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In the course of our efforts to identify orally active cholesteryl ester transfer protein (CETP) inhibitors, we
have continued to explore tetrahydrochinoline derivatives. Based on BAY 19-4789 structural modifica-
tions led to the discovery of novel cycloalkyl substituted compounds. Thus, example 11b is a highly
potent CETP inhibitor both in vitro and in vivo in transgenic mice with favourable pharmacokinetic prop-
erties for clinical development.

� 2010 Elsevier Ltd. All rights reserved.
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Figure 1. Past and present CETP inhibitors in clinical development.
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Cardiovascular disease is the most common cause for mortality
and morbidity in the developed world and it is estimated that mor-
tality from cardiovascular diseases will have increased worldwide
by 90% by the year 2020 when compared with the situation in
1990.1 Despite the fact that a large portion of cardiovascular events
cannot be prevented by lowering of low-density lipoprotein cho-
lesterol (LDL-C), guidelines for the prevention of cardiovascular
disease still focus on the management of LDL-C.2,3

Several epidemiological studies clearly show that a low level of
high density lipoprotein cholesterol (HDL-C) is a strong and inde-
pendent risk factor for the development of CHD and HDL has been
proposed to have potential atheroprotective effects.4

Inhibition of cholesteryl ester transfer protein (CETP) might be a
powerful tool for increasing HDL-C, decreasing LDL-C and very
low-density lipoprotein (VLDL-C) thus reducing the development
of atherosclerosis.5

The recent failure of torcetrapib (1) in phase III studies chal-
lenged the future perspectives of CETP inhibitors as potential ther-
apeutic agents.6 Since compound-specific and off-target effects of
torcetrapib, such as raising blood pressure and aldosterone were
most likely causative for an increase in cardiovascular events and
mortality, it has been suggested to continue studying other CETP
inhibitors for their potential to reduce cardiovascular risk.7 Cur-
rently the most advanced compounds dalcetrapib, JTT-705, (3)
and anacetrapib (2), which have not been reported to have the
off-target effects of torcetrapib, are in phase III clinical trials8,9

(see Fig. 1).
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We have searched for orally active CETP inhibitors suitable for
clinical development.10 Our first compound investigated in
humans, BAY 19-4789 (4) was discontinued in early clinical devel-
opment due to unexpected toxicological findings in a 13 week re-
peat dose toxicology study in dogs.

For a second candidate, BAY 38-1315 (5), preclinical develop-
ment was stopped because of unfavourable pharmacokinetic prop-
erties (see Fig. 2).
BAY 19-4789   4 BAY 38-1315   5

Figure 2. Tetrahydrochinoline and tetrahydronaphtaline derived CETP inhibitors.
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Table 1
IC50 data from CETP fluorescence assay for compounds 1, 4, 5 and 7a–r

Compds R1 = R2 = X = IC50 (nM) clog P13

1 18 7.55
4 31 7.95
5 24 8.63
7a Et cPent Dimethyl 4500 7.07
7b nPr cPent Spirocyclobutyl 600 7.43
7c nPent cPent Dimethyl 2000 8.66
7d iPr cPent Dimethyl 600 7.30
7e iPr cPent Spirocyclobutyl 300 7.47
7f cPr cPent Dimethyl 3000 6.98
7g cPent cPent Dimethyl 90 8.10
7h cPent cPent Spirocyclobutyl 70 7.94
7i cHex iPr Dimethyl 70 8.03
7j cHex iPr Spirocyclobutyl 33 7.86
7k cHex cPent Dimethyl 60 8.66
7l cHex cPent Spirocyclobutyl 55 8.50

