	> -4.00
MOLT-4	5.51			4.83	> 1.00	-5.26	-4.32	> -4.00
RPMI-8226	3.83			> 1.00	> 1.00	-5.42	> -4.00	> -4.00
SR	7.20			> 1.00	> 1.00	-5.14	> -4.00	> -4.00
Non-Small Cell Lung Cancer		5.35	0.96					
	7.18	5.55	0.70	> 1.00	> 1.00	-5.14		
A549/ATCC								
EKVX	5.83			> 1.00	> 1.00	-5.23	> -4.00	> -4.00
HOP-62	> 1.00			> 1.00	> 1.00	> -4.00	> -4.00	> -4.00
HOP-92	3.03			> 1.00	> 1.00	-5.52	> -4.00	> -4.00
NCI-H226	3.49			> 1.00	> 1.00	-4.46	> -4.00	> -4.00
NCI-H23	8.10			> 1.00	> 1.00	-5.09	> -4.00	> -4.00
NCI-H322M	7.51			> 1.00	> 1.00	-4.12	> -4.00	> -4.00
NCI-H460	4.54			> 1.00	> 1.00	-5.34	> -4.00	> -4.00
NCI-H522	3.15			> 1.00	> 1.00	-5.50	> -4.00	> -4.00
Colon Cancer		6.56	0.78					
		0.50	0.78					
COLO 20	9.47			> 1.00	> 1.00	-5.02	> -4.00	> -4.00
HCC-2998	9.31			> 1.00	> 1.00	-5.03	> -4.00	> -4.00
HCT-116	5.05			> 1.00	> 1.00	-5.30	> -4.00	> -4.00
HCT-1	4.53			> 1.00	> 1.00	-5.34	> -4.00	> -4.00
HT29	4.74			> 1.00	> 1.00	-5.32	> -4.00	> -4.00
KM12	5.12			> 1.00	> 1.00	-5.29	> -4.00	> -4.00
SW-620	7.71			> 1.00	> 1.00	-5.11	> -4.00	> -4.00
CNS Cancer		3.58	1.42					
SF-268	2.79			> 1.00	> 1.00	-4.55	> -4.00	> -4.00
SF-29	9.07			> 1.00	> 1.00	-5.04	> -4.00	> -4.00
SF-539	4.12			> 1.00	> 1.00	-4.39	> -4.00	> -4.00
SNB-19	2.35			> 1.00	> 1.00	-4.63	> -4.00	> -4.00
SNB-7	1.87			> 1.00	> 1.00	-4.73	> -4.00	> -4.00
U251	1.28			> 1.00	> 1.00	-4.89	> -4.00	> -4.00
						-4.69		> -4.00
Melanoma		4.09	1.24					
LOX IMVI	5.76			> 1.00	> 1.00	-5.24	> -4.00	> -4.00
MALME-3M	> 1.00			> 1.00	> 1.00	>-4.00	> -4.00	> -4.00
M14	3.91			5.28	> 1.00	-5.41	-4.28	> -4.00
	1.50					-4.82		
MDA-MB-43				> 1.00	> 1.00			
SK-MEL-2	3.78			7.87	> 1.00	-5.42	-4.10	> -4.00
SK-MEL-28	6.12			> 1.00	> 1.00	-4.21	> -4.00	> -4.00
SK-MEL-	3.81			> 1.00	> 1.00	-4.42	> -4.00	> -4.00
UACC-257	6.40			> 1.00	> 1.00	-4.19	> -4.00	> -4.00
UACC-62	1.42			> 1.00	> 1.00	-4.85	> -4.00	> -4.00
Ovarian Cancer		6.93	0.73					
IGROV1	6.98			> 1.00	> 1.00	-4.16	> -4.00	> -4.00
OVCAR-3	6.95			> 1.00	> 1.00	-5.16	> -4.00	> -4.00
OVCAR-4	6.22		/	> 1.00	> 1.00	-5.21	> -4.00	> -4.00
OVCAR-	5.04			> 1.00	> 1.00	-5.30	> -4.00	> -4.00
OVCAR-8	6.81			> 1.00	> 1.00	-4.17	> -4.00	> -4.00
NCI/ADR-RES	9.56			> 1.00	> 1.00	-5.02	> -4.00	> -4.00
Renal Cancer		3.5	1.45					
A498	1.46			> 1.00	> 1.00	-4.83	> -4.00	> -4.00
	3.01							
ACHN				> 1.00	> 1.00	-5.52	> -4.00	> -4.00
CAKI-1	4.78	1		> 1.00	> 1.00	-5.32	> -4.00	> -4.00
RXF 393	1.20			> 1.00	> 1.00	-4.92	> -4.00	> -4.00
SN12C	5.22			> 1.00	> 1.00	-5.28	> -4.00	> -4.00
TK-10	5.47			> 1.00	> 1.00	-5.26	> -4.00	> -4.00
UO-31	3.52			> 1.00			> -4.00	
		2.1	2.42		> 1.00	-5.45		
Prostate Cancer		2.1	2.42					
PC-3	4.47			> 1.00	> 1.00	-5.35	> -4.00	> -4.00
DU-14	3.81			> 1.00	> 1.00	-4.42	> -4.00	> -4.00
Breast Cancer		4.78	1.07					
		-r.70	1.07	······································	······································	5 25		
MCF7	5.67			> 1.00	> 1.00	-5.25	> -4.00	> -4.00
MDA-MB-231/ATCC 0.594	2.84			5.57	> 1.00	-5.55	-4.25	> -4.00
HS 578T	>1.00			> 1.00	> 1.00	> - 4.00	> -4.00	> -4.00
T-47D	9.32			> 1.00	> 1.00	-5.03	> -4.00	> -4.00
MDA-MB-468	1.27			> 1.00	> 1.00	-4.90	> -4.00	> -4.00
101DA-101D-400	1.21			/ 1.00	/ 1.00	-+.20	> -+.00	> -4.00
MID ^a	5.09							
Average:				1	1	-4.96	-4.02	-4.0
Average:								
						(11 µM)	(95.5 µM)	(>100µM)
Y								
Delta:						0.59	0.30	0.00
Range:						1.55	0.32	0.00
Tunigo.				1	1			

MID^a: Average sensitivity of all cell line in μ M. MID^b: Average sensitivity of all cell line of a particular subpanel in μ M.

Table (3): 60 cell line anticancer screening data at single dose assay (10^{-5} M) as percent growth inhibition of indolo-carbazoles.

