Substituted Methyl 5 β -Cholan-24-oates

I—¹⁷O NMR Spectral Characterization

Erkki Kolehmainen,* Mari Kaartinen, Reijo Kauppinen, Jari Kotoneva and Kari Lappalainen Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

Philip T. Lewis

Chemistry Laboratory, University of Kent at Canterbury, Kent CT2 7NH, UK

Raimo Seppälä, Jukka Sundelin and Virpi Vatanen Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

Methyl esters of four common bile acids, 3a-hydroxy-5B-cholan-24-oic (lithocholic) acid, 3a,7a-dihydroxy-5Bcholan-24-oic (chenodeoxycholic) acid, 3a,12a-dihydroxy-5\u00c6-cholan-24-oic (deoxycholic) acid and 3a,7a,12atrihydroxy-5_b-cholan-24-oic (cholic) acid, and 14 acetylated, trifluoroacetylated, mesylated and oxo derivatives of methyl 5^β-cholan-24-oates were prepared and their ¹⁷O NMR spectra recorded. In spite of their relatively high molecular masses and the rigid molecular structure of the steroid skeleton, most of the oxygens included in these structures gave well resolved ¹⁷O NMR resonance lines at natural abundance in 0.25–0.5 M acetonitrile solutions at 75 °C. In agreement with the present ¹⁷O NMR results, molecular mechanics calculations revealed that a hydroxy substituent located at the 3a-position clearly differs from the hydroxyls at the 7a- and 12a-positions. This is due to the fact that the 3a-hydroxyl possessing only two y-carbons at antiperiplanar positions is less shielded than the other hydroxyls influenced also by the shielding effects of γ -gauche carbons. The spectral deconvolution of the overlapping signals of the 7a- and 12a-hydroxyls is based on a computer-aided method or on chemical substitutions. The oxo groups located at the longitudinal (3-oxo) vs. transversal (7- and 12-oxo) axes of the steroid framework show very different quadrupolar relaxation properties and ¹⁷O NMR linewidths owing to the strong anisotropy of overall molecular motion. In contrast, the ¹⁷O NMR linewidths of all 3α-, 7α- and 12α-hydroxyls are very similar and clearly smaller than those of the corresponding oxo groups, revealing that their quadrupolar relaxation is merely determined by their internal rotation rather than by the overall molecular motion.

KEY WORDS NMR ¹⁷O NMR ¹⁷O chemical shifts ¹⁷O relaxation Methyl 5β-cholan-24-oates Methyl esters of bile acids

INTRODUCTION

¹⁷O NMR spectroscopy has been shown to provide a powerful tool in resolving the configurational characteristics of alicyclic ethers and alcohols.¹⁻⁶ The ¹⁷O NMR chemical shifts of 1000-fold ¹⁷O-enriched cholesterol and 31 other steroids have been determined and correlations between ¹⁷O NMR shifts and structures have been adduced.⁷ However, in the case of large organic molecules the usefulness of ¹⁷O NMR spectroscopy at natural abundance is often limited owing to the broadness of the ¹⁷O NMR resonance lines combined with the increased molecular size and the decreased rotational correlation time at the site of the oxygen atom.⁸ A remarkable enhancement of spectral resolution and sensitivity in ¹⁷O NMR experiments at natural abundance has been obtained by working at elevated temperatures and using low-viscosity solvents as reported by Filowitz et al.⁹ and Gerothanassis.¹⁰ Even protonoxygen spin-spin couplings of simple alcohols at natural abundance can be determined by measuring the samples in CH₃CN solutions at 75 $^{\circ}$ C as shown by Chandrasekaran and Boykin.¹¹ In order to avoid the

CCC 0749-1581/94/080441-05 © 1994 by John Wiley & Sons, Ltd. necessity for an enrichment by tedious syntheses with the costly oxygen-17 isotope,⁷ we checked if the above measuring conditions are also suitable for determining the ¹⁷O NMR chemical shifts at natural abundance for some common steroids and their easily available derivatives. Therefore, 18 methyl 5 β -cholan-24-oate (bile acid) derivatives of general structure 1 containing different types of single- and double-bonded oxygens were prepared and their ¹⁷O NMR spectra recorded.

