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ABSTRACT: 2,2,2-Trifluoroethyl-substituted 3-oxazolines, 3-thiazo-
lines, and 5,6-dihydro-2H-1,3-oxazines have been obtained by
reacting substituted vinyl azides with a combination of Togni’s
reagent and substoichiometric amounts of iron(II) chloride. The
results of density functional theory calculations support the proposed
mechanism involving 1,n-hydrogen-atom transfer reactions.

Nitrogen-containing heterocycles represent core structures
of numerous materials, natural products, pharmaceut-

icals, and agrochemicals.1−5 Among them, azolines are of
particular importance.6 Probably due to synthetic challenges,
3-oxazolines have been less explored compared to other
compounds in this series.7 A typical procedure for their
preparation involves N-chlorination of the respective 1,3-
oxazolidine followed by elimination of HCl upon treatment
with base.8

Recent studies have shown that 1,n-hydrogen-atom transfer
(HAT) reactions can be very effective for synthesizing
heterocycles.9−14 This concept relies on the high reactivity of
radicals that allows the selective functionalization of remote
C−H bonds. For example, starting from amidoximes, Chen
and Chiba generated amidinyl radicals by a redox-neutral
copper catalysis, which provided dihydroimidazoles and
quinazolines by 1,5-H shift (Scheme 1, top).15 In 2017,
Nevado and co-workers applied vinyl azides in such reactions
leading to elaborated ketones upon reaction g with carboxylic
acids as radical synthons.16 Density functional theory (DFT)
calculations suggested the formation of azide-derived imine
radicals as key intermediates in the 1,5-H shift process.17

Fluorinated compounds are important as drugs and
agrochemicals as fluoro substituents affect relevant properties
such as lipophilicity, metabolic stability, and bioavailabil-
ity.4,18,19 Consequently, the introduction of trifluoromethyl
groups has attracted a great deal of attention.20 In the context
of azoline chemistry, the trifluoromethylations of allylamides
with Togni’s reagent in the presence of alkali metal iodides
leading to F3C-containing 2-oxazolines described by Sodeoka
and co-workers are noteworthy (Scheme 1, middle).21

In light of the aforementioned studies, we wondered if such
concepts could be combined allowing the preparation of 2,2,2-
trifluoroethyl-substituted 3-oxazolines and related heterocycles.
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Scheme 1. Previous Studies and Work Reported Here
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The success of this approach is documented here (Scheme 1,
bottom).
For the initial proof-of-concept experiments and the

subsequent optimization of the reaction conditions, 2-
azidoallyl diphenylmethyl ether (1a) was selected as the
substrate, and Togni’s trifluomethylating reagent 2 was
activated by the addition of FeCl2 (20 mol %). A short
screening (Table 1) revealed that DCM, dichloroethane

(DCE), 1,4-dioxane, and DMF were suitable solvents. The
reaction temperature could be varied from 80 °C to ambient
temperature, with the latter being superior. Substituting FeCl2
by the more commonly used CuI also led to product formation
(Table 1, entry 5). Finally, reacting 1a with 2.5 equiv of 2 and
20 mol % FeCl2 in dry DCM at ambient temperature for 30
min provided 4-(2,2,2-trifluoroethyl)-substituted 3-oxazoline
3a in 75% yield (Table 1, entry 8). Although an increase in the
yield of 3a to 80% was observed when a combination of 3.5
equiv of 2 and 30 mol % FeCl2 was applied in DCM at 36 °C
(Table 1, entry 6), the former conditions were considered
satisfying for the subsequent substrate studies.
Next, the substrate scope was evaluated (Scheme 2). In the

first series, 2-azidoallyl diarylmethyl ethers (1b−e) with two
identical 4-substituted aryl groups were applied. While the
yields of the resulting 3-oxazolines with 4-chloro-, 4-fluoro-,
and 4-methyl substituents (3b, 3c, and 3e, respectively) were
good (ranging from 75% to 98%), 4-methoxy-substituted
product 3d was isolated in only ∼45% yield (containing
significant amounts of unknown impurities). Hence, the
electron-donating effect of the substituent appeared to hamper
the formation of the heterocycle presumably by unduly radical
or cation stabilization. The use of freshly prepared Togni’s
reagent proved to be beneficial. 2-Azidoallyl arylphenylmethyl
ethers 1f−k with different substituents on the aryl group
showed analogous trends. The position of the aryl substituent
was important as revealed by comparing the result of the
cyclization of 3-substituted substrate 1h with that of its 4-
substituted counterpart 1e. Both starting materials led to the
corresponding 3-oxazolines 3h and 3e, respectively, but for the
latter product, the yield was significanly higher (63% vs 81%).
Also, 2-azidoallyl 1-phenylalkyl ethers 1j and 1k cyclized,
illustrating that more alkyl substituents were tolerated. In this
manner, 3-oxazolines 3j and 3k bearing trifluoromethyl and
methyl groups, respectively, were obtained albeit in only
moderate and low yields (64% and 35%, respectively).

