Full Paper

Synthesis and *In-Vitro* Antimycobacterial Activity of Fluoroquinolone Derivatives Containing a Coumarin Moiety

Qiang Guo*, Ming-Liang Liu*, Lian-Shun Feng, Kai Lv, Yan Guan, Hui-Yuan Guo, and Chun-Ling Xiao*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China

A series of gatifloxacin, ciprofloxacin, and 8-OCH₃ ciprofloxacin coumarin derivatives with remarkable improvement in lipophilicity as compared to the parent fluoroquinolones was designed, synthesized, and characterized by ¹H-NMR, MS, and HRMS. These derivatives were evaluated for their *in-vitro* activity against *Mycobacterium smegmatis* CMCC 93202 and MTB H37Rv ATCC 27294. All of the synthesized compounds were less active than the parent compounds against *M. smegmatis* CMCC 93202, but the activity of compound **6** was found to be 2–8-fold more potent than ciprofloxacin, 8-OCH₃ ciprofloxacin, moxifloxacin, and rifampin, and comparable to gatifloxacin against MTB H37Rv ATCC 27294. These results indicated that the lipophilicity of the tested compounds is not the sole parameter affecting antimycobacterial activity.

Keywords: 8-OCH₃ ciprofloxacin / Antimycobacterial activity / Ciprofloxacin / Coumarin / Gatifloxacin

Received: September 6, 2010; Revised: November 22, 2010; Accepted: November 30, 2010

DOI 10.1002/ardp.201000256

Introduction

Tuberculosis (TB) is a common deadly contagious disease caused by various mycobacteria, mainly by *Mycobacterium tuberculosis* (MTB) in human [1]. The global epidemic of TB is assuming alarming proportions. The World Health Organization (WHO) has estimated that approximately 2 billion people have been infected with MTB, and about 2 million people are killed by this bacterial pathogen annually [2]. The increasing emergence of drug-resistant TB (DR-TB), especially multidrug-resistant TB (MDR-TB) is causing particular concern; Besides the emergence of DR-TB and MDR-TB, another contributing factor underlying the resurgence of TB is HIV co-infection with TB, in which TB is the leading cause of death among

HIV-positive patients [1, 3]. Accordingly, there is an urgent need to develop novel and highly effective anti-TB drugs.

Fluoroquinolone (FQ) antibacterial agents act by inhibiting bacterial type II DNA topoisomerases, DNA gyrase, and topoisomerase IV which are both required for cell growth and division [4]. DNA gyrase seems to be the sole topoisomerase drug target of FQs in MTB [5]. Resistance to FQs remains relatively low in clinical isolates of MTB currently, and there are no reports of cross-resistance or antagonism with other classes of antimycobacterial agents [6, 7]. Some early FQs, including ciprofloxacin (CPFX, Fig. 1), ofloxacin, and sparfloxacin were recommended as second-line agents for the treatment of TB mainly in cases involving resistance or intolerance to first-line anti-TB therapy by WHO in 1996 [8]. It was noted that newer FOs as moxifloxacin (MXFX, Fig. 1) and gatifloxacin (GTFX, Fig. 1), having a particularly strong in-vitro and in-vivo activity against MTB, could be promising agents for the treatment of TB [9].

Structure-activity relationship studies of FQs have been extensively investigated and the substituent at the C-7 position has great influence on their potency, spectrum, and

Correspondence: Dr. Ming-Liang Liu, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.

E-mail: xiaocl@163.com

Fax: +86-10-63036965

Dr. Chun-Ling Xiao, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.

E-mail: xiaocl@163.com

^{*} These two authors contributed equally to this article.

^{© 2011} WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1. Chemical structures of some fluoroquinolones.

safety [10–12]. The lipophilicity of FQs was suggested to play an important role in the penetration of them into bacterial cells, and simply increasing the lipophilic character at C-7 position could also increase the anti-TB activity [7, 13]. For example, some of FQs (CPFX, GTFX, and balofloxacin) derivatives containing a lipophilic isatin moiety were found to be far more active than the respective parent drugs [1, 7, 13].

Coumarin is an endogenous compound identified in many organisms [14], and its derivatives have variety of biological activities like antibacterial [15], anti-inflammatory [16], antitumor [17], and anti-TB activity [18]. Emami et al. synthesized a series of norfloxacin-, enoxacin-, and CPFX-coumarin conjugates and found that one of them showed comparable or better antibacterial activity than the parent FQ [19]. It was a pity that antimycobacterial activity of these derivatives with remarkable improvement in the lipophilicity was not assayed. It was reported that 8-OCH₃ FQs with N1-cyclopropyl substitution are much more active against resistant MTB than C-8 hydrogen analogs [20]. Accordingly, in this report, three classes of GTFX, a 8-OCH₃ FQ with strong anti-TB activity, CPFX, one of anti-TB agents, and its 8-OCH₃ analog (8-OCH₃ CPFX, Fig. 1) derivatives containing an (un)substituted coumarin moiety were designed and synthesized to explore the effect of lipophilic character at 7-position of these FQs on activity against mycobacteria.