RESULTS AND DISCUSSION

The ¹⁷O NMR chemical shifts at natural abundance and some reference data⁷ for methyl-5 β -cholan-24-oate derivatives are given in Table 1. The ¹⁷O NMR chemical shifts measured in this work are comparable to

> Received 12 November 1993 Accepted (revised) 31 March 1994

^{*} Author to whom the correspondence should be addressed.

	Substitution pattern				δ(¹⁷ Ο) (ppm)				
Compound		В,	R ₂	R ₃	3-	7-	12-	COOR	COOR
1	3α-Hydroxy-5β-	он	н	н	38.3			139	357
	3α -Hydroxy- 5β -[3α ,24- $^{17}O_2$]-*	он	н	н	38.86			—	360
	3α -Hydroxy-5 β -[24,24- ¹⁷ O ₂]-*	он	н	н			_	141	358
2	3α,7α-Dihydroxy-	он	он	н	38.5	23.2		139	356
3	3a,12a-Dihydroxy-	он	н	он	36.5	18.3	—	140	357
4	3α,7α,12α-Trihydroxy-	он	он	он	37.0	23.7	17.7	139	356
5	3-0xo-	0	н	н	556			139	357
	3-Oxo-5β-[3,24- ¹⁷ O ₂]- ^a	0	н	н	561		—		360
6	3α-OTFAc- ^b	OTFAc	н	н	187	_	—	139	357
7	3α-Hydroxy-7-oxo-	он	0	н	37	560	_	140	357
8	3,7-Dioxo-	0	0	н	562	Not obs.	_	139	355
9	3α-Hydroxy-12-oxo	он	н	0	38		Not obs.	139	357
10	3α-OAc-12α-hydroxy- ^c	OAc	н	он	198	_	18	139	357
11	3α-OAc-12-oxo	OAc	н	0	197	_	Not obs.	139	356
12	3α,12α-Dioxo-	0	н	0	557	_	Not obs.	139	356
13	3α-OAc-7α,12α-dihydroxy-	OAc	ОН	он	194	24	18	139	357
14	3a,7a-DiOAc-12a-hydroxy-	OAc	OAc	он	193	193	18	139	356
15	3α,7α-DiOAc-12-oxo-	OAc	OAc	0	194	194	560	139	357
16	3α,7α-Dihydroxy-12α-OTFAc-	он	он	OTFAc	37	22	169	139	356
17	3α,12α-DiOTFAc-7α-hydroxy-	OTFAc	он	OTFAc	177ª	20	171ª	139	356
18	3α-OMes-7α,12α-dihydroxy-*	OMes	ОН	он	176	24	18	139	356
19	3,7,12-Trioxo-	0	0	0	565	Not obs.	Not obs.	139	356
Values tak	en from Ref. 7.								

Table 1. ¹⁷O NMR chemical shifts of methyl 5 β -cholan-24-oate derivatives (1) (ppm from external H₂O) measured for 0.5–1.0 M acetonitrile solutions at 75 °C

^b TFAc = CF₃CO, which overlaps with C==O of cholanoate.

 $^{\circ}Ac = CH_{2}CO.$

^d Assignment can be reversed.

"Mes = CH₃SO₂.

those reported in the literature⁷ owing to the similar measuring conditions used, i.e. acetonitrile solutions at 75 °C. Hence the possible anisotropic effects of the solvent and its hydrogen bonding with the solute molecules are eliminated as fully as possible. Regarding the temperature effects on referencing in ¹⁷O NMR spectroscopy,¹² the ¹⁷O NMR chemical shift of the external reference (H₂O) is deshielded 2.2 ppm at 30 °C from the value at 75°C. The chemical shifts in Table 1 are, however, referenced to the external H₂O at 75 °C, thus being directly comparable to the values taken from the literature.7

In order to improve the accuracy of the ¹⁷O NMR chemical shifts of the natural bile acid methyl esters (1-4) and to resolve the two strongly overlapping resonance lines of 7α - and 12α -hydroxyls of 4 (see Fig. 1), an integrated software for analysis of NMR spectra on PC named PERCH (Peak Research)¹³ is utilized. By this method the ¹⁷O NMR chemical shifts of the nonoverlapping resonance lines can be reported within the accuracy of 0.25 ppm (digital resolution). For the overlapping lines of 7α - and 12α -hydroxyls of 4 an accuracy of 0.5 ppm is obtained. Without this computer-aided line fitting an accuracy of 1 ppm is achieved.