7m cPent Dimethyl 2000 8.00

7n
F

F
F cPent Dimethyl 3000 6.78

7o Cl cPent Dimethyl 15,000 6.60
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In seeking a backup compound we were interested in replacing
the 4-fluorophenyl substituent present both in 4 and 5 without
further increasing lipophilicity. Therefore we continued our SAR
exploration in the tetrahydrochinoline series only. For the intro-
duction of new ‘head’ groups we were following a synthetic route
using an unsymmetrical Hantzsch-dihydropyrididine synthesis as
the key step, followed by an oxidation with DDQ to the pyridines
6 (Scheme 1). Diketone 6 undergoes a completely regioselective
CBS-type reduction11 using (1R, 2S)-1-aminoindan-2-ol as chiral
inductor with high enantioselectivity (>95% ee) to provide the alco-
hols 7. Yields for the dihydropyridine formation employing ali-
phatic aldehydes are generally lower compared to aromatic
aldehydes.10a However, taking into account the high complexity
of the diketones 6 which are being assembled in two steps, a low
yielding sequence is acceptable in order for a rapid SAR
assessment.

Several SAR trends are apparent comparing the analogues
shown in Table 1. CETP inhibition was determined using a CETP
fluorescence assay.12a

For substituents at R1 a rather steep SAR can be observed with
respect to steric bulk and polarity. Branched alkyl substituents
are obviously more potent than alkyl chains.
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Scheme 1. Synthesis of alcohols 7. Reagents and conditions: (a) 1.2 equiv enamine,
2 equiv TFA, 1 equiv diketone, rt, 10 min, then 1.5 equiv R1 CHO, rt, 18 h, 5–55%; (b)
1.1 equiv DDQ, CH2Cl2, rt, 1 h, 20–95%; (c) 0.15 equiv (1R,2S)-1-aminoindan-2-ol,
4 equiv N,N-diethylaniline–borane (1:1), THF, rt, 15 min, then 6, 0 �C to rt, 18 h, 58–
95%; (d) 4 equiv piperidine, 2 equiv N-ethyldiisopropylamin, DMF, 110 �C, 18 h,
80%; (e) Pd/C, H2 1 bar, THF/MeOH 1:1, 16 h, 68% and (f) (i) 10 equiv 10% NaOH,
EtOH, 18 h, 95%; (ii) 2 equiv DPPA, 2 equiv NEt3, 2 equiv H2O, toluene, 90 �C, 18 h,
74% and (iii) 2.5 equiv NaH, THF, 30 min then 1.1 equiv 1,4-dibrombutane, THF,
18 h, 22%.

7p cPent Dimethyl >20,000 6.08

7q
N
Cbz

cPent Dimethyl 500 9.36

7r
N
H

cPent Dimethyl >20,000 6.24

7s N cPent Dimethyl 15,000 7.07

7t N cPent Dimethyl 4000 6.24
Thus, the cyclopentyl and cyclohexyl substituents in com-
pounds (7g–l) represent the optimal combination of lipophilicity
and steric requirements. Attempts to increase polarity by introduc-
ing an amino functionality resulted in a loss of activity. The pyrolli-
dine derivative (7t) and the Cbz-protected piperidine (7q) still
show some activity while the more basic amines (7r, 7s) are
inactive.

In accordance to previously observed SAR,10a the spirocyclobu-
tyl substituent on the saturated ring of the tetrahydrochinoline
adds additional potency compared to the dimethyl substitution
pattern. A further increase in CETP inhibition should be achievable
by replacing the sp2 keto functionality present in 7i–l by connect-
ing the pyridine moiety and the 4-CF3-phenyl group via a sp3 car-
bon (see Fig. 3).

The hydroxy-ketones 7i–l were reduced with moderate diaste-
reoselectivities (60–70% de) using DIBAL in toluene at low temper-
atures to give the desired trans-dihydroxy derivatives 8a–b
(Scheme 2).

Regioselective protection of the sterically less hindered hydro-
xyl group was achieved with t-butyldimethylsilyl-chloride in
refluxing acetonitrile to give 10a–b. Alternatively, the hydroxy-ke-
tones were first protected using t-butyldimethylsilyltriflate in tol-
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Figure 3. Matrix of 4-cyclohexyl-tetrahydrochinoline CETP inhibitors.