Results and discussion

Chemistry

Detailed synthetic pathways to GTFX, CPFX and 8-OCH₃ CPFX coumarin derivatives **5–22** are depicted in Scheme 1. Aldol condensation and cyclization of 2-hydroxybenzaldehydes **1a–c** with ethyl acetoacetate in the presence of diethylamine gave 3-acetyl coumarins **2a–c** (40.6–72.8%). The compounds **2a–c** were converted to 3-(bromoacetyl)coumarins **3a–c** (54.6–80.6%) by refluxing with Br₂ in CHCl₃ or *tetra-n*-butylammonium tribromide (TBABr₃) in CH₂Cl₂. The oxime functional groups were introduced into the α -bromoketones **3a–c** by coupling with methoxyamine hydrochloride or ethoxyamine hydrochloride in the presence of NaOAc to afford

(i) CH₃COCH₂COOCH₂CH₃, Et₂NH, EtOH;
(ii) Br₂, CHCl₃ (for 2a) or TBABr₃, CH₂Cl₂ (for 2b,c);
(iii) CH₃ONH₂.HCl or C₂H₅ONH₂.HCl, NaOAc, MeOH;
(iv) GTFX, CPFX or 8-OCH₃ CPFX, NaHCO₃, DMF

Scheme 1. Synthetic route of fluoroquinolone derivatives 5-22.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 1.	Structures,	lipophilicity,	and antimy	vcobacterial	activity	of com	pounds 5-	-22
----------	-------------	----------------	------------	--------------	----------	--------	-----------	-----

5		1	
Э	-	4	

Compd.	R ₁	R ₂	R	Х	logP ^a	MIC (µg/mL)	
						M.s. ^b	MTB ^c
5	Н	0	Н	C-OCH ₃	2.24	6.25	1.0
6	OCH ₃	0	Н	C-OCH ₃	2.11	6.25	0.25
7	OH	0	Н	C-OCH ₃	1.85	6.25	1.0
8	Н	NOCH ₃	Н	C-OCH ₃	2.89	6.25	1.0
9	Н	NOC ₂ H ₅	Н	C-OCH ₃	3.23	6.25	>128
10	OCH ₃	NOCH ₃	Н	C-OCH ₃	2.76	6.25	>128
11	OCH ₃	NOC ₂ H ₅	Н	C-OCH ₃	3.10	6.25	>128
12	OCH ₃	0	CH_3	C-OCH ₃	2.43	>12.5	1.0
13	Н	NOCH ₃	CH_3	C-OCH ₃	3.21	>12.5	1.0
14	Н	NOC ₂ H ₅	CH_3	C-OCH ₃	3.55	>12.5	>128
15	OCH ₃	NOCH ₃	CH_3	C-OCH ₃	3.08	6.25	1.0
16	OCH ₃	NOC ₂ H ₅	CH_3	C-OCH ₃	3.42	6.25	1.0
17	OCH ₃	0	Н	CH	2.24	12.5	>128
18	OH	0	Н	CH	1.98	3.12	0.5
19	Н	NOCH ₃	Н	CH	3.02	12.5	1.0
20	Н	NOC ₂ H ₅	Н	CH	3.36	>12.5	2.0
21	OCH ₃	NOCH ₃	Н	CH	2.89	12.5	4.0
22	OCH ₃	NOC ₂ H ₅	Н	CH	3.23	12.5	4.0
GTFX					1.51	0.10	0.25
CPFX					1.32	0.39	1.0
8-OCH ₃ CPFX	K				1.20	0.1	0.5
MXFX					1.68	0.1	0.5
RIF						3.12	2.0
INH						0.78	0.125

^aThe log^p is calculated by ChemOffice 2009 software; ^bM.s.: *M. smegmatis* CMCC 93202; ^cMTB: MTB H37Rv ATCC 27294.

 α -bromooxime derivatives **4a-d** (68.2-93.8%) [14, 19, 21, 22]. Nucleophilic substitution reactions of FQs (GTFX, CPFX, and 8-OCH₃ CPFX) with α -bromoketones **3a-c** or α -bromooximes **4a-d** in DMF, in the presence of NaHCO₃, provide FQs derivatives **5-22** (35.4-68.6%).

Lipophilicity

Lipophilicity of the synthesized GTFX, CPFX, and 8-OCH₃ CPFX coumarin derivatives **5–22**, the parent compounds GTFX, CPFX, and 8-OCH₃ CPFX are expressed in the terms of their logP values which were calculated with ChemOffice 2009 software. As shown in Table 1, a remarkable improvement was seen in the lipophilicity of the derivatives **5–22** (1.85–3.55) as evidenced by logP values which were higher than compared with the respective parent GTFX, CPFX, and 8-OCH₃ CPFX (1.20–1.51) (statistically significant at p < 0.0001 using t-test). This may be rendering them more capable of penetrating various biomembranes, consequently improving their penetrability toward mycobacterial cell membrane. In other words, the improvement of the lipophilic character of the target compounds **5–22** probably enhances their antimy-cobacterial activity.

Pharmacology

The target compounds **5–22** were initially evaluated for their *in-vitro* antimycobacterial activity against *M. smegmatis* CMCC 93202 using serial double dilution technique in duplicate, and then against MTB H37Rv ATCC 27294 using rapid direct susceptibility test technique [1]. The minimum inhibitory concentration (MIC) is defined as the concentration of the compound required to give complete inhibition of mycobacterial growth, and MICs of the synthesized compounds along

with GTFX, CPFX, 8-OCH₃ CPFX, MXFX, and rifampin (RIF) for comparison are presented in Table 1. These data suggested that all of the target compounds had considerable activity against *M. smegmatis* CMCC 93202 (MIC: $3.12->12.5 \mu g/mL$), although less active than the respective parent GTFX, CPFX, and 8-OCH₃ CPFX (MIC: $0.1-0.39 \mu g/mL$, respectively).

Compounds **5–8**, **12**, **13**, **15**, **16**, **18**, and **19** (MIC: 0.25– 1.0 μ g/mL) showed good potency in inhibiting the growth of MTB H37Rv ATCC 27294. Among them, the activity of compound **18** (MIC: 0.5 μ g/mL) was 2-fold more potent than its parent CPFX (1.0 μ g/mL) and comparable to MXFX. The most active compound **6** (MIC: 0.25 μ g/mL) was found to be 2–8-fold more potent than 8-OCH₃ CPFX, CPFX, MXFX, and RIF and comparable to GTFX against this strain.