The ¹⁷O NMR chemical shift of 3a-hydroxyl clearly differs from those of the 7α - and 12α -hydroxyls, because the 3α -hydroxyl possessing only two γ -carbons at antiperiplanar (anti) orientations is less shielded than the other hydroxyls influenced also by shielding effects of γ -gauche carbons.²⁻⁶ The corresponding dihedral angles

Figure 1. ¹⁷O NMR spectrum at natural abundance of methyl cholate (4) for a 0.5 M solution in acetonitrile at 75 °C.

obtained by molecular mechanics¹⁴ are θ (3-OH-C-3-C-2-C-1) = 178.9° and θ (3-OH-C-3-C-4-C-5) = 177.5°. For 7 α -hydroxyl the dihedral angles are θ (7-OH-C-7-C-6-C-5) = 74.3°, θ (7-OH-C-7-C-8-C-9) = 72.2°, θ (7-OH-C-7-C-8-C-14) = 52.8° and for 12 α -hydroxyl θ (12-OH-C-12-C-11-C-9) = 67.4°, θ (12-OH-C-12-C-13-C-14) = 63.2° and θ (12-OH-C-12-C-14-C-18) = 176.2°, respectively.

Hence in the case of the 12α -hydroxy group there exist two shielding y-carbons near to the gauche orientation and one clearly at the anti orientation. For the 7α -hydroxyl the all three γ -carbons are further away from the gauche orientation than for the hydroxyl in the 12α -position. This model is in agreement with the present data giving for the 7α -hydroxyl less shielded ¹⁷O NMR chemical shifts, $\delta(7\text{-OH}) = 23.2$ (2) and 23.7 ppm (4), than for the 12 α -hydroxyl, δ (12-OH) = 18.3 (3) and 17.7 ppm (4). There exist also small differences between the ¹⁷O NMR chemical shifts of the hydroxyls at the same position in different compounds. For example, the small variation of the ¹⁷O NMR chemical shift of $\delta(3\alpha$ -OH) = 38.3 (1), 38.5 (2), 36.5 (3) and 37.0 ppm (4) also reveals the influence of some substituent effects. Thus, it is obvious that 12α -OH in 3 and 4 causes small shielding effects on the ¹⁷O NMR chemical shifts of 3α -OH in comparison with 1. However, the origin of these small effects between these two hydroxyls cannot be explained reliably based on the present data alone.

In addition to the computer-based spectral deconvolution, the overlapping ¹⁷O NMR spectral lines can also be resolved by chemical substitution reactions. For example, acetylation of a hydroxyl group deshields the ¹⁷O NMR spectral line of that oxygen more than 150 ppm. Thus, in methyl 3α -acetyloxy-12-oxo-5 β -cholan-24-oate (11) the 3α -oxygen resonates at 197 ppm whereas in the unsubstituted compound (9) it resonates at 38 ppm. In methyl 3α , 7α -diacetyloxy-12-oxo-5 β cholan-24-oate (15), however, the 3α - and 7α -oxygens both resonate at 194 ppm. This reveals that the substitution reaction have also their own limitations regarding the ¹⁷O NMR spectral simplification.

Similarly as acetylation, trifluoroacetylation can be utilized in resolving the ¹⁷O NMR spectra. Cyclohexyl trifluoroacetate used as a model compound gave well resolved ¹⁷O NMR lines at $\delta(C=O) = 351$ and $\delta(-O-) = 182$ ppm. A mixture of isomeric 2,6-dimethylcyclohexanols showing ¹⁷O NMR spectral lines at 22 ppm (signals of *trans,trans* and *cis,trans* isomers overlap) and -6 ppm (*cis,cis*)² gave after trifluoroacetylation signals at $\delta(C=O) = 347$ ppm and $\delta(-O-) = 172$ (*trans,trans*), 174 (*cis,trans*) and 158 ppm (*cis,cis*), respectively.