Panel/Cell Line		Growth Percen	t (%)		
	2_{e}	$2_{\rm f}$	$2_{\rm h}$	2_{i}	2 ₁

23

HL-60(TB) 85.63 93.01 93.83 92.43 71.69 MOLT-4 61.55 87.83 89.45 77.60 101.84 MOLT-4 61.55 87.83 89.45 77.60 100.00 Non-Smull Cell Lug Cancer	Leukaemia					
K-562 55.77 93.77 90.31 69.13 91.85 RPML8226 103.63 93.28 101.84 85.33 100.00 RPML8226 103.63 93.28 101.84 85.33 100.00 AS49 ATCC 25.07 101.29 87.05 70.47 102.55 REVX 28.58 85.39 100.47 60.37 100.02 HOP-62 -44.57 101.35 173.4 98.55 87.43 182.66 NCH226 58.36 113.20 121.56 95.18 113.72 193.57 85.95 72.69 87.64 NCH226 58.36 113.20 121.56 95.18 103.54 103.54 103.54 104.54 104.54 104.54 104.54 104.54 106.14				02.82	02.42	
MOLT-1- ST-26 61.55 87.83 89.45 87.83 99.07 Non-Small Cell Lang Cancer						
RPM18226 103.63 9.2.8 101.84 88.35 98.07 Asturation Construction Cons						
Non-Saull Cell Lang Cancer						
As49/ATCC 55.07 101.29 87.05 70.47 102.25 EKV 28.58 85.39 100.47 60.37 100.02 HOP-62 -44.87 103.65 75.37 87.43 82.44 HOP-62 -20.13 117.34 98.69 60.37 100.02 NCH-1226 58.36 113.30 121.56 95.18 187.64 NCH-1226 55.58 99.57 185.95 77.48 106.18 NCH-1322M 54.20 92.60 94.27 74.83 106.14 NCH-1420 45.20 92.60 94.27 74.83 106.14 Colo Cancer						
EKVX 28.58 85.39 100.47 60.37 100.027 HOP-62 -44.87 103.65 75.57 87.43 82.44 HOP-92 -0.13 117.74 98.69 65.18 89.60 NCI-H22 55.5 99.57 85.55 72.69 87.64 NCI-H23 55.5 99.57 85.55 72.69 87.64 NCI-H23 -23.83 76.28 69.76 68.71 106.18 NCI-H32 -23.83 76.28 69.76 67.40 101.24 HCT-15 42.53 91.90 97.68 67.40 101.24 HCT-15 42.53 91.90 97.68 67.20 103.79 KM12 44.00 10.52 70.71 73.25 104.23 SW-620 672 91.96 11.46 80.96 53.85 100.13 KM12 44.00 10.52 70.71 73.25 104.23 104.23 104.23 104.23 104.23 104.23	e e					
HOP-62 -44.87 103.65 75.77 87.73 82.44 NCI-H226 58.36 113.20 121.56 95.18 113.72 NCI-H226 58.36 113.20 121.56 95.18 113.72 NCI-H226 58.36 113.20 121.56 95.18 13.72 NCI-H222M 54.20 92.60 94.27 74.83 106.18 NCI-H232 -23.83 76.28 09.76 105.62 89.945 NCI-H232 -23.83 76.28 09.76 105.21 92.55 COLO 205 55.06 102.90 165.22 89.95 104.17 NCC-2998 78.09 94.79 102.40 89.55 101.12 HCT-116 70.68 93.94 72.65 53.40 92.35 104.31 SW-620 67.2 91.96 11.42 80.96 55.55 93.10 111.10 SF-295 -23.09 108.84 87.81 87.95 95.85 100.01						
HOP-92 -20.13 117.24 98.69 65.26 98.60 NCH262 58.36 113.20 121.56 95.18 113.72 NCH23 55.55 99.57 85.95 72.69 87.40 NCH432M 54.20 92.60 94.27 74.83 106.18 NCH460 -15.58 101.36 10.95 68.71 106.18 NCH460 -15.58 101.36 10.95 68.71 104.17 ICC-00 102.90 46.52 89.45 104.17 104.17 ICC-2098 70.82 57.40 101.24 89.95 nd 104.17 ICT-115 42.53 90.99 97.62 67.40 101.25 103.79 KM12 44.00 105.92 70.71 73.25 104.52 103.79 SV-268 77.80 104.78 95.54 93.10 111.10 SF-268 77.80 104.78 95.54 95.85 100.28 SV-265 -23.09 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
NCLH226 58.36 113.20 121.36 95.18 113.72 NCLH226 55.55 99.57 85.95 72.69 87.64 NCLH320 54.20 92.60 94.27 74.83 106.18 NCLH522 -23.83 76.28 69.76 60.52 89.95 104.17 NCLH20200 16.62 89.94 101.20 89.95 104.17 COLO 2015 77.09 73.05 101.24 89.95 104.17 NCL-160 70.89 93.94 72.65 89.95 101.24 HCT-116 70.89 93.94 72.65 89.95 104.25 SW-20 67.2 91.96 11.64 80.96 105.25 SW-20 67.2 91.95 104.13 89.25 100.12 SP-285 22.59 104.37 89.95 87.55 99.35 104.13 SV-80 67.24 97.81 67.14 99.02 111.10 114.4 99.25 104.31 89.92						
NC1+123 555 9.9.7 85.95 72.69 94.77 NC1+1420 54.20 92.60 94.27 74.83 106.18 NC1+1460 -15.58 101.36 10.95 68.71 167.53 Colm Cancer	HOP-92	-20.13	117.34	98.69	<mark>56.36</mark>	89.60
NCL H322M 54.20 92.60 94.27 74.83 106.18 NCL H360 -15.58 101.36 10.98 68.71 67.55 NCL H322 -23.83 76.28 69.76 67.55 67.55 COLO 205 35.06 102.90 16.52 89.45 104.17 NCL H320 78.09 94.77 102.40 89.55 nd HCT-116 70.88 93.94 72.65 58.49 92.35 HCT-15 42.53 91.90 97.62 57.27 104.78 99.25 SW-620 67.22 91.95 11.44 80.96 75.53 104.31 80.95 85.59 100.18 89.59 87.53 104.31 80.22 109.25 109.18 87.54 93.10 111.10 89.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 109.25 10	NCI-H226		113.20	121.56	95.18	113.72
NCL+H360 -15.58 101.36 11.95 68.71 61.75 Colon Cancer -23.88 76.28 99.76 80.95 104.17 ICC-US 205 35.06 102.90 166.28 99.76 89.45 104.17 ICC-US 205 78.09 94.79 102.40 89.45 101.24 ICC-116 70.08 93.94 76.65 58.49 92.35 ICT-15 42.63 91.90 97.68 67.40 101.24 IKT29 35.90 90.98 97.63 67.40 101.25 SW420 67.2 91.96 11.44 80.96 15.55 SW420 67.2 91.96 11.44 80.96 15.55 SV8.59 23.53 104.31 101.34 89.22 109.20 SF 236 25.73 104.31 101.34 89.22 109.20 U251 -51.91 97.54 102.19 10.53 109.53 M24 2.2.37 81.34 90.50<	NCI-H23	<mark>5.55</mark>	99.57	85.95	72.69	87.64
NCLHS22 -23.83 76.28 69.76 107.64 COLO 205 35.06 102.90 16.32 89.45 104.17 COLO 205 78.09 94.79 102.40 89.95 nd HCC-116 70.88 93.94 72.65 58.49 92.35 HCT-15 42.55 91.90 97.62 70.71 77.25 104.52 KM12 44.00 105.92 70.71 77.25 104.52 103.79 KM12 44.00 105.92 70.71 77.25 104.52 103.79 SN=266 37.80 104.478 95.54 93.10 1111.10 89.92 109.92 SR-539 38.81 89.59 87.95 98.85 100.13 88.92 109.29 LOX IMVI 42.67 91.90 91.85 76.41 95.39 MALME-3M 21.37 89.19 70.52 95.88 101.60 MAM-435 44.51 102.24 90.59 79.49 100.85	NCI-H322M	54.20	92.60	94.27	74.83	106.18
NCLHS22 -23.83 76.28 69.76 107.64 COLO 205 35.06 102.90 16.32 89.45 104.17 COLO 205 78.09 94.79 102.40 89.95 nd HCC-116 70.88 93.94 72.65 58.49 92.35 HCT-15 42.55 91.90 97.62 70.71 77.25 104.52 KM12 44.00 105.92 70.71 77.25 104.52 103.79 KM12 44.00 105.92 70.71 77.25 104.52 103.79 SN=266 37.80 104.478 95.54 93.10 1111.10 89.92 109.92 SR-539 38.81 89.59 87.95 98.85 100.13 88.92 109.29 LOX IMVI 42.67 91.90 91.85 76.41 95.39 MALME-3M 21.37 89.19 70.52 95.88 101.60 MAM-435 44.51 102.24 90.59 79.49 100.85	NCI-H460	-15.58	101.36	11.95	68.71	74.67
Colon Cancer	NCI-H522		76.28			67.55
COLO 205 35.06 102.90 46.22 89.45 104.17 HCC-1998 78.09 94.77 102.40 89.55 nd HCT-116 70.8 93.94 72.65 58.49 92.35 HCT-15 42.53 91.90 97.68 67.40 101.24 HT29 35.50 90.98 97.62 51.81 103.75 SW-620 6.22 91.96 11.44 60.96 55.66 CNS Cancer						
HCC-2998 78.09 94.79 102.40 89.55 nd HCT-116 708 93.94 72.65 58.49 92.35 HCT-15 42.53 91.90 97.68 67.40 101.24 HT29 35.90 90.98 97.62 67.23 103.79 SW-620 6.72 91.96 11.44 80.96 1555 SW-620 6.72 91.96 11.44 80.96 1555 SK-268 37.80 104.78 95.54 67.41 99.02 SF-235 23.09 108.54 97.81 67.24 99.02 SK-819 25.73 104.31 101.34 89.22 109.22 U251 -51.91 97.54 44.79 75.14 91.47 McLanona						104 17
HCT-116 T08 93.94 72.65 58.49 92.35 HCT-15 42.53 91.90 97.68 67.40 101.24 HT29 35.50 90.98 97.62 57.83 103.79 KM12 44.00 105.92 70.71 73.25 104.79 SW-620 6.22 91.96 11.44 60.96 1556 SW-620 6.72 91.96 11.44 67.24 99.02 SF2-68 37.80 104.78 95.54 93.10 111.10 SF2-59 -23.09 108.54 97.81 67.24 99.02 U251 -51.91 97.54 44.79 75.14 91.47 Melanona						
HCT-15 42.53 91.90 97.62 67.40 101.24 KM12 44.00 105.92 70.71 73.25 104.52 SW-620 6.72 91.96 11.44 80.96 15.55 SW-620 6.72 91.96 11.44 80.96 15.56 SF-268 37.80 104.78 95.54 97.81 67.24 99.02 SF-235 2.3.09 108.54 97.81 67.24 99.02 SF-39 38.81 89.59 87.95 55.85 100.18 NR-19 2.5.73 104.31 101.34 89.22 109.29 U251 -51.91 97.54 11.79 75.14 91.47 MALME-3M 21.37 89.19 10.52 95.88 101.60 MALME-3M 21.37 89.19 10.458 100.29 71.78 100.29 SK-MEL-5 45.69 113.79 100.59 71.78 100.29 10.29 10.22 108.60 10.29						
HT29 335.90 90.98 97.62 17.82 103.79 SW-620 672 91.96 11.44 80.96 13.55 SW-620 672 91.96 11.44 80.96 13.55 SW-620 672 91.96 11.44 80.96 13.55 SF-268 37.80 104.78 95.54 93.10 111.10 SF-259 -23.09 108.54 97.81 67.24 99.02 SNB-19 25.73 104.31 101.34 89.22 109.23 U251 -51.91 97.54 41.79 75.14 91.47 Melanoma						/
KM12 44.00 105.92 70.71 73.25 104.52 SW-620 6.72 91.96 11.44 80.96 15.56 CNS Cancer						
SW-620 672 91.96 11.44 80.96 755 SF-268 37.80 104.78 95.54 93.10 111.10 SF-235 2.3.09 108.54 97.81 67.24 99.02 SR-39 38.81 89.59 87.95 95.85 100.18 89.22 109.29 SNB-19 2.5.73 104.31 101.34 89.22 109.29 109.23 Melanoma						
CNS Cancer						
SF-268 37.80 104.78 95.54 93.10 111.10 SF-295 -23.09 108.54 97.81 67.24 99.02 SNB-19 25.73 104.31 101.34 89.22 109.29 JUS1 -51.91 97.54		<mark>6.72</mark>	91.96	11.44	80.96	<mark>75.56</mark>
SF-295 -23.09 108.54 97.81 67.24 99.02 SF-339 38.81 89.59 87.95 95.85 100.134 SRB-19 25.73 1104.31 101.34 89.22 109.29 U251 -51.91 97.54 44.79 75.14 91.47 Mclamera						
SF-339 38.81 89.59 87.95 95.85 100.18 SNB-19 25.73 104.31 101.34 89.22 109.29 U251 -51.91 97.54 44.79 75.14 91.47 Melanoma	SF-268	37.80	104.78	95.54	93.10	111.10
SNB-19 25.73 104.31 101.34 89.22 109.29 U251 -51.91 97.54 44.79 75.14 91.47 Mclanoma	SF-295	-23.09	108.54	97.81	67.24	99.02
SNB-19 25.73 104.31 101.34 89.22 109.29 U251 -51.91 97.54 44.79 75.14 91.47 Mclanoma	SF-539	38.81	89.59	87.95	95.85	100.18
U251 -51.91 97.54 44.79 75.14 91.47 Melanoma	SNB-19	25.73	104.31	101.34	89.22	109.29
Melanoma	U251					
LOX INVI 42.67 91.90 91.85 76.41 95.39 MALME-3M 21.37 89.19 70.52 95.88 101.60 MALME-3M 21.37 89.19 70.52 95.88 101.60 MDA-MB-435 44.51 102.34 90.59 79.49 100.85 SK-MEL-28 17.60 96.34 87.37 95.93 102.29 SK-MEL-5 45.69 113.79 100.59 71.78 106.20 UACC-62 39.50 93.61 90.58 77.38 100.27 Ovarian Cancer						
MALRE-3M 21.37 89.19 70.52 95.88 101.60 M14 -29.41 87.83 86.36 78.68 102.10 MDA-MB-435 44.51 102.34 90.59 79.49 100.85 SK-MEL-25 45.69 113.79 100.59 71.78 106.20 VACC-257 83.91 104.58 109.35 97.58 100.52 Ovarian Cancer						
M14 -2941 87.83 86.36 78.68 102.10 MDA-MB-435 44.51 102.34 90.59 79.49 100.85 SK-MEL-28 17.60 96.54 87.37 95.93 102.29 SK-MEL-5 45.69 113.79 100.59 71.78 106.20 UACC-62 39.50 93.61 90.58 77.85 100.27 Ovarian Cancer						
NDA-MB-435 44.51 102.34 90.59 79.49 100.85 SK-MEL-28 17.60 96.34 87.37 95.93 102.29 SK-MEL-5 45.69 113.79 100.59 77.17.8 106.52 UACC-62 39.50 93.61 90.58 77.85 100.27 Ovarian Cancer						
SK-MEL-28 17.60 96.34 87.37 95.93 102.29 SK-MEL-5 45.69 113.79 100.59 71.78 100.62 UACC-257 83.91 104.58 109.35 97.58 106.52 UACC-62 39.50 93.61 90.58 77.85 100.27 Ovarian Cancer						
SK-MEL-5 45.69 113.79 100.59 71.78 106.20 UACC-257 83.91 104.58 109.35 97.58 106.52 Ovarian Cancer IGROV1 33.23 94.67 94.15 62.03 105.11 OVCAR-3 -52.72 124.29 122.18 96.52 108.60 OVCAR-4 14.28 92.04 78.48 73.12 101.27 OVCAR-5 36.61 88.96 94.14 85.87 104.54 OVCAR-8 20.00 107.28 59.24 89.33 96.21 NC/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
UACC-257 83.91 104.58 109.35 97.58 106.52 UACC-62 39.50 93.61 90.58 77.85 100.27 Ovarian Cancer						
UACC-62 39.50 93.61 90.58 77.85 100.27 Ovarian Cancer						
Ovarian Cancer						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UACC-62	39.50	93.61	90.58	77.85	100.27
OVCAR-3 -52.72 124.29 122.18 96.52 108.60 OVCAR-4 14.28 92.04 78.48 73.12 101.27 OVCAR-5 36.61 88.96 94.14 85.87 104.54 OVCAR-8 20.00 107.28 59.24 89.33 96.21 NCI/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer786-0 -35.79 97.88 84.04 76.33 92.18 A498 -7.03 113.64 86.53 78.86 118.27 ACHN 9.61 98.38 94.06 70.22 104.77 ACHN 9.61 98.38 94.06 70.22 104.77 SNI2C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 DV-145 46.83 107.22 58.82 88.49 76.27 Prostate CancerMCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 T47D 28.15 85.57 92.62 59.15 96.62 MDA-MB-468 47.27 $115.$	Ovarian Cancer					
OVCAR-4 14.28 92.04 78.48 73.12 101.27 OVCAR-5 36.61 88.96 94.14 85.87 104.54 OVCAR-8 20.00 107.28 59.24 89.33 96.21 NCI/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer	IGROV1	33.23	94.67	94.15	62.03	105.11
OVCAR-5 36.61 88.96 94.14 85.87 104.54 OVCAR-8 20.00 107.28 59.24 89.33 96.21 NCI/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer	OVCAR-3	-52.72	124.29	122.18	96.52	108.60
OVCAR-5 36.61 88.96 94.14 85.87 104.54 OVCAR-8 20.00 107.28 59.24 89.33 96.21 NCI/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer	OVCAR-4	14.28	92.04	78.48	73.12	101.27
OVCAR-8 20.00 107.28 59.24 89.33 96.21 NC/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer						
NCL/ADR-RES 19.48 106.83 75.38 79.55 108.71 SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer.			No.			
SK-OV-3 26.87 105.46 94.19 94.58 91.66 Renal Cancer						
Renal Cancer						
786-0 -357.9 97.88 84.04 76.33 92.18 A498 -7.03 113.64 86.53 78.86 118.27 ACHN 9.61 98.38 94.06 70.22 104.77 CAKI-1 13.72 80.17 84.65 41.36 95.32 RXF 393 30.66 112.55 105.50 85.59 104.21 SN12C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 76.77 Prostate Cancer.				24.19	24.30	
A498 -7.03 113.64 86.53 78.86 118.27 ACHN 9.61 98.38 94.06 70.22 104.77 CAKI-1 13.72 80.17 84.65 41.36 95.32 RXF 393 30.66 112.55 105.50 85.59 104.21 SN12C 27.74 96.88 97.15 81.56 99.00 UO-31 -18.32 106.78 95.31 94.84 139.73 Prostate Cancer				04.04	76.22	
ACHN 9.61 98.38 94.06 70.22 104.77 CAKI-1 13.72 80.17 84.65 41.36 95.32 RXF 393 30.66 112.55 105.50 85.59 104.21 SN12C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 76.77 Prostate Cancer						
CAKI-1 13.72 80.17 84.65 41.36 95.32 RXF 393 30.66 112.55 105.50 85.59 104.21 SN12C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 76.77 Prostate Cancer PC-3 36.54 107.22 58.82 48.49 76.27 DU-145 46.83 115.99 39.16 98.24 97.18 Breast Cancer MCF7 24.23 89.39 77.15 59.07 94.74 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 10						
RXF 393 30.66 112.55 105.50 85.59 104.21 SN12C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 76.77 Prostate Cancer						
SN12C 27.74 96.88 97.15 81.56 99.00 TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 16.77 Prostate Cancer. PC-3 36.54 107.22 58.82 48.49 76.27 DU-145 46.83 115.99 39.16 98.24 97.18 Breast Cancer.						
TK-10 -18.32 106.78 95.31 94.84 139.73 UO-31 12.35 57.58 60.84 39.78 16.77 Prostate Cancer PC-3 36.54 107.22 58.82 48.49 76.27 DU-145 46.83 115.99 39.16 98.24 97.18 Breast Cancer MCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.99 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33						
UO-31 12.35 57.58 60.84 39.78 76.77 Prostate Cancer						
Prostate Cancer </td <td>TK-10</td> <td></td> <td>106.78</td> <td>95.31</td> <td>94.84</td> <td>139.73</td>	TK-10		106.78	95.31	94.84	139.73
Prostate Cancer </td <td></td> <td>12.3<mark>5</mark></td> <td><mark>57.5</mark>8</td> <td>60.84</td> <td>39.78</td> <td><mark>76.77</mark></td>		12.3 <mark>5</mark>	<mark>57.5</mark> 8	60.84	39.78	<mark>76.77</mark>
PC-3 DU-145 36.54 46.83 107.22 115.99 58.82 39.16 48.49 98.24 76.27 98.24 Breast Cancer 46.83 115.99 39.16 98.24 97.18 MCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33	Prostate Cancer					
DU-145 46.83 115.99 39.16 98.24 97.18 Breast CancerMCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33	PC-3		107.22			
Breast Cancer MCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33 Mean 21.63 % 98.65 % 84.67% 76.84% 98.24%	DU-145	46.83	115.99		98.24	97.18
MCF7 24.23 89.39 77.15 59.07 94.71 MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33 Mean 21.63 % 98.65 % 84.67% 76.84% 98.24%						
MDA-MB-231/ATCC -30.21 89.23 86.89 63.58 84.64 HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33						
HS 578T -8.41 109.72 91.24 88.18 97.29 BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33						
BT-549 8.92 113.56 87.17 81.59 94.79 T-47D 28.15 85.57 92.62 59.13 96.62 MDA-MB-468 47.27 115.17 108.96 112.86 121.33 Mean 21.63 % 98.65 % 84.67% 76.84% 98.24%						
T-47D MDA-MB-468 28.15 47.27 85.57 115.17 92.62 108.96 59.13 112.86 96.62 121.33 Mean 21.63 % 98.65 % 84.67% 76.84% 98.24%						
MDA-MB-468 47.27 115.17 108.96 112.86 121.33 Mean 21.63 % 98.65 % 84.67% 76.84% 98.24%						
Mean 21.63 % 98.65 % 84.67 % 76.84 % 98.24 %						
	MDA-MB-408	47.27	115.17	108.96	112.86	121.33
				a.t. a=		
Selected Non selected Non selected Non selected Non selected	Mean					
		Selected	Non selected	Non selected	Non selected	Non selected