Conclusion

In summary, a series of GTFX, CPFX, and 8-OCH₃ CPFX coumarin derivatives was designed, synthesized, and characterized by ¹H-NMR, MS, and HRMS. These derivatives were initially evaluated for their *in-vitro* antimycobacterial activity against *M. smegmatis* CMCC 93202, and then against MTB H37Rv ATCC 27294. The data showed that all of the target compounds with improved lipophilicity were less active than the respective parent GTFX, CPFX, and 8-OCH₃ CPFX against *M. smegmatis* CMCC 93202. Some of them showed good activity against MTB H37Rv ATCC 27294 and the activity of 8-OCH₃ CPFX derivative **6** (MIC: 0.25 μ g/mL) was found to be 2–8-fold more potent than 8-OCH₃ CPFX, CPFX, and RIF and comparable to GTFX against this strain.

The relative contribution of GTFX, CPFX, and 8-OCH₃ CPFX moieties to activity against MTB H37Rv ATCC 27294 is as follows: (1) for 7-OCH₃ coumarin, 8-OCH₃ CPFX (MIC: 0.25 µg/mL) > GTFX (MIC: 0.5 µg/mL) > CPFX (MIC: 1.0 µg/mL), when R = O; GTFX (MIC: 1.0 µg/mL) > CPFX (MIC: 4.0 µg/mL) > 8-OCH₃ CPFX (MIC: >128 µg/mL), when R = NOCH₃ or NOC₂H₅; (2) for 7-OH coumarin, CPFX (MIC: 0.5 µg/mL) > 8-OCH₃ CPFX (MIC: 1.0 µg/mL), when R = O; (3) for 7-H coumarin, GTFX (MIC: 1.0 µg/mL), when R = NOCH₃ CPFX (MIC: 2.0 µg/mL) >> GTFX (MIC: >128 µg/mL) ≈ 8-OCH₃ CPFX (MIC: >128 µg/mL), when R = NOC₂H₅. Our results indicated that the lipophilicity of the tested compounds was not the sole parameter affecting antimycobacterial activity.

Experimental section

Chemistry

Melting points were determined in open capillaries and are uncorrected. ¹H-NMR spectra were determined on a Varian Mercury-400 spectrometer in DMSO-*d*₆ or CDCl₃ using tetramethylsilane (TMS) as an internal standard. Electrospray

 $\ensuremath{\mathbb{C}}$ 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ionization (ESI) mass spectra and high resolution mass spectra (HRMS) were obtained on a MDSSCIEX Q-Tap mass spectrometer and AccuTOF CS JMS-T100CS (JEOL) mass spectrometer, respectively. Unless otherwise noted, the reagents were obtained from commercial supplier and used without further purification. TLC was performed on silica gel plates (Merck, ART5554 60F₂₅₄).

General procedure for the synthesis of 2a-c

A solution of 2-hydroxybenzaldehydes 1a-c (0.38 mol), ethyl acetoacetate (50 mL, 0.39 mol), and diethylamine (1 mL, 0.02 mol) in ethanol (100 mL) was stirred at room temperature for 10 h. The yellow solid obtained was filtered, washed with ether and recrystallized from alcohol to afford the title compounds 2a-c.

3-Acetylcoumarin 2a

Yield: 72.8%. mp: 115–118°C ([23], mp: 118°C). ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 2.57 (3H, s, COCH₃), 7.39–7.46 (2H, m, Ph-H), 7.71–7.75 (1H, m, Ph-H), 7.93–7.95 (1H, m, Ph-H), 8.64 (1H, s, Ph-H). ESI-MS: m/z 189 (M+H)⁺.

3-Acetyl-7-methoxycoumarin 2b

Yield: 65.5%. mp: 171–173°C ([23], mp: 170°C). ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 2.54 (3H, s, COCH₃), 3.88 (3H, s, OCH₃), 6.99–7.05 (2H, m, Ph-H), 7.85–7.87 (1H, m, Ph-H), 8.62 (1H, s, Ph-H). ESI-MS: m/z 219 (M+H)⁺.

3-Acetyl-7-hydroxycoumarin 2c

Yield: 40.6%. mp: 244–245°C ([24], mp: 240°C). ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 2.54 (3H, s, COCH₃), 6.74–6.85 (2H, m, Ph-H), 7.76–7.79 (1H, m, Ph-H), 8.58 (1H, s, Ph-H). ESI-MS: m/z 204 (M+H)⁺.

Synthesis of 3a-c

3-Bromoacetylcoumarin 3a

To a solution of **2a** (10.0 g, 53.0 mmol) in CHCl₃ (100 mL) was added dropwise a solution of Br₂ (3.1 mL, 57.7 mmol) in CHCl₃ (20 mL) over a period of 0.5 h. The reaction mixture was stirred for 15 min at 60°C and concentrated under reduced pressure. The residue was treated with acetic acid (100 mL), filtered, and dried to provide the title compound **3a** (11.4 g, 80.6%) as a white solid. Mp: 163–164°C ([14], mp: 163–165°C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ_{ppm} : 4.88 (2H, s, BrCH₂CO), 7.42–7.50 (2H, m, Ph-H), 7.75–7.80 (1H, m, Ph-H), 7.97–7.99 (1H, m, Ph-H), 8.82 (1H, s, Ph-H). ESI-MS: *m*/*z* 267 (M+H)⁺, 269 (M+2+H)⁺.