Trifluoroacetylation of methyl lithocholate (1) deshields the ¹⁷O NMR chemical shift of 3α -oxygen from 38.3 to 187 ppm. Further, a selective trifluoroacetylation of 12α -hydroxy group of methyl cholate (4) can be used as an aid in a spectral resolution. In that case, the 12α -oxygen is transferred to 169 ppm and the overlap with 7α -hydroxyl is avoided. Similarly, the 3α -oxygen of the 3α -mesyl derivative (18) is shifted to $\delta(3\alpha$ -O) = 176 ppm.

The most serious limitation encountered with the ¹⁷O NMR spectral characteristics of the present compounds

is the broadness of the resonance lines of doublebonded oxygens anchored at the transversal axis of the steroid skeleton, viz. 7-oxo and 12-oxo substituents. This finding can be explained by considering the different mechanisms responsible for the NMR relaxation of the oxygen-17 nuclei at different positions.^{8,15}

First, it has been shown that the relaxation of oxygen-17 nucleus is determined solely by quadrupole interaction.^{8,15} Second, the efficiency of this mechanism depends on the reorientation of the principal fieldgradient axes relative to a fixed laboratory frame.¹⁵ The relaxation properties of methyl cholate (4) and its derivatives containing three oxygen nuclei at the different sites of the steroid skeleton can be used in estimating the elements of the rotational diffusion tensor. Consequently, a more or less complete description of the molecular rotation can be derived. Because precise ¹⁷O NMR T_1 and T_2 relaxation time measurements at natural abundance are very time consuming for this kind of molecule, a quantitative analysis of the molecular relaxation and rotation properties is beyond the scope of this work. However, a comparison of ¹⁷O NMR linewidths can provide a qualitative picture about the principal factors responsible for the different relaxation characteristics of oxo vs. hydroxy oxygens.

A computer-aided deconvolution and line fitting¹³ of the ¹⁷O NMR spectrum of 4 (Fig. 1) reveals that all the 3α , 7α - and 12α -hydroxyls possess very similar spectral linewidths, $W_{1/2} = 300 \pm 20$ Hz. This suggests that their quadrupolar relaxation is predominantly determined by their internal rotation around the C-O bonds independently on the overall molecular reorientation. The linewidth of the 3α -OH of 4 is in agreement with that of 3α -hydroxy- 5β -[3α , 24- $^{17}O_2$]cholanoate, 7 methyl $W_{1/2}(3\alpha$ -OH) = 300 Hz. On the other hand, the ¹⁷O NMR linewidths and relaxation behavior of oxo groups in 5, 7-9, 11, 12, 15 and 19 anchored tightly in the conformationally rigid molecular framework clearly reflect the anisotropy of molecular rotation. The ¹⁷O NMR lines of 3-oxo groups in 5, 8, 12 and 19 locating at the longitudinal molecular axis are clearly broadened $(W_{1/2} \approx 650 \pm 50 \text{ Hz})$ in comparison with the resonance lines of hydroxyls. This linewidth of 650 Hz is broader than those of the ¹⁷O-enriched 3-oxo-steroids.⁷ Further, the ¹⁷O NMR lines of the 7- and 12-oxo groups locating at the transversal molecular axis are very strongly broadened characterized by the linewidths of $W_{1/2} >$ 1500 Hz and only in two samples, 7 and 15, were these broad resonance peaks separated from the spectral baseline.

A conclusion is that the relaxation of the oxo groups is closely related to the anisotropy of the overall molecular rotation, thus differing from the behaviour of hydroxyls. A quantitative description of the rotational diffusion tensor of this type of molecule, however, can be obtained reliably only by precise relaxation time measurements of strongly ¹⁷O-enriched samples.