Table (4): NCI in vitro testing result of compound 2_e (D-758513/1) at five dose level in μ M.

Panel/Cell Line	GI ₅₀	TGI	LC ₅₀	Log GI ₅₀	Log TGI	Log LC ₅₀	
	Concentration						

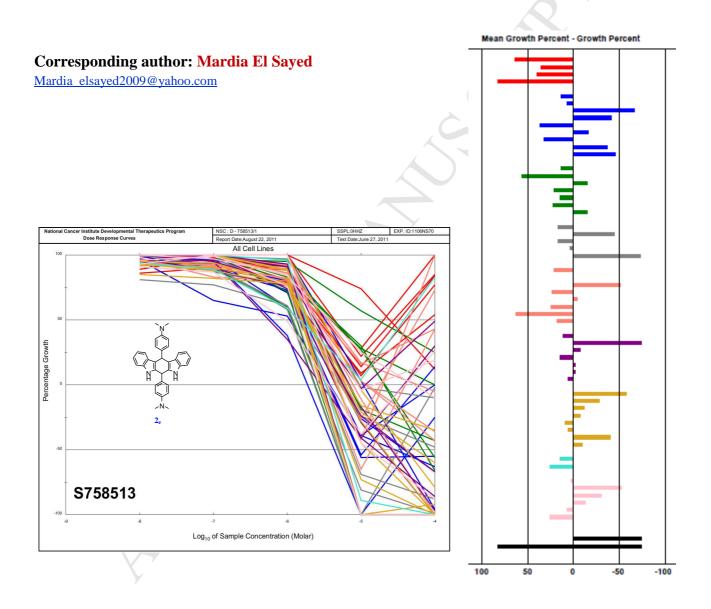
ACCEPTED MANEuropean Journal of Medicinal Chemistry

24

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		line		vity ratio	[
CCRFCEM nd >1.00 >1.00 >1.00 -1.62 >4.00 K-502 nd >1.00 >1.00 >1.00 -1.62 >4.00 K-502 nd >1.00 >1.00 >1.00 -1.00 -1.00 -4.00 RPMI-8226 nd >1.00 >1.00 >1.00 -1.00 -4.00 NSB CCRFCC101 2.29 1.06 -1.00 -1.00 -4.00 NSB CR 2.29 1.06 -1.07 -7.2 5.94 HOP-62 1.07 -7.3 2.38 nd -5.43 -5.43 NCH1226 3.28 -1.08 3.42 -5.48 4.37 -5.43 NCH220 3.28 -1.08 3.42 -5.48 -5.43 -5.43 NCH220 3.28 -1.08 4.34 -6.22 -5.43 -5.72 -5.43 NCH220 3.28 -1.00 -1.00 -5.72 -5.43 -5.72 -5.43 -5.72			(MID ^a :	:MID ^b)						
HL-60(TB) 2.41 > 1.00 > 1.00 > 1.00 -1.00 <td></td> <td></td> <td>2.41 1</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2.41 1	1.0						
K-562 nd nd > 1.00 > 1.00 nd > - 4.00 RPME3226 nd nd > 1.00 > 1.00 nd > - 4.00 Nos.Small Cell Lang Cancer 2.29 1.06 1.00 nd > - 4.00 Nos.Small Cell Lang Cancer 2.29 1.06 nd nd nd > - 4.00 Nos.Small Cell Lang Cancer 2.20 1.06 nd > - 4.00 > - 4.00 Nor.H226 3.23 1.08 3.42 -5.43 -5.43 NC1H226 3.23 1.08 3.42 -6.21 -7.5 -7.5 -7.5 -7.5 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40 -7.40									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
RFMH 3226 nd > 1.00 > 1.00 nd > -4.00 Nas.Saul Cell Lang Cancer					> 1.00	> 1.00	nd	> -4.00	> -4.00	
SR nd 2.29 1.00 > 1.00 nd > A549/ATCC 151 2.29 1.06 nd nd A549/ATCC 1.16 7.2 2.30 5.22 nd A549/ATCC 1.16 7.2 2.30 1.00 nd A549/ATCC 1.16 7.2 2.30 1.01 5.24 HOP-62 1.16 1.40 1.88 3.42 5.48 4.97 NCH122 1.68 1.416 1.88 4.621 5.72 5.74 NCH122 1.66 1.46 1.88 4.621 5.72 5.24 NC2098 1.69 1.46 1.88 4.621 5.72 5.24 NC2298 1.09 5.73 5.52 5.00 5.10 5.46 SN-20 1.15 1.66 1.46 5.10 5.2 5.02 SN-20 1.13 1.66 <					> 1.00	> 1.00	nd	> -4.00	> -4.00	
Non-Small Cell Lung Cancer					> 1.00	> 1.00	nd	> -4.00	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					> 1.00	> 1.00	nd	> -4.00	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2.29 1	06						
EKVX 102 5.72 3.90 5.72 5.24 HOP-92 107 3.73 2.83 nd -5.44 NCH422 107 3.73 2.83 -5.47 -5.43 NCH422 100 -5.72 -5.72 -5.73 -5.34 NCH422 100 -5.72 -5.72 -5.34 -5.43 NCH422 100 -5.72 -5.34 -5.44 -5.72 OLO Cancer				.00					nd	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.41	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									nd	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-4.47	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-5.77		> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3.63	9.01	-5.83	-5.44	-5.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.88	4.34	-6.21	-5.72	-5.36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		.68	0.9						
$\begin{array}{ccccc} \text{HCC-2998} & \textbf{ICO} & \textbf{ICO} & \textbf{ICC} & \textbf{ICC} & \textbf{ICO} & \textbf{ICC} & ICC$									-4.17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-5.29	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.07	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					> 1.00	> 1.00	-5.42	>-4.00	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2.36	4.86	-4.94	-5.63	-5.31	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		66	1.46						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.70	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-5.22	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-5.13	
U251 113 2.51 0.96 2.33 nd -5.95 -5.63 Melanoma 2.56 nd nd -5.95 -4.92 MALME-3M nd 10^{67} nd 1.00 nd nd M14 16^{67} 3.03 5.51 >1.00 nd nd SK-MEL-28 16^{62} nd										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2.33	nd	-5.95	-5.63	nd	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		51	0.96						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.21	> 1.00	-5.59	-4.92	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					nd	> 1.00	nd	nd	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3.03	5.51	-5.78	-5.52	-5.26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									> -4.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									nd	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.56	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									>-4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.15	> 1.00	-5.61	-4.94	> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.	2	5	0.97						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									> -4.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-5.26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-4.80	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.58	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									> -4.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-4.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					5.72	1.97	-5.66	-5.24	-4.70	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		94	1.25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.95	5.43	-5.80	-5.53	-5.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3.28	7.05	-5.82	-5.48	-5.15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4.61	1.22	-5.71	-5.34	-4.91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-4.26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-4.38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									> -4.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-5.27	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5.41	2.01	-5.74	-5.27	-4.70	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		.77	1.37						
Breast Cancer 3.86 0.62 \dots \dots \dots \dots MCF7 9.29 1.41 2.70 5.20 -5.85 -5.57 MDA-MB-231/ATCC 0.594 1.41 2.70 5.20 -5.85 -5.57 HS 578T 2.40 5.08 1.29 -5.62 -5.29 T-47D 2.46 nd > 1.00 -5.61 NdMDA-MB-468 3.74 5.23 > 1.00 -5.43 -4.28					> 1.00	> 1.00	nd	>-4.00	> -4.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3.30	6.13	-5.75	-5.48	-5.21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9		.86	0.62						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.00	0.02					> -4.00	
HS 578T T-47D MDA-MB-468 2.40 2.46 3.74 5.08 nd 5.23 1.29 -5.62 -5.29 -5.61 -5.43 -5.29 Nd -4.28									-5.28	
T-47D MDA-MB-4682.46 3.74 nd 5.23 > 1.00 > 1.00-5.61 -5.43Nd -4.28										
MDA-MB-468 3.74 5.23 > 1.00 -5.43 -4.28									-4.89	
									> -4.00	
					5.23	> 1.00	-5.43	-4.28	> -4.00	
MID* 2.42										
							5.60	5.01	-4.46	
Avarege: $-5.69 -5.01$ (2 μ M) (10 μ M)									-4.46 (34.6 μM)	
Delta: $0.56 0.71$									(54.0 µM) 0.9	
Range: 1.63 1.72							1.03	1.72	1.36	

 $\label{eq:MID} MID^a: \ Average \ sensitivity \ of \ all \ cell \ line \ in \ \mu M. \ MID^b: \ Average \ sensitivity \ of \ all \ cell \ line \ of \ a \ particular \ subpanel \ in \ \mu M.$

Research Highlights


- We synthesized BIMs and tetrahydroindolocarbazoles,
- Ten compounds have selected by the NCI for anticancer screening,
- Compound 2_e gave the highest antiproliferative activity in a nanomolar ranges.
- Compound 2_e showed non critical cytotoxcity.