General procedure for the synthesis of 3b,c

A solution of **2b,c** (9.0 mmol) and TBABr_3 (8.80 g, 18.0 mmol) in CH_2Cl_2 (100 mL) was stirred at room temperature for 12 h. The off-white solid obtained was collected to give the title compounds **3b,c**.

3-Bromoacetyl-7-methoxycoumarin 3b

Yield: 63.5%. mp: 206–207°C ([25], mp: 210–211°C). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm ppm}$: 3.93 (3H, s, OCH₃), 4.75 (2H, s, BrCH₂CO), 6.85–6.94 (2H, m, Ph-H), 7.57–7.59 (1H, m, Ph-H), 8.61 (1H, s, Ph-H). ESI-MS: *m*/*z* 297 (M+H)⁺, 299 (M+2+H)⁺.

3-Bromoacetyl-7-hydroxycoumarin 3c

Yield: 54.6%. mp: 214–216°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 4.82 (2H, s, BrCH₂CO), 6.74–6.88 (2H, m, Ph-H), 7.76–7.89 (1H, m, Ph-H), 8.58–8.85 (1H, m, Ph-H). ESI-MS: m/z 283 (M+H)⁺, 285 (M+2+H)⁺.

General procedure for the synthesis of 4a-d

A mixture of **3a-c** (1.8 mmol), methoxyamine hydrochloride or ethoxyamine hydrochloride (3.7 mmol), and anhydrous sodium acetate (0.20 g, 2.7 mmol) in methanol (30 mL) was stirred at 40° C for 10–12 h and concentrated under reduced pressure. The residue was treated with water (20 mL) and then filtered. The solid obtained was recrystallized from alcohol to afford the title compounds **4a-d**.

3-[2-Bromo-1-(methoxyimino)ethyl]coumarin 4a

Yield: 93.8%. mp: 147–149°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 4.01 (3H, s, OCH₃), 4.47 (2H, s, BrCH₂CN), 7.37–7.46 (2H, m, Ph-H), 7.65–7.87 (2H, m, Ph-H), 8.28 (1H, s, Ph-H). ESI-MS: m/z 296 (M+H)⁺, 298 (M+2+ H)⁺.

3-[2-Bromo-1-(ethoxyimino)ethyl]coumarin 4b

Yield: 90.5%. mp: 126–127°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.28 (3H, t, J = 7.2 Hz, CH₂CH₃), 4.27 (2H, q, J = 7.2 Hz, CH₂CH₃), 4.49 (2H, s, BrCH₂CN), 7.38–7.47 (2H, m, Ph-H), 7.66–7.70 (1H, m, Ph-H), 7.86–7.88 (1H, m, Ph-H), 8.30 (1H, s, Ph-H). ESI-MS: m/z 310 (M+H)⁺, 312 (M+2+H)⁺.

3-[2-Bromo-1-(methoxyimino)ethyl]-7-methoxycoumarin

Yield: 74.6%. mp: 120–121 °C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 3.87 (3H, s, OCH₃), 4.00 (3H, s, OCH₃), 4.48 (2H, s, BrCH₂CN), 6.99–7.06 (2H, m, Ph-H), 7.77–7.79 (1H, m, Ph-H), 8.23 (1H, s, Ph-H). MS (ESI, *m*/*z*): 326 (M+H)⁺, 328 (M+2+H)⁺.

3-[2-Bromo-1-(ethoxyimino)ethyl]-7-methoxycoumarin **4d** Yield: 68.2%. mp: 106–108°C. ¹H-NMR (400 MHz, DMSO-d₆) δ_{ppm} : 1.28 (3H, t, J = 7.2 Hz, CH₂CH₃), 3.87 (3H, s, OCH₃), 4.26 (2H, q, J = 7.2 Hz, CH₂CH₃), 4.48 (2H, s, BrCH₂CN), 6.99–7.07 (2H, m, Ph-H), 7.77–7.80 (1H, m, Ph-H), 8.22 (1H, s, Ph-H). ESI-MS: *m*/*z* 340 (M+H)⁺, 342 (M+2+H)⁺.

General procedure for the synthesis of 5–22

A mixture of GTFX, CPFX or 8-OCH₃ CPFX (2.5 mmol), 4a-d (2.7 mmol), and sodium bicarbonate (0.42 g, 5.0 mmol) in DMF (30 mL) was stirred at 0–10°C for 10–15 h. Water

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(20 mL) was added and the precipitate was filtered. The white solid obtained was recrystallized from alcohol to give the title compounds **5–22**.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(coumarin-3-yl)-2-oxo]ethylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3carboxylic acid **5**

Yield: 40.6%. mp: 219–221°C. ¹H-NMR (400 MHz, CDCl₃) δ_{ppm} : 1.01–1.26 (4H, m, 2 cyclopropyl CH₂), 3.36–3.66 (4H, m, piperazine), 3.84 (3H, s, OCH₃), 3.95–4.02 (4H, m, piperazine), 4.42 (2H, s, NCH₂CO), 4.70 (1H, s, cyclopropyl CH), 7.42–7.45 (2H, m, Ph-H), 7.75–7.79 (2H, m, Ph-H), 7.91–7.94 (1H, m, Ph-H), 8.82–8.84 (2H, m, Ph-H). ESI-MS: *m*/*z* 548 (M+H)⁺. HRMS-ESI: *m*/*z* calcd. for C₂₉H₂₇FN₃O₇ (M+H)⁺: 548.18330; Found: 548.18225.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(7-methoxycoumarin-3-yl)-2-oxo]ethylpiperazin-1-yl}-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid **6**