CONCLUSIONS

¹⁷O NMR spectroscopy of methyl 5 β -cholan-24-oate (bile acid methyl ester) derivatives at natural abundance is a useful method for differentiating between the

hydroxyl-containing isomers and the degree of substitution and even to some extent the nature of the substituent. A computer-aided spectral deconvolution method improved considerably the knowledge obtained in the case of strongly overlapping 7a-OH and 12a-OH spectral lines of methyl cholate. The only serious limitation encountered in this study was in dealing with the ¹⁷O NMR signals of the oxo groups anchored at the transversal rotation axis of the steroid skeleton, viz. at positions 7 and 12, while the 3-oxo group located at the longitudinal rotation axis exhibited easy-to-detect spectral properties. This difference is due to the anisotropy of the overall molecular rotation. In contrast, the ¹⁷O NMR relaxation of the hydroxyls is determined predominantly by their internal rotation. The present results reveal unambiguously that ¹⁷O NMR spectroscopy of unenriched steroid samples can provide an inexpensive method for the characterization of these physiologically and biologically important compounds.

EXPERIMENTAL

Compounds

 3α -Hydroxy- 5β -cholan-24-oic acid (lithocholic acid LCA), 3α , 7α dihydroxy- 5β -cholan-24-oic acid (chenodeoxycholic acid, CDCA), 3α , 12α -dihydroxy- 5β -cholan-24-oic acid (deoxycholic acid, DCA) and 3α , 7α , 12α -trihydroxy- 5β -cholan-24-oic adic (cholic acid, DCA) and 3α , 7α , 12α -trihydroxy- 5β -cholan-24-oic adic (cholic acid, CA) were commercial products from Aldrich (purity > 98%) and used without further purification. Their ¹³C NMR spectra measured in DMSO- d_6 were in agreement with the values given in the literature.¹⁶ Methyl lithocholate (MeLC, 1), methyl chenodeoxycholate (MeCDC, 2), methyl deoxycholate (MeDC, 3) and methyl cholate (MeCC 4) were prepared from the corresponding bile acid by acid-catalysed esterification with excess of methanol.¹⁷ The purity of the methyl esters was checked by their melting points, which were in agreement with the literature values.¹⁷ Their ¹³C NMR chemical shifts were also in excellent agreement with the values reported earlier.^{16,18}

Methyl 3-oxo-5 β -cholan-24-oate (5) was prepared by treating 1 with K₂Cr₂O₇ for 72 h at room temperature.¹⁹ The oxidation product was purified with a silica column using chloroform-acetone (95:5) as the eluent. The purity of 5 was checked by its melting point, which was in agreement with the literature value.¹⁷ The previously unreported ¹³C NMR spectral assignment of 5 was based on the DEPT experiment and a comparison with the known spectra of similar structures.²¹

Methyl 3α -trifluoroacetyloxy-5 β -cholan-24-oate (6) (new compound) was synthesized from methyl lithocholate (1) by treatment with trifluoroaceticanhydride in dry THF at -40 °C.²² The product was purified with a silica column as described above. The purity of 6 was checked by its melting point (132–134 °C). The molecular mass and structures of 6 were ascertained mass spectrometrically [direct inlet, electron impact (EI) ionization, 35 eV]. Some characteristic m/z (intensity, %) values for 6 are 486 (7) [M]⁺, 437 (6), 372 (100), 357 (22), 344 (27), 329 (49), 315 (10), 257 (32), 230 (14) and 215 (69). The ¹³C NMR spectrum of 6 is available from E.K. on request.

Methyl 3α -hydroxy-7-oxo- 5β -cholan-24-oate (7) was prepared from methyl chenodeoxycholate (2) by $K_2Cr_2O_7$ oxidation for 24 h at room temperature.¹⁷ The product was purified with a silica column as described above. Its purity was checked by its melting point.¹⁷ As stated in the literature,^{17,23} the 7α -hydroxyl was oxidized prior to 3α hydroxyl. This is ascertained also by the present ¹⁷O NMR chemical shifts of 7 (see Table 1) showing a resonance line at 37 ppm typical for 3α -OH. The previously unreported ¹³C NMR spectral assignment of 7 was based on the DEPT experiment and a comparison with the known spectra of similar structures.²¹