Supporting information for

Synthesis, Cytostatic Evaluation and Structure Activity Relationships of Novel Bisindolylmethanes and their Corresponding Tetrahydroindolocarbazoles.

Mardia T. El Sayed^{a,b,*}, Khadiga M. Ahmed^c, Kazem Mahmoud^a, and Andreas Hilgeroth^a.

^aInstitute of Pharmacy, Martin-Luther University, Research Group of Drug Development and Analysis, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Saale, Germany. ^bApplied Organic Chemistry Department, National Research Centre, Cairo, Egypt., ^cNatural Compounds Laboratory, National Research Centre, Cairo Egypt.

Mean graphs of One and Five dose anticancer screening

eukemia CCR-CEM 65.84 HL-60(TB) 85.73 K-562 63.92 MOLT-4 52.47 RPML8226 75.01 SR 67.99 on-Small Cell Lung Cancer A549/ATCC 70.37 HOP-92 172.66 NCLH236 96.26 NCLH232 83.58 NCLH232 81.51 olon Cancer COL0 205 98.17 HOC-2986 49.58 HCT-116 49.682 HCT-116 71.42 HT29 67.05 KM12 61.54 SV-620 66.72 SF-295 90.26 SF-295 90.26 SF-339 90.70 SK-MEL-2 SK-M	Developmental Ther		NSC: D-755518/1	Conc: 1.00E-5 Molar	Test Date: Jan 10, 2011
billemia CH-601TB) 65.84 CH-601TB) 65.87 H-652 63.92 MC17-4 52.47 RSM-8226 67.99 onrSmall Cell Lung Cancer 70.37 EKVX 70.137 CH-1226 69.28 NCH-122.10 89.17 Ocn Cancer 61.51 Odn Cancer 61.51 Odn Cancer 61.51 Ocn Cancer 61.51 ST-268 67.22 SF-268 67.22 SF-268 67.22 SF-268 67.22 SF-268 90.28 SR-268 67.22 SF-268 90.28 SR-268 67.22 SF-268 90.28 SR-268 67.22 SF-268 90.28 SR-268 67.22 SF-268 90.29 SR-268 57.20 SR-268 57.20 SR-268 57.20 SR-268 57.20 SR-268 57.	One Dose Mea	an Graph	Experiment ID: 1101	OS87	Report Date: Feb 03, 20
CCFR-CEM 65.84 H-60(TE) 85.73 KMC1-4 SR MC1-4 SR MC1-42 SR MC1-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR MC2-42 SR SR MC2-42 SR SR SR SR SR SR SR SR SR SR	Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
HL-60(T6) 65.73 HC01-1 62.247 RPMI-8226 75.01 SR 67.99 on-Small Cell Lung Cancer 63.37 REMA 70.13 HOP-42 177.26 NCH-1225 96.283 NCH-1226 96.283 NCH-1222 91.51 Join Cancer 67.91 NCH-1422 96.283 NCH-1422 96.672 Scancer 57.539 SP-539 90.70 SNB-79 69.83 U231 11.67 NS Assoc 66.72 SK-68 67.10 SK-68 94.00 SK-68 94.00 SK-68 94.00 SK-68 94.01 </th <th>eukemia</th> <th>05.04</th> <th></th> <th></th> <th></th>	eukemia	05.04			
K-562 63.92 MCLT 4. 52.71 RS 70.99 ONS-mail Cell Lung Cancer 70.37 EVXX 70.137 HO-942 177.76 NCI-H223 83.58 NCI-H224 96.26 NCI-H225 96.26 NCI-H224 43.51 Son Gancer 91.51 COLO 2055 98.17 HCC-2398 83.88 HC1-15 91.42 HC2-3986 83.83 HC1-16 91.42 HC2-3986 90.26 SF-295 91.46	CCRF-CEM	65.84			
MDI-74. 62.47 RPM-8226 75.01 SS-Mil Cell Lung Cancer 70.37 RKW 70.13 MOP422 77.013 HOP422 77.628 MOLT44 83.588 NCH422 81.51 MOCH22 81.54 MCT116 71.42 HC7115 71.42 SW-820 66.72 SNS-75 69.63 U231 71.71 MM4 60.64 MM4 60.65 UACC-227 67.73 SN-75 88.90 UACC-227 88.41 MM4 60.65 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
RPM-B226 75.01 SR 67.99 or.Sinal Cell Lung Cancer 70.37 FEVX 70.13 HOP-A2 117.07 HOP-10 49.88 HOT-116 49.88 HOT-116 49.88 HOT-116 49.88 HOT-116 49.88 HOT-116 49.88 HOT-116 117.17 HT29 67.05 Scancer 67.22 SF-268 90.26 SF-263 90.26 SK-404 66.55 SK-402 67.10 SK-402 67.10 SK-402 67.10 SK-402 67.10					
SR 67.99 ASM/TCC 70.31 ASM/TCC 70.31 HOP-42 77.726 HOP-42 77.726 HOP-42 77.726 NCH-125 85.81 NCH-122 81.51 Ober Cancer 91.7 CCU 2026 94.75 CCU 2027 61.54 NNE 75 66.62 SF-208 67.22 SF-208 90.71 SF-208 90.71 SF-208 90.72 SF-208 90.71 SF-208 90.72 SF-208 90.71 SC-208 90.71 SF-208 90.71 SC-2					
on-Small Cell Lung Cancer AS49/ATCC HCX-W					
AskgArtCc 70.37 HOP-32 117.07 HOP-32 117.07 HOP-		67.99			
EVX 70.13 HOP-32 170.77 HOP-32 77.07 HCH-1226 86.86 NCH-123 86.86 NCH-122 81.51 Oblic Cancer 98.17 CHC-22898 98.86 HCT-116 49.08 HCT-15 71.42 HT29 67.05 KM120 61.54 SF-285 90.26 SK-MEL-28 96.10 M14 90.40 UAC-62		70.27			
HOP-82 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-1226 NCH-14460 N		70.37			
HOP-92 HOP-92 HOF-92 HOF-1423 HO					
NCH-226 96.26 NCH226 83.53 NCH222 76.91 NCH422 40.22 NCH422 40.22 NCH422 40.22 NCH422 40.25 COL0 205 98.17 HCC-2989 83.53 HCT-116 49.68 HCT-116 49.68 HCT-116 49.68 HCT-116 49.68 HCT-116 49.68 SS-285 90.20 SS-285 9			_		
NCH-H32 NCH-H32M NCH-H322 NCH-H460 A0.92 HCT-16 HCC-2998 HCT-116 HCC-2998 HCT-116 HCC-2998 HCT-116 HCC-2998 HCT-116 HCT-13 HCT-13 HCT-13 HCT-14 HT20 HCT-13 HCT-14 HT20 HCT-15 HCT-14 HT20 HCT-15 HCT-15 HCT-16 HCT-		96.26			
NCI-H460 NCI-H460 NCI-H460 NCI-H460 NCI-H460 NCI-H460 NCI-H522 NCI-H522 NCI-H522 NCI-H522 NCI-H522 NCI-H52 NCI-H52 NCI-H5					
NCI-H420 COLO 205 COLO 2					
NCH-H522 81.51 COLO 2055 98.17 COLO 2055 98.17 HCC-2396 485.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 HCC-2396 49.58 SW-420 66.72 SF-288 57.28 SF-288 59.09 U251 71.87 Helanoma LOX IMVI 70.34 MALME-3M 86.23 MAH 48-345 69.65 MCM-L-28 59.00 UACC-257 88.90 UACC-257					
olon Cancer COLC 205 HCT-116		81 51			
COLO 2026 98.17 HCC-2998 89.58 HCT-116 49.88 HCT-116 71.42 HT29 67.05 KM120 61.54 HCT-136 71.42 HT29 67.05 SM120 66.72 SF-288 67.22 SF-289 90.26 SF-259 90.26 SF-259 90.26 SF-539 90.70 SNB-19 88.91 SNB-75 69.63 U251 71.87 Handra H LOX IMVI 70.34 M14 80.23 M14 80.23 M14 80.24 M14 80.24 M		01.01			
HCC-2998 09.58 HCT-16 49.68 HCT-15 71.42 HT20 67.05 KM12 61.54 SW-620 66.72 NS Ganer 67 SF-295 90.06 SF-295 90.06 SF-295 90.06 SF-295 90.07 SNB-19 88.91 SNB-75 69.63 U251 71.87 Ielanoma 10 LOX IMVI 70.34 MALME-3M 86.23 M14 60.48 MDA-ME-3D 66.55 SK-MEL-2 87.00 SK-MEL-2 89.00 UACC-227 88.00 UACC-227 88.00 UACC-237 88.00 UCCAR-4 U-140 90 UCCAR-4 U-140 90 UCCAR-4 UC		98.17			
HCT-116 49.68 HCT-15 71.42 HT29 67.05 KM12 61.54 SW-6200 66.72 SF-539 90.26 SF-539 90.26 SF-539 90.70 SNB-19 88.91 SNB-75 69.63 U251 71.87 Ielanoma T LOX IMVI 70.34 MALME-3M 66.55 SK-MEL-28 77.10 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 UACC-62 65.78 HOA-ME-35 69.90 UACC-62 65.78 SK-MEL-28 94.00 OVCAR-3 64.10 OVCAR-3 84.11 OVCAR-3 84.10 OVCAR-45 84.10 OVCAR-5 84.10 OVCAR		89.58			
HCT-15 71.42 HT29 67.05 KM12 61.54 SW-620 66.72 SF-286 90.26 SF-286 90.26 SF-286 90.70 SNB-19 80.91 SNB-75 60.63 U251 71.87 Helanoma 10 LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MOA-MB-435 66.55 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 84.00 UACC-62 66.78 Warian Cancer IGROV1 51.22 OVCAR-3 57.39 OVCAR-3 65.78 VAREL-28 84.10 OVCAR-5 84.10 OVCAR-62 75.1 Delta 41.24 Range 82.80					
HT29 67.05 KM12 61.54 SW-820 66.72 SF-286 67.22 SF-285 9.026 SF-295	HCT-15	71.42		– 1	
KM12 61.54 SW-620 66.72 NS Cancer 67.22 SF-286 67.22 SF-339 90.70 SNB-75 66.63 U251 71.87 Elanoma 1 LOX IMVI 70.34 MALME-3M 66.43 MALME-3M 66.44 MALME-3A5 66.45 SK-MEL-2 87.10 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-5 69.90 UACC-62 65.78 Warian Cancer 10 IGROV1 51.22 OVCAR-3 57.39 OVCAR-3 99.10 GRACT 51.22 OVCAR-3 99.10 enal Cancer 73.33 GROV1 51.22 OVCAR-3 99.10 enal Cancer 73.99 ToX-0 99.10 enal Cancer 73.83 Grover 52.42 DU-145 74.41 reasite Cancer 52.45 <t< td=""><td>HT29</td><td>67.05</td><td></td><td>H</td><td></td></t<>	HT29	67.05		H	
SW-620 66.72 SF-296 67.22 SF-296 90.26 SF-339 90.70 SNB-19 88.91 SNB-75 69.63 UZ51 71.87 LBanoma 1 DAMB-435 66.55 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 65.78 VUACC-257 88.90 UACC-257 80 UACC-42 85 80 UCCAR-4 80 UC	KM12				
SF-286 67.22 SF-295 90.26 SF-539 90.70 SNB-19 88.91 SNB-75 69.63 U251 71.87 Telanoma LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-2 87.10 SK-ME	SW-620				
SF-295 90.26 SF-539 90.26 SNB-19 88.91 SNB-75 69.63 U251 71.87 LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 69.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-237 88.90 UACC-24 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-26 UACC-257 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-257 88.90 UACC-42 88 UC-41 42.90 UC-31 42.	NS Cancer				
SF-295 90.26 SF-539 90.26 SNB-19 88.91 SNB-75 69.63 U251 71.87 LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 69.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-227 88.90 UACC-237 88.90 UACC-24 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-26 UACC-257 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-27 88.90 UACC-257 88.90 UACC-42 88 UC-41 42.90 UC-31 42.	SF-268	67.22			
SNB-19 88.91 SNB-75 69.63 U251 71.87 LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-28 94.00 SK-MEL-28 93.61 OVCAR-3 57.39 OVCAR-3 99.10 Ienal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RKF 333 90.57 SN12C 71.34 U0-31 42.30 PC-3 58.42 DU-145 74.41 reastat Cancer 9 PC-3 58.42 DU-145 74.41 reast2 Cancer 9 PC-3 58.42 DU-145 74.41 Range 92.80	SF-295				
SNB-75 69.63 U251 71.87 Ielanoma 1 LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-2 87.10 SK-MEL-2 87.10 SK-MEL-2 87.10 SK-MEL-2 65.78 VacC-267 88.90 UACC-262 65.78 Varian Cancer 10 IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.14 NCIADR-RES 83.51 SK-0V-3 99.10 enal Cancer 71.34 OVCAR-8 84.14 NCIADR-RES 83.51 SK-0V-3 99.10 enal Cancer 93.63 Ad98 104.66 ACHN 63.05 CAK1-1 34.27 RK 303 90.57 SN12C 71.34 U0-131 42.30 rostate Cancer 97.31 MCF7 52.85 MDA-MB-231/ATCC 86.20 MDA-MB-468 97.31 Delta 41.24 <td></td> <td></td> <td></td> <td></td> <td></td>					
U251 71.87 Lanoma LXX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-28 87.10 SK-MEL-28 94.00 SK-MEL-28 94.00 UACC-627 88.90 UACC-627 65.78 VUACR-62 65.78 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCIADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UC-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 MDA-MB-231/ATCC 88.20 BT-549 102.59 T-47D 66.05 MDA-MB-468 97.31 Mean 75.51 Detta 41.24 Range 82.02	SNB-19	88.91			
lelanoma LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-2 81.10 SK-MEL-2 80.00 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-42 85.86 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 Ienal Cancer PC-3 56.42 DU-145 74.41 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 66.05 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 66.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.00	SNB-/5				
LOX IMVI 70.34 MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-28 710 SK-MEL-28 94.00 SK-MEL-28 94.00 SK-MEL-28 69.90 UACC-627 88.90 UACC-627 65.78 IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCIADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 SN12C 71.34 U-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 mGF7 58.42 DU-145 74.41 mGF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		/1.8/		F I	
MALME-3M 86.23 M14 60.84 MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-2 87.10 SK-MEL-2 890 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-257 88.90 UACC-42 65.78 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 83.51 SK-OV-3 99.10 IGRO - 93.63 A498 104.66 A498 104.66 A		70.24			
M14 60.84 MDA.MB-435 66.55 SK-MEL-28 87.10 SK-MEL-28 94.00 SK-MEL-28 94.00 UACC-257 88.90 UACC-62 65.78 Varian Cancer IGROV1 51.22 OVCAR-4 85.86 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RKF 393 90.57 SN12C 71.34 UO-31 42.30 restate Cancer PC-3 58.422 DU-145 74.41 reast Cancer MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
MDA-MB-435 66.55 SK-MEL-2 87.10 SK-MEL-28 94.00 UACC-257 88.90 UACC-257 88.90 Varian Cancer 1 IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 86.86 OVCAR-5 84.10 OVCAR-6 91.0 Ienal Cancer 786-0 T86-0 93.83 SK-VO-3 99.10 Ienal Cancer 7 786-0 93.63 A498 104.66 ACHN 63.05 CAKL1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 restate Cancer 7 PC-3 58.42 DU-145 74.41 reast Cancer 75.51 Detta 41.24 Range 82.00		60.84			
SK-MEL-2 87.10 SK-MEL-28 94.00 SK-MEL-5 69.90 UACC-257 88.90 UACC-62 65.78 Varian Cancer 1 IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.11 NCIADR-RES 83.51 SK-0V-3 99.10 tenal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 71.34 PC-3 58.42 DU-145 74.41 reast Cancer 72.41 PC-3 58.42 DU-145 74.41 reast Cancer 72.51 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 66.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		66 55			
SK-MEL-28 94.00 SK-MEL-5 69.90 UACC-257 88.90 UACC-62 65.78 Varian Cancer IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 83.51 SK-OV-3 99.10 tenal Cancer 786-0 93.63 A498 104.66 ACHN 63.05 CAKL1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 Tostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 C 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
SK-MEL-5 69.90 UACC-257 88.90 UACC-62 65.78 ICROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCIADR-RES 83.51 SK-OV-3 99.10 lenal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKL1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 74.41 reast Cancer 97.31 MCF7 52.85 MDA-MB-231/ATCC 86.05 MDA-MB-2468 97.31 MEA 75.51 Delta 41.24 Range 82.80					
UACC-257 88.90 UACC-452 65.78 Warian Cancer IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 83.51 SK-OV-3 99.10 Pienal Cancer 786-0 93.63 A498 104.66 ACHN 63.05 CAKL-1 34.27 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer PC-3 58.42 DU-145 74.41 reast Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 66.05 MDA-MB-468 97.31					
UACC-62 65.78 IVarian Cancer IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 Iteral Cancer 786-0 93.63 A498 104.66 ACHN 663.05 CAKL-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 MEAN 75.51 MEAN 75.51	UACC-257				
Ivarian Cancer 1 IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKL-1 34.27 RXF 333 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 72.3 PC-3 58.42 DU-145 74.41 reast Cancer 74.41 reast Cancer 74.41 meat Cancer 75.51 MDA-MB-231/ATCC 86.20 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	UACC-62			— 1	
IGROV1 51.22 OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 Ienal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.67 SN12C 71.34 UO-31 42.30 rostate Cancer 72.3 PC-3 58.42 DU-145 74.41 reast Cancer 74.41 PC-3 58.42 DU-145 74.41 reast Cancer 74.41 PC-3 58.620 BT-549 102.59 T-47D 66.05 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80 <td>Ovarian Cancer</td> <td></td> <td></td> <td></td> <td></td>	Ovarian Cancer				
OVCAR-3 57.39 OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 Itenal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 74.41 Pc-3 58.42 DU-145 74.41 reast Cancer 72.3 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Delta 41.24 Range 82.80	IGROV1				
OVCAR-4 85.86 OVCAR-5 84.10 OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 74.41 reast Cancer 74.41 reast Cancer 74.41 reast Cancer 75.51 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	OVCAR-3	57.39			
OVCAR-8 84.14 NCI/ADR-RES 83.51 SK-OV-3 99.10 tenal Cancer 93.63 786-0 93.63 A499 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 92.85 PC-3 58.42 DU-145 74.41 reast Cancer 97.31 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	OVCAR-4	85.86			
NCI/ADR-RES 83.51 SK-OV-3 99.10 Iceal Cancer 786-0 786-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 PC-3 58.42 DU-145 74.41 reast Cancer MCF7 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
SK-OV-3 99.10 tenal Cancer 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 74.41 PC-3 58.42 DU-145 74.41 reast Cancer 74.41 mCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
lenal Cancer 786-0 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 10-31 VO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 UO-31 CAKI-2 C					
78-0 93.63 A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 PC-3 58.42 DU-145 74.41 reast Cancer MCF7 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		99.10			
A498 104.66 ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		03.63			
ACHN 63.05 CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 MAAMB-231/ATCC 86.20		104.66			
CAKI-1 34.27 RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer PC-3 PC-3 58.42 DU-145 74.41 reast Cancer MCF7 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
RXF 393 90.57 SN12C 71.34 UO-31 42.30 rostate Cancer 97.31 PC-3 58.42 DU-145 74.41 reast Cancer 71.34 MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
SN12C 71.34 UO-31 42.30 rostate Cancer					
UO-31 42.30 rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80				⊢	
rostate Cancer PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	UO-31				
PC-3 58.42 DU-145 74.41 reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	rostate Cancer				
reast Cancer MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80	PC-3				
MCF7 52.85 MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		74.41			
MDA-MB-231/ATCC 86.20 BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80		50.05			
BT-549 102.59 T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
T-47D 65.05 MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
MDA-MB-468 97.31 Mean 75.51 Delta 41.24 Range 82.80					
Mean 75.51 Delta 41.24 Range 82.80					
Delta 41.24 Range 82.80	WDA-WD-400	51.51			
Delta 41.24 Range 82.80	Mean	75.51			
Range 82.80		41.24			
150 100 50 0 -50 -100 -150	-				
150 100 50 0 -50 -100 -150		450	100 50	0 50	100 15
		150	100 50	U -50	-100 -150