Yield: 42.6%. mp: 216–218°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.01–1.11 (4H, m, 2 cyclopropyl CH₂), 2.65–2.72 (4H, m, piperazine), 3.30 (3H, s, OCH₃), 3.34–3.35 (4H, m, piperazine), 3.75 (2H, s, NCH₂CO), 3.90 (3H, s, OCH₃), 4.15 (1H, s, cyclopropyl CH), 7.02–7.08 (2H, m, Ph-H), 7.72–7.89 (2H, m, Ph-H), 8.66–8.68 (2H, m, Ph-H). ESI-MS: m/z 578 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₀H₂₉FN₃O₈ (M+H)⁺: 578.19387; Found: 578.19461.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(7hydroxycoumarin-3-yl)-2-oxo]ethylpiperazin-1-yl}-1,4dihydro-4-oxoquinoline-3-carboxylic acid **7**

Yield: 36.5%. mp: 210–212°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 0.99–1.13 (4H, m, 2 cyclopropyl CH₂), 2.48–2.49 (4H, m, piperazine), 3.34 (4H, s, piperazine), 3.75 (3H, s, OCH₃), 3.87 (2H, s, NCH₂CO), 4.13–4.17 (1H, m, cyclopropyl CH), 6.61–6.75 (2H, m, Ph-H), 7.69–7.74 (2H, m, Ph-H), 8.54 (1H, s, Ph-H), 8.68 (1H, s, C₂-H). ESI-MS: m/z 564 (M+H)⁺. HRMS-ESI: m/z calcd. for C₂₉H₂₇FN₃O₈ (M+H)⁺: 564.17822; Found: 564.17646.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(coumarin-3-yl)-2-(methoxyimino)]ethylpiperazin-1-yl}-1,4-dihydro-4oxoquinoline-3-carboxylic acid **8**

Yield: 66.2%. mp: 207–209°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 0.98–1.10 (4H, m, 2 cyclopropyl CH₂), 2.49–2.61 (4H, m, piperazine), 3.10–3.27 (4H, m, piperazine), 3.61 (3H, s, OCH₃), 3.70 (3H, s, OCH₃), 3.74–3.92 (2H, m, NCH₂CN), 4.08–4.13 (1H, m, cyclopropyl CH), 7.38–7.46 (2H, m, Ph-H), 7.62–7.81 (3H, m, Ph-H), 8.15–8.19 (1H, m, Ph-H), 8.65–8.67 (1H, m, C₂-H). ESI-MS: m/z 577 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₀H₃₀FN₄O₇ (M+H)⁺: 577.20985; Found: 577.21041.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(coumarin-3-yl)-2-(ethoxyimino)]ethylpiperazin-1-yl}-1,4-dihydro-4oxoquinoline-3-carboxylic acid **9**

Yield: 64.5%. mp: 226–228°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 0.97–1.07 (4H, m, 2 cyclopropyl CH₂), 1.26 (3H, t, J = 6.8 Hz, CH₂CH₃), 2.49–2.51 (4H, m, piperazine), 3.14 (4H, s, piperazine), 3.64 (3H, s, OCH₃), 3.71 (2H, s, NCH₂CN), 4.09–4.11 (1H, m, cyclopropyl CH), 4.18 (2H, q, J = 6.8 Hz, CH₂CH₃), 7.36–7.46 (2H, m, Ph-H), 7.62–7.81 (3H, m, Ph-H), 8.19 (1H, s, Ph-H), 8.65 (1H, s, C₂-H). ESI-MS: m/z 591 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₁H₃₂FN₄O₇ (M+H)⁺: 591.22550; Found: 591.22327.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-

(7-methoxycoumarin-3-yl)-2-(methoxyimino)]ethylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3-carboxylic acid **10**

Yield: 58.6%. mp: 235–237°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 0.93–1.06 (4H, m, 2 cyclopropyl CH₂), 2.49 (4H, s, piperazine), 3.13 (4H, s, piperazine), 3.66 (3H, s, OCH₃), 3.69 (1H, s, cyclopropyl CH), 3.86 (3H, s, OCH₃), 3.90 (2H, s, NCH₂CN), 6.96–7.06 (2H, m, Ph-H), 7.64–7.72 (2H, m, Ph-H), 8.11 (1H, s, Ph-H), 8.60 (1H, s, C₂-H). ESI-MS: m/z 607 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₁H₃₂FN₄O₈ (M+H)⁺: 607.22042; Found: 607.22036.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(ethoxyimino)-2-(7-methoxycoumarin-3-yl)]ethylpiperazin-1-yl}-1,4dihydro-4-oxoquinoline-3-carboxylic acid **11**

Yield: 65.3%. mp: 211–212°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 0.97–1.08 (4H, m, 2 cyclopropyl CH₂), 1.25 (3H, t, J = 7.2 Hz, CH₂CH₃), 2.49 (4H, s, piperazine), 3.15 (4H, s, piperazine), 3.66 (3H, s, OCH₃), 3.70 (2H, s, NCH₂CN), 3.86 (3H, s, OCH₃), 4.13–4.19 (3H, m, CH₂CH₃ and cyclopropyl CH), 6.69–7.05 (2H, m, Ph-H), 7.67–7.72 (2H, m, Ph-H), 8.11 (1H, s, Ph-H), 8.65 (1H, s, C₂-H). ESI-MS: m/z 621 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₂H₃₄FN₄O₈ (M+H)⁺: 621.23607; Found: 621.23835.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-

(7-methoxycoumarin-3-yl)-2-oxo]ethyl-3-methylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3-carboxylic acid **12**

