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An enantioselective total synthesis of the cytotoxic natural product (+)-largazole (1) is described. It is a potent histone deacetylase inhibitor.
Our synthesis is convergent and involves the assembly of thiazole 3-derived carboxylic acid with amino ester 4 followed by cycloamidation
of the corresponding amino acid. The synthesis features an efficient cross-metathesis, an enzymatic kinetic resolution of a f-hydroxy ester,
a selective removal of a Boc-protecting group, a HATU/HOAt-promoted cycloamidation reaction, and synthetic manipulations to a sensitive

thioester functional group.

In January 2008, Luesch and co-workers reported the
isolation of largazole, a novel 16-membered depsipeptide
from Floridian marine cyanobacterium Symploca sp.' Lar-
gazole’s structure was elucidated by extensive NMR studies
and through chemical degradation. It has shown impressive
growth inhibitory activity of transformed mammary epithelial
cells (MDA-MB-231) in a dose-dependent manner with a
Glso value of 7.7 nM. In addition, it has shown excellent
selectivity over nontransformed murine mammary epithelial
cells (NMuMG) with a Glso of 122 nM. More recently,
Luesch, Hong, and co-workers reported the first total
synthesis of largazole. Their synthesis featured a macro-
cyclization at C6 and a late stage addition of the thioester
using cross-metathesis. Subsequently, they determined that
histone deacetylase (HDAC) is the molecular target for
largazole.” This is very significant as HDAC inhibitors are
emerging as a new and exciting class of antineoplastic agents
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for the treatment of solid and nematological malignancies.’
Incidentally, a number of depsipeptides are undergoing
clinical trials for treatment of various cancers.* Largazole’s
important biological activity, its selectivity for cancer cells,
and its unique structural features led to considerable interest
in its chemistry and biology. To establish structure-activity
relationships and design novel structural variants, we sought
a convergent route to largazole. Herein, we report an
enantioselective synthesis of (+)-largazole.

As shown in Figure 1, our synthetic strategy involves a
late-stage cycloamidation of a sterically less demanding
carboxylic acid and an amine to form the 16-membered ring
from the corresponding amino acid derived from 2. Ester
derivative 2 could be obtained by the formation of an amide
bond between the acid arising from thiazole methyl ester 3
and the 4-derived amine. Our plan is to carry out the
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Figure 1. Retrosynthetic analysis of largazole.

remainder of the synthesis with the sensitive thioester
functional group attached. The synthesis of thiazole 3 can
be achieved from a 5-derived thiazole acid and protected
(R)-2-methyl cysteine 6.° Amino ester 4 could be accessed
by a cross-metathesis reaction between thioester 8 and
optically active allylic alcohol 7 followed by a Yamaguchi
esterification with the appropriately protected L-valine.
Alcohol 7 could be prepared by a lipase-mediated kinetic
resolution of racemic -hydroxy ester.

Scheme 1. Synthesis of Segment 3
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As shown in Scheme 1, our synthesis starts with the known
azido amide 9° which was treated with Lawesson’s reagent
in THF for 12 h to provide the corresponding thioamide in
67% yield.” The resulting thioamide was then reacted with
ethyl bromopyruvate in refluxing ethanol for 1 h which
provided thiazole 5 in 82% yield.® Saponification of ester 5
with 1 M aqueous LiOH gave the acid. The resulting acid
was then coupled with trityl-protected o-methyl cysteine’
under EDC/HOBt conditions in the presence of diisopropyl-
ethylamine to furnish amide 10 in 96% yield over two steps.
The conversion to thiazole—thiazoline fragment 11 was
achieved following a procedure reported by Kelly and co-
workers.'? Accordingly, amide 10 was reacted with 3 equiv
of triphenylphosphine oxide and 1.5 equiv of Tf,0 in CH,Cl,
at 0 °C for 10 min to provide ester 11 in 89% yield. The
azide group in 11 was reduced using PPh; in refluxing
methanol'' to give the amine which was then exposed to
Boc,0O to furnish fragment 3 in 95% yield over two steps.

Optically active synthesis of [-hydroxy ester and its
conversion to ester 15 are shown in Scheme 2. Racemic aldol

Scheme 2. Synthesis of Thio Ester 15
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product 12 was prepared by LDA deprotonation of fert-butyl
acetate followed by reaction of the resulting enolate with
acrolein at —78 °C to provide 12 in 81% yield. The racemic
alcohol was then exposed to lipase PS-30 in pentane in the
presence of excess vinyl acetate at 23 °C for 12 h to provide
enantioenriched alcohol 13 and acetate derivative 14 in 45%
and 42% yields, respectively. Selective removal of the acetate
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was carried out by exposure of 14 to potassium carbonate
in methanol at —30 °C to afford optically active -hydroxy
ester 7 in high enantiomeric purity (93% ee). The enantio-
meric excess was determined by formation of the corre-
sponding Mosher ester of alcohol 15 followed by analysis
of 'F NMR.'? The kinetic resolution of -hydroxy ester has
provided a convenient access to optically active esters.'* For
preparation of alcohol 15 we planned a cross-metathesis of
alcohol 7 and thioester 8. The requisite thioester was prepared
by reaction of 3-butenethiol'* and octanoyl chloride in the
presence of DMAP. A cross-metathesis reaction of alcohol
7 and thioester 8 in the presence of 3 mol % of Grubbs’
second-generation catalyst afforded E-olefin 15 exclusively
in 67% yield."

The final assembly of the largazole fragment is shown in
Scheme 3. N-Boc-valine 16 was subjected to esterification
with alcohol 15 using Yamaguchi’s protocol.'® Accordingly,
reaction of 16 with 2.4,6-trichlorobenzoyl chloride in the
presence of diisopropylethylamine gave the anhydride.

Scheme 3. Synthesis of Largazole
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Reaction of the resulting anhydride with alcohol 15 and
DMAP furnished thioester 4 in 91% yield. Selective depro-
tection of the Boc group in the presence of a fert-butyl ester
was carried out by exposure of 4 to 30% trifluoroacetic acid
in CH,CI, at 0 °C for 20 min to provide amine 17. For
assembly of the largazole subunits, saponification of methyl
ester 3 was carried out with 1 M aqueous LiOH to give acid
18. Coupling of acid 18 with amine 17 was accomplished
by using HATU and HOAL in the presence of diisopropyl-
ethylamine to furnish the requisite protected amino ester 2
in 66% yield. Formation of the 16-membered cycloamide
was carried out in a two-step sequence involving (1) exposure
of 2 to trifluoroacetic acid at 23 °C for 3 h to remove both
the Boc and the tert-butyl groups and (2) treatment of the
resulting amino acid with 2 equiv of HATU and 2 equiv of
HOAt in the presence of diisopropylethylamine under dilute
conditions to provide synthetic (+)-largazole (1) in 40%
isolated yield (two steps). The spectral data ('H and '*C
NMR) of synthetic (+)-largazole (1, [0]*p +24, ¢ 0.13,
MeOH (lit."! [a]?°p +22, ¢ 0.1, MeOH)) is identical with
that reported for the natural (+)-largazole.'

In summary, we have accomplished an enantioselective
synthesis of (+)-largazole (1). The synthesis will provide a
convenient access to a variety of largazole derivatives.
Structural modifications are currently in progress.'’
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