Figure (1): Maen graph one dose screening of $\mathbf{1}_{\mathbf{g}}$

Developmental Ther	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	NSC: D-755519/1	Conc: 1.00E-5 Molar	Test Date: Jan 10, 2011		
One Dose Me	an Graph	Experiment ID: 1101	OS87	Report Date: Feb 03, 207		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent		
eukemia	00.70					
CCRF-CEM HL-60(TB)	82.70 97.61					
K-562	71.05					
MOLT-4	58.65					
RPMI-8226	94.76					
SR	77.82					
Non-Small Cell Lung Cancer	80.00					
A549/ATCC EKVX	80.66 75.34					
HOP-62	89.05					
HOP-92	74.21		-			
NCI-H226	86.74					
NCI-H23 NCI-H322M	83.17 72.67		·			
NCI-H322M NCI-H460	87.36					
NCI-H522	90.05					
Colon Cancer	88225 (5.54, 75.5					
COLO 205	102.68					
HCC-2998	102.35					
HCT-116 HCT-15	63.15 80.96					
HT29	80.75		-			
KM12	88.20		1			
SW-620	84.23		•			
NS Cancer SF-268	89.60					
SF-205	86.27					
SF-539	97.53		-			
SNB-19	101.55					
SNB-75	80.78					
U251 Nelanoma	94.01					
LOX IMVI	84.68					
MALME-3M	95.57		-			
M14 MDA MR 435	94.58 97.07					
MDA-MB-435 SK-MEL-2	106.14					
SK-MEL-28	107.74					
SK-MEL-5	89.22					
UACC-257	97.97					
UACC-62 Ovarian Cancer	75.87					
IGROV1	53.76					
OVCAR-3	95.78		-			
OVCAR-4	93.36					
OVCAR-5 OVCAR-8	77.30 99.85					
NCI/ADR-RES	95.00					
SK-OV-3	92.84		•			
tenal Cancer	00.40					
786-0 A498	96.46 89.10					
ACHN	74.33		-			
CAKI-1	57.43					
RXF 393	110.45					
SN12C UO-31	87.36 51.55					
Prostate Cancer	01.00					
PC-3	67.79					
DU-145	109.45					
Breast Cancer MCF7	76.47					
MDA-MB-231/ATCC	68.39					
BT-549	99.13		1000			
T-47 D MDA-MB-468	72.49 119.11					
WD/4-WD-400	117.11					
Mean	86.38					
Delta Range	34.83 67.56					
35-5550 99 559	1.000300317531					
	150	100 50	0 -50	-100 -150		
	2005) 1	1999	82 8 7 77	(1997)) (ADA		

Figure (2) Maen graph one dose screening of 1_i

One Dece Me				
One Dose we	an Graph	Experiment ID: 1101	OS87	Report Date: Feb 03, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
eukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	90.92 100.22 76.69 75.09 93.10 89.79		=	
Ion-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322 NCI-H3	78.08 92.09 96.56 65.77 95.12 90.04 94.19 90.80 88.29			
COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	103.48 101.88 78.21 93.30 92.07 83.31 87.23			
NS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Jelanoma	99.12 75.79 104.56 113.06 76.20 91.64		1	
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	91.70 104.86 91.67 104.96 117.60 110.32 104.38 97.73 90.79		- The	
Jvarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	92.57 89.75 105.91 92.79 98.97 95.63 100.06		Ť.	
786-0 A498 ACHN CAKI-1 RXF 393 SN12C UO-31 Prostate Cancer	105.42 95.52 86.38 53.07 94.67 103.59 66.86		1	
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC BT-549	69.02 105.82 104.09 79.28 102.05			
T-47D MDA-MB-468	99.38 101.32		-	
Mean Delta Range	92.63 39.56 64.53			