Methyl 3,7-dioxo-5 β -cholan-24-oate (8) was prepared from methyl 3 α -hydroxy-7-oxo-5 β -cholan-24-oate (7) by a prolonged K₂Cr₂O₇ oxidation for 72 h at room temperature.¹⁷ The product was purified column chromatographically similarly to the 3-oxo derivative (7). The

purity of 8 was checked by its melting point, which was in agreement with the literature values.²⁴⁻²⁶ The previously unreported ¹³C NMR spectral assignment of 8 is obtained by DEPT experiments and by the substituent effects from the related structures.²¹

Methyl 3-hydroxy-12-oxo-5 β -cholan-24-oate (9) was obtained by limited oxidation of methyl deoxycholate (3) with $K_2Cr_2O_7$.¹⁷ The main product was 12-oxo derivative according to the reactivity order in oxidation reactions.²³ The product was purified column chromatographically as described above. Its melting point was in agreement with the literature value.¹⁷ The previously unreported ¹³C NMR spectral assignment of 9 is obtained by DEPT experiments and by the substituent effects from the related structures.²¹

Methyl 3α -acetyloxy- 12α -hydroxy- 5β -cholan-24-oate (10) (new compound) was synthesized by a limited acetylation of $3.^{18}$ The purification of 10 was done column chromatographically as described above. The purity of 10 was checked by its melting point (51-53 °C). The molecular mass and structure of 10 were ascertained mass spectrometrically (direct inlet, EI, 35 eV). Some characteristic m/z (intensity, %) values for 10 are 448 (very weak) [M]⁺, 430 (4), [M-H₂O]⁺, 388 (10), 355 (15), 315 (34) and 255 (100). The ¹³C NMR spectrum of 10 is available from E.K. on request.

 $K_2Cr_2O_7$ oxidation of 10 produced methyl 3α-acetyloxy-12-oxo-5βcholan-24-oate (11). The purification of 11 was performed column chromatographically as described above. The structure of 11 was ascertained by its melting point.^{17,27} The full assignment of the ¹³C NMR spectrum of 11 is based on the DEPT experiments and substituent chemical shifts observed for related compounds.²¹

Methyl 3,12-dioxo-5 β -cholan-24-oate (12) was prepared by a prolonged K₂Cr₂O₇ oxidation of methyl deoxycholate (3). The purification of 12 was performed column chromatographically as described above. The purity of 12 was checked by its melting point.¹⁷ The full assignment of the ¹³C NMR spectrum of 12 is based on the DEPT experiments and substituent chemical shifts observed for related compounds.²¹.

Methyl 3α -acetyloxy- 7α , 12α -dihydroxy- 5β -cholan-24-oate (13) was prepared by stoichiometrically controlled acetylation of methyl cholate (4). It was separated column chromatographically as described above from the reaction mixture containing also a small amount of 3α , 7α -diacetyloxy- 12α -hydroxy- 5β -cholan-24-oate (14). The diacetyl derivative (14) was prepared in an improved yield with stoichiometrically controlled acetylation using twice the amount of acetic anhydride than in the case of monoacetate. The purities of 13 and 14 were checked by their melting points.^{17,28} The full assignments of the ¹³C NMR spectra of 13 and 14 were obtained by the DEPT experiments and substituent chemical shifts of related compounds.²¹

Methyl 3α , 7α -bis(acetyloxy)-12-oxo-5 β -cholan-24-oate (15) was synthesized by K₂Cr₂O₇ oxidation of 14. It was purified column chromatographically as described above. The purity of 15 was checked by its melting point.^{17,27} The ¹³C NMR spectrum of 15 is available from E.K. on request.

Methyl- 3α , 7α -dihydroxy- 12α -trifluoroacetyloxy- 5β -cholan-24-oate (16) was prepared from methyl cholate (4) by complete trifluoroacetylation and partial hydrolysis according to Bonar-Law *et* $al.^{22}$ The purification of 16 was performed column chromatographically as described above. The purity of 16 was checked by its melting point.²² The ¹³C NMR spectrum of 16 is available from E.K. on request.