Probably, these substituents decreased the radical stability
and the rate of 1,5-HAT.22 Also, thioether 1l reacted affording
3-thiazoline 3l in 63% yield. The moderate yield of 3l could be
due to a general sensitivity of such compounds, matching
earlier observations reported by Asinger and Offermanns.23

Starting from 3-azido homoallyl ether 1m and involving a 1,6-
HAT, 5,6-dihydro-2H-1,3-oxazine 3m was obtained in 98%
yield (after reaction for 3 h). Finally, ether 1n with an
additional methyl group at the oxygen-bearing carbon (as
compared to 1a) was applied, which led to 3-oxazoline 3n in
98% yield after only a few minutes. The molecular structure of
this product was confirmed by single-crystal X-ray structure
analysis.24,25

To evaluate the assumed intermediacy of radicals and a 1,5-
HAT as well as the energy barriers of the underlying
mechanism, the reaction path was investigated with DFT
calculations using Gaussian09 version D.01.26 All calculations
were performed with the functional M06-2X and Grimme’s D3
dispersion correction.27,28 Optimizations were carried out with
the def2-SVP basis set.29 For final structures, a single-point
calculation with the def2-TZVP basis set and the IEFPCM
solvent model for DCM was added.29,30 A description of the
computational details is provided in the Supporting Informa-
tion. The energy values for barriers and intermediates are
presented in Scheme 3.
Most intermediates contain two energetic values: the left

one refers to the calculated minimum based on an IRC
calculation after the previous transition state, and the right
value to the minimum calculated based on an IRC calculation
of the following transition state. The difference in energy is
caused by conformer changes. The transformation is initiated
by the reaction of Togni’s reagent with the iron(II) salt,

Table 1. Optimization Studies

entry solvent 2 (equiv) T (°C) time (h) 3a (%)

1 DCE 2.5 80 24 45
2 1,4-dioxane 2.5 80 24 55
3 1,4-dioxane 2.5 40 1 70
4 DCM 1.1 36 24 34
5a DCM 1.5 36 24 33
6b DCM 3.5 36 24 80
7 DMF 2.5 rt 0.5 73
8 DCM 2.5 rt 0.5 75

aWith CuI (20 mol %) instead of FeCl2.
bWith 30 mol % of FeCl2.

Scheme 2. Substrate Scope

aWith a freshly prepared batch of Togni’s reagent. bContaining
unidentified impurities. cReaction time of 3 h. dFor the X-ray crystal
structure of 3n shown at the right: The thermal displacement
parameters are shown at the 50% probability level.
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generating a trifluoromethyl radical. This redox process also
forms an iron(III) intermediate and 2-iodobenzoate.31 The
trifluoromethyl radical then attacks the 2-azido allyl fragment
at the double bond with a barrier of 7.9 kcal/mol and an
energy gain of 32.1 kcal/mol as represented in intermediate A.
The radical is located next to the azidyl moiety, leading to the
release of nitrogen and formation of an iminyl radical, giving
intermediate B.32 This step is almost barrierless and leads to an
energy gain of 50.4 kcal/mol. The following step is the 1,n-
HAT via a six- or seven-membered transition state, forming an
imino group and a carbon-centered radical. For the six-
membered system studied here, the step requires 9.0 kcal/mol
and leads to an energy gain of 10.1 kcal/mol. Next,
intermediate C is oxidized by the iron(III) complex. This
pathway is described aside from the previously presented
pathway because the lack of one electron renders both
pathways incomparable. Therefore, compound D is set to 0.0
kcal/mol. A conformational change leads to an energy gain of
−4.4 kcal/mol. The ring forming transition state requires only
1.6 kcal/mol. Compound E was difficult to optimize, and the
energy values given here correspond to two different
optimization strategies. Furthermore, E also corresponds to
transition state TS5 in which the deprotonation by
iodobenzoate takes place. The final product corresponds to
both minima of the TS, meaning compound 3a and
iodobenzcarboxylic acid (see Figure S8). In all cases, the
energy barriers are low leading to a gain of energy. Hence, both
proposed mechanisms are regarded as plausible pathways.
In summary, by using an iron(II) salt we generated

trifluoromethyl radicals from Togni’s reagent and allowed
them to react with substituted vinyl azides. The newly
generated iminyl radicals undergo 1,n-HAT reactions.
Subsequent redox steps lead to heterocycles, which are difficult
to prepare by other means. The proposed reaction pathway
was supported by results from DFT calculations.
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