Figure (3): Maen graph one dose screening of 1_l

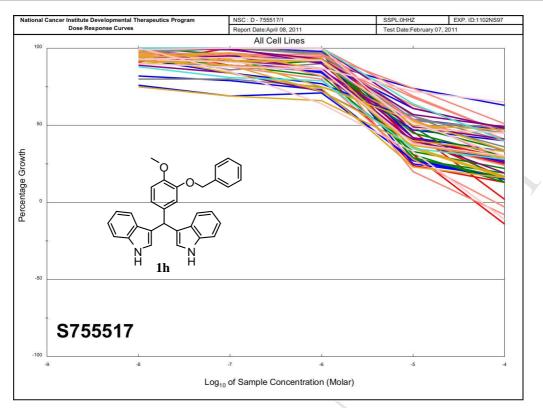


Figure (4): Superposition of all the growth curves of compound $\mathbf{1}_h$

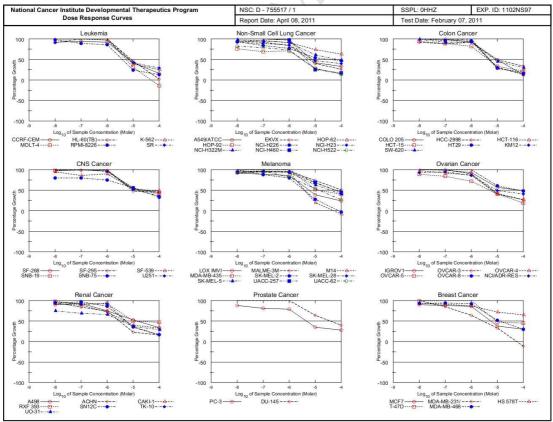


Figure (5): Dose-response curves of the five-dose screening of $\mathbf{1}_{\mathbf{b}}$

Developmental Therapeutics Program NSC: D-758511/1 Conc: 1.00E-5 Molar Test Date: May 09, 2011 **One Dose Mean Graph** Experiment ID: 1105OS49 Report Date: Jun 28, 2011 Panel/Cell Line **Growth Percent Mean Growth Percent - Growth Percent** Panel/Cell Line Leukemia HL-60(TB) K-562 MOLT-4 RPMI-8226 Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H322M NCI-H322M NCI-H322C Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 U251 Melanoma 93.01 93.77 87.83 93.28 101.29 85.39 85.39 103.65 117.34 113.20 99.57 92.60 101.36 76.28 102.90 94.79 93.94 91.90 90.98 105.92 91.96 104.78 108.54 89.59 104.31 U251 Melanoma LOX IMVI MALME-3M 97.54 91.90 91.90 89.19 87.83 102.34 96.34 113.79 104.58 MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 93.61 94.67 124.29 92.04 88.96 107.28 106.83 CI, SK-C .enal Car. 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468 SK-OV-3 Renal Cancer 786-0 105.46 97.88 97.88 113.64 98.38 80.17 112.55 96.88 106.78 57.58 107.22 115.99 89.39 89.23 109.72 113.56 85.57 115.17 98.65 41.07 66.71 150 100 50 0 -50 -100 -150

Figure (6): Maen graph one dose screening of 2_{f}

One Dose Me	an Graph	Experiment ID: 1105	OS49	Report Date: J	un 28, 201
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Leukemia HL-60(TB)	92.43				
K-562	69.13				
MOLT-4	57.59				
RPMI-8226	85.35		-		
Ion-Small Cell Lung Cancer A549/ATCC	70.47				
EKVX	60.37				
HOP-62	87.43				
HOP-92 NCI-H226	56.36 95.18				
NCI-H23	72.69				
NCI-H322M	74.83		• •		
NCI-H460	68.71				
NCI-H522 Colon Cancer	40.64				
COLO 205	89.45				
HCC-2998	89.55				
HCT-116 HCT-15	58.49 67.40				
HT29	57.82				
KM12	73.25				
SW-620 SNS Cancer	80.96		•		
SF-268	93.10				
SF-295	67.24				
SF-539 SNB-19	95.85 89.22				
U251	75.14				
lelanoma					
	76.41				
MALME-3M M14	95.88 78.68				
MDA-MB-435	79.49		•		
SK-MEL-28	95.93				
SK-MEL-5 UACC-257	71.78 97.58				
UACC-62	77.85		•		
Ovarian Cancer IGROV1	62.03				
OVCAR-3	96.52				
OVCAR-4	73.12				
OVCAR-5 OVCAR-8	85.87 89.33				
NCI/ADR-RES	79.55				
SK-OV-3	94.58				
Renal Cancer 786-0	76.33				
A498	78.86		•		
ACHN	70.22				
CAKI-1 RXF 393	41.36 85.59				
SN12C	81.56		•		
TK-10	94.84				
UO-31 Prostate Cancer	39.78				
PC-3	48.49				
DU-145	98.24				
reast Cancer MCF7	59.07				
MDA-MB-231/ATCC	63.58				
HS 578T BT-549	88.18 81.59				
T-47D	59.13				
MDA-MB-468	112.86				
Mean	76.84				
Delta Range	37.06 73.08				
	150	100 50	0 -50	-100	-150
	150	100 50	5 -50	-100	-130

Figure (7): Maen graph one dose screening of ${\bf 2i}$

Developmental Ther	apoulloo i rogiulli	NSC: D-758512/1	Conc: 1.00E-5 Molar	Test Date: May	09, 2011
One Dose Mea	an Graph	Experiment ID: 1105	Report Date: Jun 28, 201		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
eukemia HL-60(TB)	92.43				
K-562	69.13				
MOLT-4	57.59				
RPMI-8226	85.35		-		
Ion-Small Cell Lung Cancer A549/ATCC	70.47				
EKVX	60.37				
HOP-62	87.43				
HOP-92 NCI-H226	56.36 95.18				
NCI-H220 NCI-H23	72.69				
NCI-H322M	74.83		• •		
NCI-H460	68.71				
NCI-H522 Colon Cancer	40.64				
COLO 205	89.45				
HCC-2998	89.55				
HCT-116 HCT-15	58.49 67.40				
HT29	57.82				
KM12	73.25		_ _		
SW-620 SNS Cancer	80.96				
SF-268	93.10				
SF-295	67.24				
SF-539 SNB-19	95.85 89.22				
U251	75.14				
1elanoma	70.44				
LOX IMVI MALME-3M	76.41 95.88				
M14	78.68		•		
MDA-MB-435	79.49				
SK-MEL-28 SK-MEL-5	95.93 71.78				
UACC-257	97.58				
UACC-62	77.85				
Ovarian Cancer IGROV1	62.03				
OVCAR-3	96.52				
OVCAR-4	73.12				
OVCAR-5 OVCAR-8	85.87 89.33				
NCI/ADR-RES	79.55		• •		
SK-OV-3	94.58				
Renal Cancer 786-0	76.33				
A498	78.86		• •		
ACHN CAKI-1	70.22 41.36				
RXF 393	85.59				
SN12C	81.56				
TK-10 UO-31	94.84 39.78				
rostate Cancer					
PC-3	48.49				
DU-145 reast Cancer	98.24				
MCF7	59.07				
MDA-MB-231/ATCC	63.58 88.18				
HS 578T BT-549	81.59				
T-47D	59.13				
MDA-MB-468	112.86				
Mean	76.84				
Delta Range	37.06 73.08				
	150	100 50	0 -50	-100	-150

Figure (8): Maen graph one dose screening of ${\bf 2_i}$

Developmental Ther	apeutics Program	NSC: D-758514/1	Conc: 1.00E-5 Molar	Test Date: May	09,2011
One Dose Me	an Graph	Experiment ID: 1105	Report Date: Jun 28, 201		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
eukemia HL-60(TB)	71.69				
K-562	91.85				
MOLT-4 RPMI-8226	100.00 98.07				
Non-Small Cell Lung Cancer	56.07				
A549/ATCC	102.55				
EKVX	100.02 82.44				
HOP-62 HOP-92	89.60				
NCI-H226	113.72				
NCI-H23 NCI-H322M	87.64 106.18		and the second se		
NCI-H460	74.67				
NCI-H522	67.55				
Colon Cancer COLO 205	104.17				
HCT-116	92.35				
HCT-15	101.24				
HT29 KM12	103.79 104.52				
SW-620	75.56				
CNS Cancer SF-268	111.10		_		
SF-295	99.02				
SF-539	100.18				
SNB-19 U251	109.29 91.47		_		
Melanoma	24 14 20 100				
LOX IMVI MALME-3M	95.39 101.60				
M14	102.10				
MDA-MB-435	100.85		2		
SK-MEL-28 SK-MEL-5	102.29 106.20				
UACC-257	106.52				
UACC-62 Dvarian Cancer	100.27				
IGROV1	105.11				
OVCAR-3	108.60 101.27				
OVCAR-4 OVCAR-5	104.54		-		
OVCAR-8	96.21				
NCI/ADR-RES SK-OV-3	108.71 91.66				
Renal Cancer	555446834220				
786-0 A498	92.18 118.27				
ACHN	104.77				
CAKI-1	95.32				
RXF 393 SN12C	104.21 99.00	-			
TK-10	139.73				
UO-31 Prostate Cancer	76.77				
PC-3	76.27				
DU-145 Proper Conner	97.18				
Breast Cancer MCF7	94.71				
MDA-MB-231/ATCC	84.64				
HS 578T BT-549	97.29 94.79				
T-47D	96.62				
MDA-MB-468	121.33				
Mean	98.24				
Delta Range	30.69 72.18	8			
	150	100 50	0 -50	-100	-150

Figure (9): Maen graph one dose screening of 2_{l}

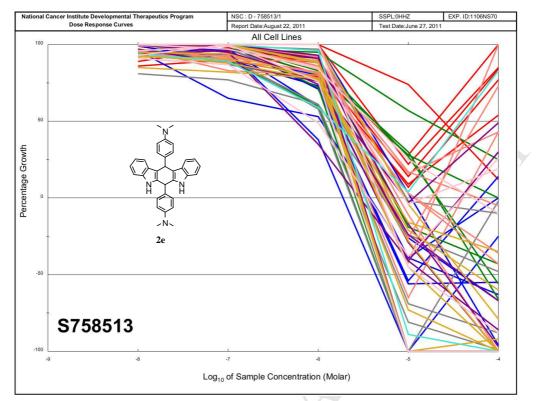


Figure (10): Superposition of all the growth curves for compound 2e

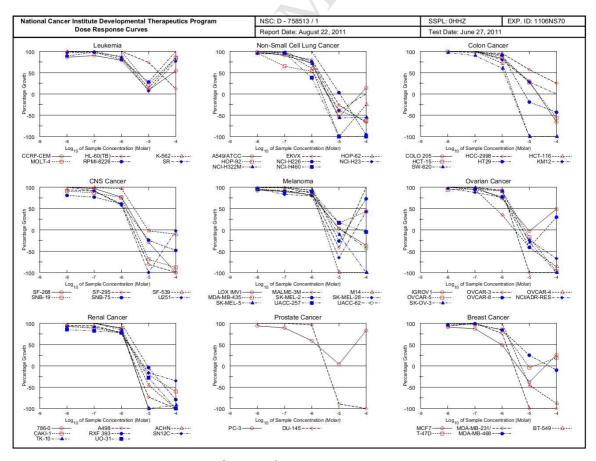
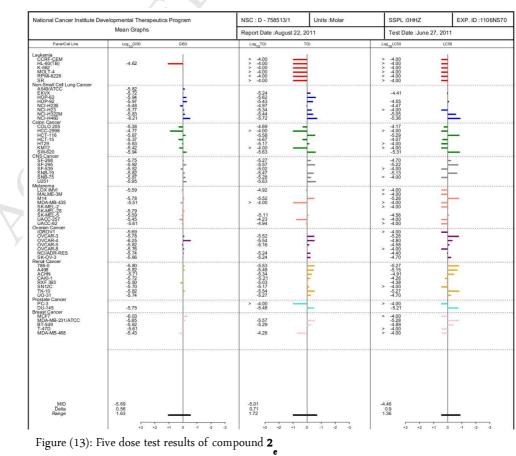