Methyl $3\alpha_12\alpha$ -bis(trifluoroacetyloxy)- 7α -hydroxy- 5β -cholan-24oate (17) was obtained by complete trifluoroacetylation of cholic acid, its partial hydrolysis and esterification with methanol. Compound 17 was purified column chromatographically as described above. The melting point of $3\alpha_12\alpha$ -bis(trifluoroacetyloxy)- 7α -hydroxy- 5β -cholan-24-oic acid and 17 were in agreement with the values reported in the literature.²² The ¹³C NMR spectrum of 17 is available from E.K. on request.

Methyl 3α -methanesulphonyloxy- 7α , 12α -dihydroxy- 5β -cholan-24oate (18) (new compound) was synthesized according to the method reported by Iida and Chang.²⁹ The purification of 18 was performed column chromatographically as described above. The purity of 18 was checked by its melting point (79-81 °C). The molecular mass and structure of 18 were ascertained mass spectrometrically (direct inlet, EI, 35 eV). Some characteristic m/z (intensity, %) values for 18 are 500 (not observed) [M]⁺, 482 (very weak) M-H₂O]⁺, 464 (very weak; intensity twice that of the ion m/z 464) [M-2H₂O]⁺, 403 (5), 386 (10), 368 (17), 354 (27), 289 (40) and 253 (100). The ¹³C NMR spectrum of 18 is available from E.K. on request.

Methyl 3,7,12-trioxo- 5β -cholan-24-oate (19) (new compound) was prepared by a prolonged oxidation of methycholate (4) with

K₂Cr₂O₇. The purification of 19 was performed column chromatographically as described above. The melting point (181-183 °C) reported for methyl 3,7,12-trioxocholan-24-oate by Pearson et al.³ was much lower than that obtained now 19, i.e. 240-241 °C. Unfortunately, Pearson et al.³⁰ did not report what the fusion of the A and B rings was in their compound. Therefore, the molecular mass and structure of 19 were ascertained mass spectrometrically (direct inlet, EI, 35 eV). Some characteristic m/z (intensity, %) values for 19 are 416 (24) $[M]^+$, 398 (100) $[M-H_2O]^+$, 385 (12), 367 (9), 343 (22), 301 (34), 283 (71) and 261 (94). The ¹³C NMR spectrum of **19** is available from E.K. on request.

NMR spectroscopy

All ¹⁷O NMR spectra were obtained with a Jeol GSX 270 FT NMR spectrometer working at 36.7 MHz and using a tunable multinuclear 10 mm probehead for 0.25-0.5 м acetonitrile solutions at 75°C. The spectral width was 36000 Hz, the number of data points 8000, giving a 9 Hz digital resolution, the flip angle 20 µs (90°) , the acquisition time 0.11 s without any pulse delay and 100000-400000 scans were accumulated for every spectrum. The FIDs were multiplied by a combined trapezoidal ($T_1 = 0.1\%$, $T_2 = 0.1\%$, $T_3 = 50\%$; corre-

1. S. Chandrasekaran, in ¹⁷O NMR Spectroscopy in Organic Chemistry, edited by D. W. Boykin, pp. 146-149. CRC Press, Boca Raton, FL (1991).