Yield: 62.6%. mp: 231–233°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.01–1.09 (7H, m, 2 cyclopropyl CH₂ and CH₃), 2.31–2.43 (1H, m, piperazine), 2.65–3.25 (6H, m, piperazine), 3.30 (3H, s, OCH₃), 3.74 (2H, s, NCH₂CO), 3.89 (3H, s, OCH₃), 4.09–4.13 (1H, m, cyclopropyl CH), 7.03–7.09 (2H, m, Ph-H), 7.72–7.94 (2H, m, Ph-H), 8.61 (1H, s, Ph-H), 8.68 (1H, s, C₂-H). ESI-MS: *m*/*z* 592 (M+H)⁺. HRMS-ESI: *m*/*z* calcd. for C₃₁H₃₁FN₃O₈ (M+H)⁺: 592.20952; Found: 592.20786.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(coumarin-3-yl)-2-(methoxyimino)]ethyl-3-methylpiperazin-1-yl}-1,4dihydro-4-oxoquinoline-3- carboxylic acid **13**

Yield: 54.5%. mp: 247–250°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 0.96–1.07 (7H, m, 2 cyclopropyl CH₂ and CH₃), 2.33–

New fluoroquinolone derivatives 807

2.38 (1H, m, piperazine), 2.55–3.23 (6H, m, piperazine), 3.60 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 3.94–3.98 (2H, m, NCH₂CN), 4.07–4.11 (1H, m, cyclopropyl CH), 7.36–7.42 (2H, m, Ph-H), 7.62–7.69 (2H, m, Ph-H), 7.80–7.82 (1H, m, Ph-H), 8.18 (1H, s, Ph-H), 8.65 (1H, s, C₂-H). ESI-MS: m/z 591 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₁H₃₂FN₄O₇ (M+H)⁺: 591.22550; Found: 591.22784.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(coumarin-3-yl)-2-(ethoxyimino)]ethyl-3-methylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3-carboxylic acid **14**

Yield: 68.6%. mp: 229–231°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 0.97–1.07 (7H, m, 2 cyclopropyl CH₂ and CH₃), 1.26 (3H, t, J = 6.8 Hz, CH₂CH₃), 2.34–2.38 (1H, m, piperazine), 2.57–3.23 (6H, m, piperazine), 3.58 (1H, s, cyclopropyl CH), 3.60 (3H, s, OCH₃), 3.95–4.09 (2H, m, NCH₂CN), 4.18 (2H, q, J = 6.8 Hz, CH₂CH₃), 7.36–7.47 (2H, m, Ph-H), 7.62–7.70 (2H, m, Ph-H), 7.81–7.83 (1H, m, Ph-H), 8.17 (1H, s, Ph-H), 8.65 (1H, s, C₂-H). ESI-MS: m/z 605 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₂H₃₄FN₄O₇ (M+H)⁺: 605.24115; Found: 605.24459.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(7-methoxycoumarin-3-yl)-2-(methoxyimino)]ethyl-3methylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3carboxylic acid **15**

Yield: 57.0%. mp: 235–237°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 0.89–1.07 (7H, m, 2 cyclopropyl CH₂ and CH₃), 2.32–2.37 (1H, m, piperazine), 2.49–3.20 (6H, m, piperazine), 3.28 (1H, s, cyclopropyl CH), 3.62 (3H, s, OCH₃), 3.86 (2H, s, NCH₂CN), 3.90 (3H, s, OCH₃), 6.96–7.06 (2H, m, Ph-H), 7.62–7.73 (2H, m, Ph-H), 8.09 (1H, s, Ph-H), 8.57 (1H, s, C₂-H). ESI-MS: m/z 621 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₂H₃₄FN₄O₈ (M+H)⁺: 621.23607; Found: 621.23851.

1-Cyclopropyl-6-fluoro-8-methoxy-7-{4-[2-(ethoxyimino)-2-(7-methoxycoumarin-3-yl)]ethyl-3-methylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3-carboxylic acid **16**

Yield: 64.3%. mp: 231–233°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 0.84–1.03 (7H, m, 2 cyclopropyl CH₂ and CH₃), 1.26 (3H, t, J = 7.2 Hz, CH₂CH₃), 2.32–2.37 (1H, m, piperazine), 2.53–3.28 (6H, m, piperazine), 3.56–3.60 (1H, m, cyclopropyl CH), 3.62 (3H, s, OCH₃), 3.86 (3H, s, OCH₃), 3.88-3.93 (2H, m, NCH₂CN), 4.16 (2H, q, J = 7.2 Hz, CH₂CH₃), 6.96–7.06 (2H, m, Ph-H), 7.58–7.74 (2H, m, Ph-H), 8.09 (1H, s, Ph-H), 8.50 (1H, s, C₂-H). ESI-MS: m/z 635 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₃H₃₆FN₄O₈ (M+H)⁺: 635.25172; Found: 635.25391.

1-Cyclopropyl-6-fluoro-7-{4-[2-(7-methoxycoumarin-3-yl)-2-oxo]ethylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3carboxylic acid **17**

Yield: 35.4%. mp: 222–224°C. ¹H-NMR (400 MHz, DMSO- d_6) $\delta_{\rm ppm}$: 1.16–1.29 (4H, m, 2 cyclopropyl CH₂), 2.49–2.88

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(4H, m, piperazine), 3.22–3.28 (5H, m, piperazine and cyclopropyl CH), 3.89 (3H, s, OCH₃), 3.81 (2H, s, NCH₂CO), 7.01–7.08 (2H, m, Ph-H), 7.55–7.57 (1H, m, Ph-H), 7.88–7.90 (2H, m, Ph-H), 8.66 (1H, s, C₂-H). ESI-MS: m/z 548 (M+H)⁺. HRMS-ESI: m/z calcd. for C₂₉H₂₇FN₃O₇ (M+H)⁺: 548.18330; Found: 548.18487.