Figure (11): Dose response curves of compound **2**

National Cancer Institute Dev	elopmental Therape	utics Program	NSC : D - 755517/1	Units :Molar	SSPL :0HHZ	EXP. ID :1102NS97
Mean Graphs		Report Date :April 08, 20	011	Test Date :February 07, 2011		
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI	TGI	Log 10 LC50	LC 50
eukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR on-Small Cell Lung Cancer	-5.16 -5.06 -5.19 -5.26 -5.42 -5.14		> 4.00 > 4.00 > 4.00 - 4.32 > 4.00 > 4.00	-	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H222M NCI-H322M NCI-H460 NCI-H460	-5.14 -5.23 > 4.00 -5.52 -4.46 -5.09 -4.12 -5.34 -5.50		> 4.00 > 4.00		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00	
Jon Cancer COLO 205 HCC-2998 HCC-2998 HCC-116 HCT-116 HT29 SW-620 SW-620 SF-268 SF-268 SF-268 SF-295 SF-268 SF-295 SF-539 SNB-16 SNB-16 SNB-16 SNB-16	-5.02 -5.03 -5.30 -5.34 -5.32 -5.29 -5.11	ļ	> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00	
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 elanoma	-4.55 -5.04 -4.39 -4.63 -4.73 -4.89		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00	
lefanoma LOX IIW/I MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-257 UACC-257	-5.24 > -4.00 -5.41 -4.82 -5.42 -4.21 -4.21 -4.419 -4.85		> 4.00 > 4.00 4.28 - 4.00 - 4.10 - 4.00 - 4.00 - 4.00 - 4.00 - 4.00 - 4.00	-	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
Warian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES tenal Cancer	-4.16 -5.16 -5.21 -5.30 -4.17 -5.02		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	-4.83 -5.52 -5.32 -4.92 -5.28 -5.26 -5.26 -5.45	Ē	> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
rostate Cancer PC-3 DU-145	-5.35 -4.42		> -4.00 > -4.00		> -4.00 > -4.00	
areast Cancer MCF7 MDA-MB-231/ATCC H5 578T H5 578T T-47D MDA-MB-468	-5.25 -5.55 > -4.00 -5.03 -4.90		> 4.00 4.25 > 4.00 > 4.00 > 4.00 > 4.00		> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00	
MID Delta Range	-4.96 0.59 1.55		-4.02 0.3 0.32	_	-4.0 0 0.0	

Figure (12): Five dose test results of compound $\mathbf{1}_{\mathbf{h}}$

Developmental Ther		NSC: D-755517 / 1	Conc: 1.00E-5 Molar	Test Date: Jan 10, 2011		
One Dose Me	an Graph	Experiment ID: 110	Report Date: Feb 03, 201			
Panel/Cell Line	Growth Percent	Mean Growth	cent			
eukemia CCRF-CEM	41.24		-			
HL-60(TB) K-562	47.74 37.52					
MOLT-4	20.53					
RPMI-8226	42.97 38.00		<u> </u>			
SR Ion-Small Cell Lung Cancer	38.00					
A549/ATCC	44.24		•			
EKVX HOP-62	33.06 85.39					
HOP-92	37.86					
NCI-H226 NCI-H23	75.60 48.28					
NCI-H322M	53.46					
NCI-H460 NCI-H522	9.25 44.03					
Colon Cancer						
COLO 205 HCC-2998	28.69 52.61					
HCT-116	19.91		—			
HCT-15 HT29	43.97 20.89					
KM12	28.51					
SW-620 CNS Cancer	37.08					
SF-268	52.76		-			
SF-295	41.84					
SF-539 SNB-19	75.91 56.58					
SNB-75	64.21					
U251 Aelanoma	39.48					
LOX IMVI	35.11					
MALME-3M M14	76.44 19.50					
MDA-MB-435	39.23					
SK-MEL-2 SK-MEL-28	62.89 75.02					
SK-MEL-5	53.71					
UACC-257 UACC-62	64.60 67.03					
Dvarian Cancer						
IGROV1 OVCAR-3	23.79 42.79		-			
OVCAR-4	68.99					
OVCAR-5 OVCAR-8	52.85 54.18					
NCI/ADR-RES	43.84					
SK-OV-3 Renal Cancer	82.74					
786-0	66.10					
A498 ACHN	63.36 37.06					
CAKI-1	15.65					
RXF 393 SN12C	71.08 45.51					
UO-31	18.10					
Prostate Cancer PC-3	31.31					
DU-145	63.31					
Breast Cancer MCF7	21.93					
MDA-MB-231/ATCC BT-549	50.81 80.58					
T-47D	43.17					
MDA-MB-468	56.56					
Mean	47.39					
Delta Range	38.14 76.14					
i taliye	10.14					
	150	100 50	0 -50	-100 -150		
	150	100 50	0 -50	-100 -150		

Figure(14): Results of the one-dose screening of $\mathbf{1}_{\mathbf{h}}$.

		Natio	onal (Cano	er Ir			evelop Testii				peut	ics Progra	am		
NSC : D - 755	517 / 1				Exp	erimer	nt ID : 1	102NS97	7			Test	t Type : 08		Units : N	Iolar
Report Date :	April 08	8, 2011			Tes	t Date	: Febru	ary 07, 2	011			QNS	S :		MC :	
COMI : Elm 16	68a (10	1196)			Sta	in Rea	gent : S	RB Dual	Pass	Related	ł	SSF	PL:0HHZ			
Log10 Concentration Time Mean Optical Densities Percent Grow																
Panel/Cell Line Leukemia	Time Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	ercent G -6.0	-5.0	-4.0	GI50		TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.313 0.835 0.221 0.527 0.750 0.351	1.220 2.419 1.713 1.800 1.982 1.070	1.147 2.537 1.724 1.874 1.961 1.007	1.169 2.518 1.758 1.938 1.844 1.108	1.148 2.480 1.672 1.866 1.815 1.072	0.694 1.571 0.804 0.919 1.046 0.651	0.456 0.865 0.594 0.452 0.915 0.557	92 107 101 106 98 91	94 106 103 111 89 105	92 104 97 105 86 100	42 46 39 31 24 42	16 2 25 -14 13 29	6.91E-6 8.67E-6 6.49E-6 5.51E-6 3.83E-6 7.20E-6	> > >	1.00E-4 1.00E-4 1.00E-4 4.83E-5 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H480 NCI-H480 NCI-H522	Cancer 0.380 0.709 0.346 1.088 0.896 0.696 0.515 0.201 0.538	1.540 1.863 0.976 1.583 1.877 1.953 1.214 1.575 1.262	1.560 1.805 0.936 1.464 1.812 1.854 1.203 1.625 1.136	1.595 1.772 0.952 1.429 1.721 1.820 1.180 1.616 1.114	1.519 1.677 0.918 1.438 1.649 1.759 1.150 1.538 1.067	0.866 1.167 0.815 1.225 1.422 1.281 0.940 0.549 0.733	0.761 1.007 0.745 1.164 1.357 1.196 0.854 0.438 0.650	102 95 94 76 93 92 98 104 82	105 92 69 84 89 95 103 79	98 84 91 71 85 91 97 73	42 40 74 28 54 47 61 25 27	33 26 63 15 47 40 48 17 15	7.18E-6 5.83E-6 > 1.00E-4 3.03E-6 3.49E-5 8.10E-6 7.51E-5 4.54E-6 3.15E-6	~ ~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.277 0.490 0.251 0.315 0.225 0.405 0.226	1.275 1.731 1.594 1.662 1.096 1.671 1.502	1.329 1.627 1.645 1.577 1.093 1.701 1.491	1.261 1.584 1.667 1.513 1.061 1.682 1.394	1.209 1.630 1.614 1.419 1.047 1.631 1.398	0.766 1.094 0.631 0.763 0.475 0.796 0.796	0.410 0.918 0.504 0.613 0.364 0.575 0.611	105 92 104 94 100 102 99	99 88 105 89 96 101 92	93 92 101 82 94 97 92	49 49 28 33 29 31 45	13 34 19 22 16 13 30	9.47E-6 9.31E-6 5.05E-6 4.53E-6 4.74E-6 5.12E-6 7.71E-6	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	 > 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.544 0.706 0.818 0.425 0.713 0.237	1.747 2.433 2.032 1.187 1.161 1.113	1.708 2.454 1.972 1.174 1.072 1.112	1.743 2.418 1.862 1.209 1.072 1.110	1.714 2.426 1.907 1.166 1.048 1.075	1.194 1.532 1.463 0.849 0.965 0.690	1.085 1.487 1.401 0.733 0.861 0.556	97 101 95 98 80 100	100 99 86 103 80 100	97 100 90 97 75 96	54 48 53 56 56 52	45 45 48 40 33 36	2.79E-5 9.07E-6 4.12E-5 2.35E-5 1.87E-5 1.28E-5	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.259 0.698 0.403 0.537 0.899 0.542 0.534 0.613 0.735	1.776 1.499 1.198 2.111 1.312 1.335 2.357 1.100 1.842	1.655 1.436 1.177 2.109 1.316 1.298 2.227 1.120 1.797	1.610 1.468 1.169 2.200 1.264 1.288 2.303 1.142 1.807	1.568 1.470 2.153 1.229 1.296 2.222 1.142 1.642	0.845 1.292 0.560 1.358 1.016 1.082 1.679 0.950 1.335	0.623 1.107 0.373 1.165 0.870 0.900 1.277 0.834 1.029	92 97 100 101 95 93 104 96	89 96 106 88 94 97 109 97	86 94 103 80 95 93 109 82	39 74 20 52 28 68 63 69 54	24 51 -8 40 -3 45 41 45 27	5.76E-6 > 1.00E-4 3.91E-6 1.50E-5 3.78E-6 6.12E-5 3.81E-5 6.40E-5 1.42E-5	> > > > >	1.00E-4 1.00E-4 5.28E-5 1.00E-4 7.87E-5 1.00E-4 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES	0.518 0.405 0.453 0.575 0.313 0.581	1.792 1.215 1.309 1.425 1.208 1.885	1.851 1.215 1.291 1.330 1.229 1.798	1.783 1.214 1.245 1.291 1.224 1.816	1.706 1.138 1.200 1.186 1.218 1.697	1.248 0.749 0.798 0.922 0.855 1.224	1.138 0.627 0.687 0.735 0.742 1.112	105 100 98 89 102 93	99 100 92 84 102 95	93 90 87 72 101 86	57 42 40 41 61 49	49 27 27 19 48 41	6.98E-5 6.95E-6 6.22E-6 5.04E-6 6.81E-5 9.56E-6	~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Renal Cancer A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.939 0.424 0.844 0.711 0.650 0.640 0.562	1.720 1.224 2.467 1.373 1.718 1.124 1.821	1.362 1.657	2.292 1.317 1.681 1.078	1.019 2.013 1.324 1.565 1.087	1.044 1.035	1.373 1.021 0.836 0.715	90 95 92 98 94 96 75	93 84 92 97 91 69	75 74 72 93 86 92 66	53 23 40 50 36 35 37	34 16 33 47 17 16 29	1.46E-5 3.01E-6 4.78E-6 1.20E-5 5.22E-6 5.47E-6 3.52E-6	~ ~ ~ ~ ~	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.450 0.392	1.300 1.368		1.142 1.401				88 104	81 103	79 106	35 64	28 40	4.47E-6 3.81E-5		1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T T-47D MDA-MB-468	0.480	2.257 1.170 1.289 1.280 1.367	2.088 1.229 1.235 1.276	2.044 1.083 1.220 1.305 1.319	2.015 0.965 1.186 1.299	1.157 0.782 1.073 0.919	1.012 0.528 1.013 0.893	90 110 93 99 93	88 85 91 104 94	86 64 87 103 92	38 33 72 48 52	30 -11 65 45 30	5.67E-6 2.84E-6 > 1.00E-4 9.32E-6 1.27E-5	> > >	1.00E-4 5.57E-5 1.00E-4 1.00E-4 1.00E-4	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4

Figure (16): Five dose testing results of compound $\mathbf{1}_{h}$.