- 2. E. Kolehmainen and K. Laihia, Magn. Reson. Chem. 31, 763 (1993)
- 3. J. Lauterwein, J. Schulte, M. Schumacher and M. Cerný, Magn. Reson. Chem. 30, 312 (1992).
- 4. M. Manoharan and E. L. Eliel, Magn. Reson. Chem. 23, 225 (1985)
- 5. E. L. Eliel, K.-T. Liu and S. Chandrasekaran, Magn. Reson. Chem. 21, 179 (1983).
- 6. E. L. Eliel, K. M. Pietrusiewitz, L. M. Jewell and W. F. Kanan, Tetrahedron Lett. 3649 (1979).
- 7. L. L. Smith, J. E. Herz and E. L. Ezell, Steroids 58, 260 (1993).
- 8. J.-P. Kintzinger, in NMR 17. Basic Principles and Progress. Oxygen-17 and Silicon-29, edited by P. Diehl, E. Fluck and R. Kosfeld, p. 41. Springer, Berlin (1981).
- M. Filowitz, R. K. C. Rao, W. G. Klemperer and W. Shum, Inorg. Chem. 18, 93 (1979).
- I. P. Gerothanassis, Org. Magn. Reson. 21, 719 (1983).
 S. Chandrasekaran and D. W. Boykin, Heteroatom Chem. 3, 63 (1992).
- 12. I. P. Gerothanassis and J. Lauterwein, Magn. Reson. Chem. 24, 1034 (1986).
- 13. R. Laatikainen and M. Niemitz, PERCH Software, University of Kuopio, Finland.
- 14. N. L. Allinger, MM2(85), QCPE (1985). PCMODEL (version 2.0) is a 300-atom version of C. Still's (Columbia University) MODEL program (VAX version 1.1) modified K. Steloiou (University of Montreal) and for IBM-PC (or compatible) by M. M. Midland. Molecular mechanics (MMX) of PCMODEL is based on N. L. Allinger's program MM2(85).

sponding to a left shift in digital filtering) and exponential (50 Hz) windowing in order to eliminate the baseline distortions caused by the acoustic ringing and to enhance the signal-to-noise ratio. All spectra were measured using the proton broadband decoupling (BBD) model and without deuterium lock. All ¹⁷O NMR chemical shifts are referenced to the signal of an external H_2O .

Mass spectrometry

All mass spectra were run on a VG AutoSpec highresolution mass spectrometer using direct inlet and 35 eV EI ionization potential.

Acknowledgements

We are grateful to Mrs M. Lahtiperä for her help in running the mass spectra. Professor R. Laatikainen is acknowledged for his valuable advice in running the PERCH software. Associate Professor J. Korppi-Tommola is thanked for allowing the use of the program PCMODEL.

REFERENCES

- 15. D. Wallach and W. T. Huntress, Jr, J. Chem. Phys. 50, 1219 (1968).
- 16 J. W. Blunt and J. B. Stothers, Org. Magn. Reson. 9, 439 (1977)
- 17. L. F. Fieser and S. Rajagopalan, J. Am. Chem. Soc. 72, 5530 (1950)
- 18. T. lida, T. Tamura, T. Matsumoto and F. C. Chang, Org. Magn. Reson. 21, 305 (1983).
- 19. F. C. Chang, J. Org. Chem. 44, 4567 (1979).
- 20. E. C. Blossey, W. T. Ford and M. Periyasamy, Magn. Reson. Chem. 29, 190 (1991).
- 21. K. Lappalainen, E. Kolehmainen, M. Kaartinen, R. Kauppinen, R. Seppälä and V. Vatanen, Magn. Reson. Chem. in press
- 22. R. P. Bonar-Law, A. P. Davis and J. K. M. Sanders, J. Chem. Soc., Perkin Trans. 1 2245 (1990).
- 23. D. Kritchevsky and P. P. Nair, in The Bile Acids, Chemistry, Physiology and Metabolism, edited by P. P. Nair and D. Kritchevsky, p. 9. Plenum Press, New York (1971).
- 24. W.-S. Zhou, Z.-Q. Wang and B. Jiang, J. Chem. Soc., Perkin Trans. 1 1 (1990).
- 25. E. Mappus and Cl. Y. Cuilleron, Steroids 33, 693 (1979).
- 26. E. Hauser, E. Baumgartner and K. Meyer, Helv. Chim. Acta 43, 1595 (1960)
- 27. T. Iida, T. Shinohara, J. Goto, T. Nambara and F. C. Chang, J. Lipid. Res. 29, 1097 (1988)
- 28. J. Goto, Y. Sano, T. Chikai and T. Nambara, Chem. Pharm. Bull. 35, 4562 (1987).
- 29. T. lida and F. C. Chang, J. Org. Chem. 47, 2966 (1982)
- 30. A. J. Pearson, Y.-S. Chen, G. R. Han, S.-Y. Hsu and T. Ray, J. Chem. Soc., Perkin Trans. 1 267 (1985).