1-Cyclopropyl-6-fluoro-7-{4-[2-(7-hydroxycoumarin-3-yl)-2-oxo]ethylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3carboxylic acid **18**

Yield: 45.7%. mp: >300°C. ¹H-NMR (400 MHz, DMSOd₆ + D₂O) δ_{ppm} : 1.09–1.28 (4H, m, 2 cyclopropyl CH₂), 2.71 (4H, s, piperazine), 3.29 (4H, s, piperazine), 3.71 (1H, s, cyclopropyl CH), 3.78 (2H, s, NCH₂CO), 6.14–6.17 (1H, m, Ph-H), 7.23–7.26 (1H, m, Ph-H), 7.48–7.50 (1H, m, Ph-H), 7.81–7.85 (1H, m, Ph-H), 8.18 (1H, s, Ph-H), 8.59 (1H, s, C₂-H). ESI-MS: m/z 534 (M+H)⁺. HRMS-ESI: m/z calcd. for C₂₈H₂₅FN₃O₇ (M+H)⁺: 534.16765; Found: 534.16671.

1-Cyclopropyl-6-fluoro-7-{4-[2-(coumarin-3-yl)-2-(methoxyimino)]ethylpiperazin-1-yl}-1,4-dihydro-4oxoquinoline-3-carboxylic acid **19**

Yield: 43.5%. mp: 142–144°C ([19], mp: 138–140°C). ¹H-NMR (400 MHz, DMSO-*d*₆) δ_{ppm} : 1.10–1.24 (4H, m, 2 cyclopropyl CH₂), 2.53–2.57 (4H, m, piperazine), 3.13–3.16 (4H, m, piperazine), 3.72 (2H, s, NCH₂CN), 3.73–3.74 (1H, m, cyclopropyl CH), 3.92 (3H, s, OCH₃), 7.35–7.86 (6H, m, Ph-H), 8.20 (1H, s, Ph-H), 8.60 (1H, s, C₂-H). ESI-MS: *m*/*z* 547 (M+H)⁺. HRMS-ESI: *m*/*z* calcd. for C₂₉H₂₈FN₄O₆ (M+H)⁺: 547.19929; Found: 547.20188.

1-Cyclopropyl-6-fluoro-7-{4-[2-(ethoxyimino)-2-(coumarin-3-yl)]ethylpiperazin-1-yl}-1,4-dihydro-4-oxoquinoline-3carboxylic acid **20**

Yield: 38.2%. mp: 218–220°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.11–1.28 (7H, m, 2 cyclopropyl CH₂ and CH₂CH₃), 2.56–2.58 (4H, m, piperazine), 3.13–3.14 (4H, m, piperazin), 3.73–3.75 (3H, m, NCH₂CN and cyclopropyl CH), 4.16–4.21 (2H, m, CH₂CH₃), 7.35–7.47 (3H, m, Ph-H), 7.60–7.86 (3H, m, Ph-H), 8.20 (1H, s, Ph-H), 8.61 (1H, s, C₂-H). ESI-MS: *m/z* 561 (M+H)⁺. HRMS-ESI: *m/z* calcd. for C₃₀H₃₀FN₄O₆ (M+H)⁺: 561.21494; Found: 561. 21820.

1-Cyclopropyl-6-fluoro-7-{4-[2-(7-methoxycoumarin-3-yl)-2-(methoxyimino)]ethylpiperazin-1-yl}-1,4-dihydro-4oxoquinoline-3-carboxylic acid **21**

Yield: 56.6%. mp: 249–250°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.11–1.24 (4H, m, 2 cyclopropyl CH₂), 2.49 (4H, s, piperazine), 3.14 (4H, s, piperazine), 3.70 (2H, s, NCH₂CN), 3.75 (1H, s, cyclopropyl CH), 3.85 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 6.95–7.03 (2H, m, Ph-H), 7.45–7.47 (1H, m, Ph-H), 7.70–7.87 (2H, m, Ph-H), 8.12 (1H, s, Ph-H), 8.62 (1H, s, C₂-H). ESI-MS: *m*/*z*

577 $(M+H)^+$. HRMS-ESI: m/z calcd. for $C_{30}H_{30}FN_4O_7$ $(M+H)^+$: 577.20985; Found: 577.21007.

1-Cyclopropyl-6-fluoro-7-{4-[2-(ethoxyimino)-2-(7-methoxycoumarin-3-yl)]ethylpiperazin-1-yl}-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid **22**

Yield: 54.3%. mp: 193–195°C. ¹H-NMR (400 MHz, DMSO- d_6) δ_{ppm} : 1.09–1.27 (7H, m, 2 cyclopropyl CH₂ and CH₂CH₃), 2.56 (4H, s, piperazine), 3.13 (4H, s, piperazine), 3.71 (3H, s, OCH₃), 3.84–3.87 (3H, m, CH₂CH₃ and cyclopropyl CH), 4.14– 4.19 (2H, m, NCH₂CN), 6.95–7.03 (2H, m, Ph-H), 7.43-7.45 (1H, m, Ph-H), 7.70–7.85 (2H, m, Ph-H), 8.12 (1H, s, Ph-H), 8.59 (1H, s, C₂-H). ESI-MS: m/z 591 (M+H)⁺. HRMS-ESI: m/z calcd. for C₃₁H₃₂FN₄O₇ (M+H)⁺: 591.22550; Found: 591.22910.

MIC determination

The target compounds **5–22** were initially evaluated for their *in-vitro* activity against *M. smegmatis* CMCC 93202. The compounds were dissolved in DMSO and two-fold diluted at concentrations from 12.5 to 0.05 μ g/ml. The tested strains were prepared in 54 medium in a volume of 150 μ L in 96-well microplates. The plates were incubated at 37°C for 72 h.