Developmental Ther	apoulloo i logiulli	NSC: D-758513/1	Conc: 1.00E-5 Molar	Test Date: May	09, 2011
One Dose Me	an Graph	Experiment ID: 1105	Report Date: Jun 28, 201		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
eukemia HL-60(TB)	85.63				
K-562	56.77				
MOLT-4 RPMI-8226	61.55 103.63				
Ion-Small Cell Lung Cancer					
A549/ATCC EKVX	35.07 28.58				
HOP-62	-44.87			-	
HOP-92	-20.13				
NCI-H226 NCI-H23	58.36 5.55				
NCI-H322M	54.20				
NCI-H460 NCI-H522	-15.58 -23.83				
Colon Cancer					
COLO 205 HCC-2998	35.06 78.09				
HCT-116	7.08				
HCT-15	42.53 35.90				
HT29 KM12	44.00				
SW-620	6.72				
CNS Cancer SF-268	37.80				
SF-268 SF-295	-23.09				
SF-539 SNB-19	38.81 25.73				
U251	-51.91				
Aelanoma LOX IMVI	42.67				
MALME-3M	21.37				
M14 MDA-MB-435	-29.41 44.51				
SK-MEL-28	17.60		•		
SK-MEL-5 UACC-257	45.69 83.91				
UACC-62	39.50				
Ovarian Cancer IGROV1	33.23				
OVCAR-3	-52.72				
OVCAR-4 OVCAR-5	14.28 36.61				
OVCAR-8	20.00				
NCI/ADR-RES SK-OV-3	19.48 26.87				
Renal Cancer					
786-0 A498	-35.79 -7.03				
ACHN	9.61				
CAKI-1 RXF 393	13.72 30.66				
SN12C	27.74				
TK-10 UO-31	-18.32 12.35				
Prostate Cancer					
PC-3 DU-145	36.54 46.83				
Breast Cancer					
MCF7 MDA-MB-231/ATCC	24.23 -30.21				
HS 578T	-8.41				
BT-549 T-47D	8.92 28.15				
MDA-MB-468	47.27				
Mean Delta	21.63 74.35				
Range	156.35			-	
	150	100 50	0 -50	-100	-150

		Natio	onal (Cano	er Ir			evelop Testir				apeut	ics Progran	n	
NSC : D - 758513 / 1				Exp	Experiment ID : 1106NS70						Test	Test Type : 08		Units : Molar	
Report Date :	August	22, 201 ⁻	1		Tes	t Date	: June	27, 2011				QNS	S :	MC :	
COMI : Elm-2	13a (10	5821)			Sta	in Rea	gent : S	RB Dual-	Pass	Related	d	SSP	PL:0HHZ		
Densiliarit	Time	014				l Densit	ies	ncentration		ercent C		4.0	0150	TO	1.050
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	Zero 0.557 0.977 0.168 0.522 0.384 0.374	Ctrl 1.688 2.710 1.073 1.548 1.035 1.380	-8.0 1.525 2.699 1.064 1.592 0.960 1.341	-7.0 1.571 2.783 1.049 1.584 1.024 1.387	-6.0 1.455 2.718 0.965 1.574 0.914 1.236	-5.0 0.663 2.252 0.299 0.748 0.564 0.440	-4.0 1.164 1.182 0.930 1.393 1.193 1.145	-8.0 99 99 104 89 96	-7.0 90 104 97 104 98 101	-6.0 79 100 88 103 81 86	-5.0 9 74 14 22 28 7	-4.0 54 12 84 85 124 77	GI50 2.41E-5	TGI > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	LC50 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lun A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460	g Cancer 0.333 0.707 0.364 1.098 0.752 0.627 0.347 0.224	1.611 1.743 1.094 1.382 1.456 1.698 0.757 1.797	1.593 1.692 1.111 1.370 1.470 1.645 0.770 1.843	1.488 1.674 1.075 1.282 1.453 1.662 0.776 1.739	1.263 1.537 0.804 1.247 1.455 1.446 0.638 0.821	0.153 0.526 -0.031 0.666 0.775 0.383 0.154 -0.071	0.509 0.235 0.274 0.407 0.027 0.626 0.155 -0.173	99 95 102 96 102 95 103 103	90 93 97 65 100 97 105 96	73 80 60 53 100 76 71 38	-54 -26 -100 -39 3 -39 -56 -100	14 -67 -25 -63 -96 -55 -100	1.51E-6 1.92E-6 1.16E-6 1.07E-6 3.28E-6 1.69E-6 1.46E-6 6.22E-7	5.72E-6 2.38E-6 3.73E-6 1.08E-5 4.59E-6 3.63E-6 1.88E-6	3.90E-5 2.83E-5 3.42E-5 > 1.00E-4 9.01E-6 4.34E-6
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.246 0.650 0.170 0.310 0.223 0.398 0.189	1.305 2.205 1.128 1.842 1.076 1.756 1.094	1.395 2.233 1.170 1.822 1.199 1.753 1.067	1.343 2.159 1.138 1.864 1.134 1.777 1.004	1.130 2.133 0.856 1.664 1.001 1.482 0.729	0.563 1.541 -0.016 0.727 0.181 0.779 -0.029	0.083 1.045 -0.350 0.136 0.126 0.405 -0.316	109 102 104 99 114 100 97	104 97 101 101 107 102 90	83 95 72 88 91 80 60	30 57 -100 27 -19 28 -100	-66 25 -100 -56 -43 -100	4.22E-6 1.69E-5 1.34E-6 4.24E-6 2.36E-6 3.77E-6 1.15E-6	2.05E-5 > 1.00E-4 2.61E-6 2.12E-5 6.72E-6 > 1.00E-4 2.36E-6	6.77E-5 > 1.00E-4 5.11E-6 8.44E-5 > 1.00E-4 > 1.00E-4 4.86E-6
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.327 0.783 0.824 0.436 0.617 0.291	1.134 2.216 2.025 1.503 1.459 1.233	1.133 2.125 2.073 1.403 1.295 1.237	1.114 2.085 2.019 1.363 1.261 1.153	0.946 1.655 1.995 1.252 1.128 0.839	0.234 0.151 0.807 0.135 0.471 -0.039	-0.437 0.005 0.740 0.052 0.319 0.285	100 94 104 91 81 100	97 91 99 87 77 92	77 61 97 76 61 58	-29 -81 -2 -69 -24 -100	-100 -99 -10 -88 -48 -2	1.79E-6 1.19E-6 3.00E-6 1.52E-6 1.34E-6 1.13E-6	5.35E-6 2.69E-6 9.53E-6 3.35E-6 5.24E-6 2.33E-6	1.99E-5 6.06E-6 > 1.00E-4 7.40E-6 > 1.00E-4
Melanoma LOX IMVI MALME-3M MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.314 0.544 0.369 0.384 0.846 0.321 0.644 0.691 0.566	1.879 0.860 1.251 1.689 1.603 1.063 1.929 1.412 2.336	1.783 0.858 1.278 1.634 1.700 1.042 1.991 1.386 2.193	1.716 0.857 1.305 1.591 1.730 0.939 1.940 1.332 2.204	1.604 0.816 1.189 1.461 1.611 0.917 1.831 1.343 1.996	0.364 0.313 -0.034 0.598 0.624 0.112 0.573 0.812 0.616	0.202 1.138 -0.418 0.945 1.396 0.641 -0.221 0.657 0.322	94 99 103 96 113 97 105 96 92	90 99 106 92 117 83 101 89 93	82 86 93 82 101 80 92 90 81	3 -42 -100 16 -26 -65 -11 17 3	-36 188 -100 43 73 43 -100 -5 -43	2.56E-6 1.67E-6 3.10E-6 1.62E-6 2.57E-6 3.54E-6 2.48E-6	1.21E-5 3.03E-6 > 1.00E-4 7.81E-6 5.93E-5 1.15E-5	 > 1.00E-4 > 1.00E-4 5.51E-6 > 1.00E-4 > 1.00E-4 2.74E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.420 0.433 0.396 0.467 0.311 0.532 0.566	1.215 1.091 1.499 1.181 1.275 1.620 1.510	1.279 1.111 1.497 1.137 1.290 1.585 1.546	1.268 1.103 1.440 1.154 1.231 1.487 1.499	1.011 1.045 0.785 1.114 1.065 1.360 1.423	0.408 -0.017 0.233 0.389 0.183 0.405 0.402	0.814 -0.409 0.057 0.016 0.601 0.174 -0.003	108 103 100 94 102 97 104	107 102 95 96 95 88 99	74 93 35 91 78 76 91	-3 -100 -41 -17 -41 -24 -29	49 -100 -86 -97 30 -67 -100	2.06E-6 1.67E-6 5.65E-7 2.39E-6 1.72E-6 1.82E-6 2.19E-6	3.03E-6 2.89E-6 6.97E-6 5.77E-6 5.72E-6	 > 1.00E-4 5.51E-6 1.58E-5 2.60E-5 > 1.00E-4 3.99E-5 1.97E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SM12C TK-10 UO-31	0.607 0.970 0.438 0.599 0.605 0.469 0.590 0.674	1.874 1.418 1.657 2.093 0.934 1.740 1.158 1.480	1.993 0.950 1.639 1.177	1.892 1.392 1.675 1.917 0.947 1.627 1.185 1.336	1.318 1.526 1.756 0.949 1.462 1.065	0.473 0.583 0.396 -0.044	-0.462 -0.192 0.239 0.129 0.304 0.045	101 95 101 93 105 92 103 85	101 94 101 88 104 91 105 82	88 78 89 77 104 78 84 78	-100 -73 -45 -21 -4 -16 -100 -28	-100 -100 -100 -60 -79 -35 -92 -100	1.60E-6 1.53E-6 1.90E-6 3.19E-6 2.00E-6 1.52E-6 1.82E-6	2.95E-6 3.28E-6 4.61E-6 6.11E-6 9.24E-6 6.81E-6 2.85E-6 5.41E-6	5.43E-6 7.05E-6 1.22E-5 5.51E-5 4.14E-5 > 1.00E-4 5.34E-6 2.01E-5
Prostate Cancer PC-3 DU-145	0.524 0.342	1.626 1.031		1.504 1.057				94 111	89 104	59 96	4 -89	83 -100	1.77E-6	> 1.00E-4 3.30E-6	> 1.00E-4 6.13E-6
Breast Cancer MCF7 MDA-MB-231/ATC BT-549 T-47D MDA-MB-468	0.212 C 0.437 0.905 0.448 0.682	1.153 1.064 1.618 1.150 1.377	1.018 1.667 1.179	1.026 1.065 1.692 1.131 1.370	0.914 1.680 1.043	0.495 0.430	-0.537 0.111 0.580	91 93 107 104 96	87 100 110 97 99	49 76 109 85 84	-38 -100 -45 -4 25	26 -100 -88 19 -10	9.29E-7 1.41E-6 2.40E-6 2.46E-6 3.74E-6	2.70E-6 5.08E-6 5.23E-5	<pre>> 1.00E-4 5.20E-6 1.29E-5 > 1.00E-4 > 1.00E-4</pre>

Figure (18): Five dose testing results of compound 2_{e} .

Developmental The		N8C: D-755521/1	Cono: 1.00E-5 Molar	Test Date: Jan 10, 2011
One Dose Me	an Graph	Experiment ID: 1101	Report Date: Feb 03, 201	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Pen	cent 🧧
Leukemia				
CCRF-CEM	94.29	1 1		
HL-60(TB)	128.59	1 1		
K-562	91.47	1 1		
MOLT-4	96.36			
RPMI-8226 BR	94.00			
Non-Small Cell Lung Cancer	100.85			
A549/ATCC	98.14	1 1		
EKVX	94.88	1 1		
HOP-52	103.12	1 1		
HOP-92	97.98	1 1	100	
NCI-H226	103.98	1 1		
NCI-H23	105.48	1 1		
NCI-H322M	89.81	1 1		
NCI-H460	111.93		100 million (100 m	
NCI-H522	103.14			
Colon Cancer COLO 205	104.13			
HCC-2998	107.97	1 1	-	
HCT-116	89.91	1 1		
HCT-15	100.56	1 1		
HT29	100.05	1 1		
KM12	102.97			
SW-620	93.36	1 1		
CNS Cancer		1 1		
SF-268	116.79			
SF-295	98.27	1 1		
SF-539 SNB-19	91.54		100	
	109.25			
8NB-75 U251	92.69		-	
Melanoma	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
LOX IMVI	96.58			
MALME-3M	108.26			
M14	102.85		1 2	
MDA-MB-435	100.64			
SK-MEL-2	108.23	1 1		
SK-MEL-28	115.84		_	
SK-MEL-5 UACC-257	102.49	1 1		
UACC-52	92,49			
Ovarian Cancer	24.42			
IGROV1	99.14	1 1	45 105	
OVCAR-3	108.57		-	
OVCAR-4	108.38		-	
OVCAR-5	102.74			
OVCAR-8	100.41			
NCI/ADR-RES	105.48		-	
SK-OV-3 Renal Cancer	105.24		1 1	
786-0	101.34			
A498	106.51			
ACHN	93.95			
CAKI-1	74.45			
RXF 393	115.46			
SN12C	103.75			
UO-31	64.28			
Prostate Cancer	99.95			
PC-3	88.06			
DU-145 Breast Cancer	120.00			
MCF7	105.91			
MDA-MB-231/ATCC	104.98			
BT-549	109.82		100	
T-47D	89.79		_	
MDA-MB-468	110.54			
	100.00			
Mean Delta	101.60		51 B	
Range	64.31		1	
	15-025-5			
	150	100 50	0 -50	-100 -150

Figure (19): Results of the one dose screening of 1e