Table 3
IC50 data from CETP fluorescence assay in human plasma and from CETP SPA assay for
compounds 11a–d and 12

Compds Human plasma assay12b SPA assay12c

IC50 (nM) IC50 (nM)

1 20 3
11a 75 23
11b 50 7
11c 70 33
11d 60 62
12 300 n.a.
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Scheme 2. Synthesis of alcohols 8–12. Reagents and conditions: (a) 5 equiv DIBAL,
toluene, �78 �C to rt, 18 h, 70–80%; (b) 7 equiv TBDMSCl, 2.5 equiv DMAP, 6 equiv
NEt3, acetonitrile, rt, 18 h, 79%; (c) 2 equiv TBDMSOTf, 4 equiv 2,6-dimethylpyri-
dine, toluene, �15 to 0 �C, 2 h, 78–99%; (d) 5 equiv DIBAL, toluene, �50 �C to rt, 3 h,
30–40%; (e) (i) 1.5 equiv DAST, CH2Cl2, , �78 �C to rt, 2 h, 82–95%; (ii) 2.5 equiv
TBAF, THF, 0 �C to rt, 18 h, 65–91%; (f) 7 equiv DIBAL, toluene, �20 to 0 �C, 4 h, 80%
and (g) 2.5 equiv TBAF, THF, 0 �C to rt, 18 h, 78–95%.
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uene at low temperatures followed by a non selective reduction
with DIBAL in toluene to afford 10c–d. Enantioselective fluorina-
tion with diethylaminosulfur trifluoride (DAST) in dichlorometh-
ane at low temperatures occurred with complete retention of the
configuration. In contrast to the usual SN2 pathway of DAST-fluori-
nations the reaction proceeds with retention of configuration at
this sterically highly encumbered site. Similar fluorinations follow-
ing a SNi-mechanism have been reported in the literature.14 Re-
moval of the protecting group proceeded cleanly with TBAF in
THF yielding 8c–d and 11a–d. Reductive defluorination of 11b with
a high excess of DIBAL in toluene afforded 12 (Scheme 2).

The increase in polarity of the trans-dihydroxy compounds 8 led
to a slight loss in activity compared to 7. On the other hand intro-
Table 2
IC50 data from CETP fluorescence assay for compounds 8a–d, 11a–d and 12

Compds R2 = X = IC50 (nM) clog P13

8a iPr Dimethyl 80 6.76
8b cPent Dimethyl 100 7.39
8c iPr Spirocyclobutyl 70 6.59
8d cPent Spirocyclobutyl 100 7.23
11a iPr Dimethyl 30 8.14
11b cPent Dimethyl 25 8.77
11c iPr Spirocyclobutyl 17 7.97
11d cPent Spirocyclobutyl 22 8.61
12 cPent Dimethyl 39 9.15
duction of the fluorine atom in 11a–d increased both lipophilicity
and CETP inhibitory activity. Activity as well as lipophilicity of the
defluorinated compound 12 is in the range of 11a–d (Table 2).

Additional in vitro tests were performed with compounds 11a–
d and 12 showing the best overall in vitro profile for compound
11b (Table 3).

The pharmacokinetic profile of 11b was assessed in mice, rats
and dogs revealing good plasma half-lives (t1/2 = 5.0, 7.2 and
8.6 h, respectively) and oral bioavailability (F = 44% in rats and
74% in dogs).

In conclusion, we successfully modified the structure of our pre-
vious development compounds 4 and 5 by replacing the pF-phenyl
moiety with a cyclohexyl group in the 4-position. With its good
overall in vitro profile and the favourable pharmacokinetic profile,
11b improved the lipoprotein profile in human CETP-transgenic
mice by increasing HDL-cholesterol and lowering serum triglycer-
ides dose dependently.15 Consequently, 11b was selected for
advancement as a clinical candidate.
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