The entire compounds **5–22** were further evaluated for their *in-vitro* activity against MTB H37Rv ATCC 27294 using rapid direct susceptibility test technique. The tested compounds were dissolved in DMSO and two-fold diluted at concentrations from 128 to 0.125 μ g/ml. The strain was obtained from Jiangsu Province Hospital, Nanjing, China.

This work was supported by the key project of Major infectious disease (No. 2008ZX10003-006), National S&T Major Special Project on Major New Drug Innovation (No. 2009ZX09301-003) and Central Public-Interest Scientific Institution Basal Research Fund IMBF200912.

The authors have declared no conflict of interest.

References

- [1] L. S. Feng, M. L. Liu, B. Wang, Y. Chai, X. Q. Hao, S. Meng, H. Y. Guo, Eur. J. Med. Chem. 2010, 45, 3407–3412.
- [2] WHO. Global Tuberculosis Control a Short Update to the 2009 Report, World Health Organization, Geneva 2009.
- [3] A. Nayyar, V. Monga, A. Malde, E. Coutinho, R. Jain, *Bioorg. Med. Chem.* 2007, 15, 626–640.
- [4] P. S. Charifson, A. L. Grillot, T. H. Grossman, J. D. Parsons, M. Badia, S. Bellon, D. D. Deininger, J. E. Drumm, C. H. Gross, A. LeTiran, Y. S. Liao, N. Mani, D. P. Nicolau, E. Perola, S. Ronkin, D. Shannon, L. L. Swenson, Q. Tang, P. R. Tessier, S. K. Tian, M. Trudeau, T. S. Wang, Y. Y. Wei, H. Zhang, D. Stamos, J. Med. Chem. 2008, 51, 5243–5263.
- [5] A. Aubry, X. S. Pan, L. M. Fisher, V. Jarlier, C. Emmanuelle, Antimicrob. Agents. Chemother. 2004, 48, 1281–1288.

- [6] G. Anquetiin, J. Greiner, N. Mahmoud, M. H. Santillana, R. Gozalbes, K. Farhati, F. Derouin, E. Cambau, P. Vierling, *Eur. J. Med. Chem.* 2006, 41, 1478–1493.
- [7] D. Sriram, P. Yogeeswari, J. S. Basha, D. R. Radha, V. J. Nagaraja, *Bioorg. Med. Chem.* 2005, 13, 5774–5778.
- [8] WHO. Guidelines for the Management of Drug-Resistant Tuberculosis, WHO/TB/96-210 (rev.1) World Health Organization, Geneva 1997.
- [9] A. S. Ginsburg, J. H. Grosset, W. R. Bishai, Lancet. Infect. Dis. 2003, 37, 432–442.
- [10] H. Koga, A. Itoh, S. Murayama, S. Suzue, T. Irikura, J. Med. Chem. 1980, 23, 1358–1363.
- [11] Z. Dang, Y. S. Yang, R. Y. Ji, S. H. Zhang, Bioorg. Med. Chem. Lett. 2007, 17, 4523–4526.
- [12] L. L. Shen, L. A. Mitscher, P. N. Sharma, T. J. Odonnell, D. W. T. Chu, C. S. Cooper, T. Rosen, A. G. Pernet, *Biochemistry* **1989**, 28, 3886–3894.
- [13] D. Sriram, A. Aubry, P. Yogeeswaria, L. M. Fisher, *Bioorg. Med. Chem. Lett.* 2006, 16, 2982–2985.
- [14] C. F. Koelsch, J. Am. Chem. Soc. 1950, 72, 2993-2995.
- [15] M. Basanagouda, K. Shivashankar, M. V. Kulkarni, V. P. Rasal, R. H. Patel, S. S. Mutha, A. A. Mohite, *Eur. J. Med. Chem.* 2010, 45, 1551–1557.

- [16] R. G. Kalkhambkar, G. M. Kulkarni, C. M. Kamanavalli, N. Premkumar, S. M. B. Asdaq, C. M. Sun, *Eur. J. Med. Chem.* 2008, 43, 2178–2188.
- [17] C. Ito, M. Itoigawa, S. Onoda, A. Hosokawa, N. Ruangrungsi, T. Okuda, H. Tokuda, H. Nishino, H. Furukawa, *Phytochem.* 2005, 66, 567–572.
- [18] A. Manvar, A. Malde, J. Verma, V. Virsodia, A. Mishra, K. Upadhyay, H. Acharya, E. Coutinbo, A. Shah, *Eur. J. Med. Chem.* 2008, 43, 2395–2403.
- [19] S. Emami, A. Foroumad, M. A. Faramarzi, N. Samadi, Arch. Pharm. Chem. Life Sci. 2008, 341, 42–48.
- [20] S. H. Zhao, R. Pine, J. Domagala, K. Drlica, Antimicrob. Agents Chemother. 1999, 43, 661–666.
- [21] R. G. Kalkhambkar, G. M. Kulkarni, H. Shivkumar, R. N. Rao, Eur. J. Med. Chem. 2007, 42, 1272–1276.
- [22] A. Foroumadi, M. Oboudiat, S. Emami, *Bioorg. Med. Chem.* 2006, 14, 3421–3427.
- [23] X. H. Liu, J. C. Fan, Y. Liu, Z. C. Shang, J. Zhejiang Univ. Sci. B. 2008, 9, 990–995.
- [24] D. N. Shan, N. M. Shan, J. Org. Chem. 1954, 19, 1681– 1685.
- [25] A. Takadate, T. Masuda, C. Tajima, C. Murata, M. Irikura, S. Goya, Anal. Sci. 1992, 8, 663–668.