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By employing rhodium-Duanphos complex as the catalyst, ββββ-

alkyl (Z)-N-acetyldehydroamino esters were smoothly 

hydrogenated in a highly efficient and enantioselective way. 

Excellent enantioselectivities together with excellent yields 

were achieved for a series of substrates. An efficient approach 

for the synthesis of the intermediate of the orally 

administered anti-diabetic drug Alogliptin and Linagliptin in 

the DPP-4 inhibitor class was also developed. 

Widely found as common intermediates for the preparation of 

many chiral drugs,1 biologically active molecules,2 chiral axulliaries3 

and some useful chiral building blocks,4 non-natural D-amino acids 

have attracted intensive attention over the past decades regardless of 

the fact that natural L-amino acids are readily available. Among all 

the non-natural amino acids, aliphatic D-amino acids stand out as 

elegant intermediates for the synthesis of many chiral drugs which 

include the orally administered anti-diabetic drugs in the DPP-4 

inhibitor class, among which, Alogliptin,5 Linagliptin,6 Sitagliptin,7 

and Saxagliptin8 (Figure 1) are just to name a few. Moreover, due to 

the significance of chiral aliphatic D-amino acids, the worldwide 

market value of these valuable compounds is estimated at 2 billion 

dollars annually.9 

As a result, great efforts have been made for the preparation of 

non-natural D-amino acids.10 Representative methods include 

Strecker synthesis,11 enzymatic kinetic resolution of racemic amino 

esters,12 enantioselective amination of carboxylic derivatives,13 

amino enolate alkylations14 and the highly efficient transition-metal-

catalyzed asymmetric hydrogenation of α-dehydroamino acid 

derivatives.15 However, for all of the former processes, they often 

suffer from the drawbacks such as poor yields and 

enantioselectivities, low conversion of starting materials, low 

reaction rates, the need for multiple enzymes or long chemical 

reaction steps. In a sharp contrast, transition-metal-catalyzed 

asymmetric hydrogenation overcomes all of these drawbacks giving 

highly enantiomerically pure amino acid derivatives with very high 

yields in a concise way and thus was certified as a powerful and 

elegant methodology over the past decades.15a Although intensive 

efforts have been made for the asymmetric hydrogenation of the 

aryl-substituted α-dehydroamino acid derivatives, systematic 

investigation on the asymmetric hydrogenation of the alkyl-

substituted α-dehydroamino acid derivatives remains rare. 15a As a 

result, we are aiming at developing an efficient method for the 

preparation of non-natural aliphatic chiral D-amino acids through 

asymmetric hydrogenation. Herein, we report the highly 

enantioselective hydrogenation of β-alkyl (Z)-N-acetyldehydroamino 

esters by using Rh(I) and chiral bisphosphorus ligand as catalyst. A 

series of non-natural aliphatic D-amino acid derivatives were 

obtained with excellent enantioselectivities and very high yields. 

Moreover, an efficient approach for the synthesis of the key 

intermediate of the anti-diabetic drugs Alogliptin and Linagliptin in 

the DPP-4 inhibitor class was also successfully developed. 

 
Figure 1. Examples of chiral drugs containing aliphatic amino acid moiety. 

Initially, our attempts started from the hydrogenation of 1b 

utilizing Rh(NBD)2BF4 as catalyst precursor under 100 psi hydrogen 

pressure in methanol. A series of ligands were screened which were 

summarized in Figure 2. As depicted in Table 1, ligand has a 

substantial role in determining the enantioselectivity. Although all of 

the ligands tested gave full conversion of the substrate, the 

enantioselectivity excess (ee) varied in a large extend. With t-Bu-

Josiphos as the ligand, only 5.4% ee was obtained (Table 1, entry 1). 

The same case went with BINAP which afforded only 9.4% ee 

(Table 1, entry 5). Slightly higher ee was observed by using 

Biphephos and C3-Tunephos as ligand, however, the results were 

just moderate. In a big contrast, we were pleased to find that by 
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using our previously developed chiral bisphosphorus ligands 

Tangphos, Duanphos and Binapine, excellent ee was obtained (Table 

1, entries 2-4). Remarkably, as high as 99.7% ee (Table 1, entry 3) 

was obtained when using (Rc, Sp)-Duanphos as the ligand and the 

desired D-configured product was obtained. As a consequence, (Rc, 

Sp)-Duanphos was selected as the optimized ligand for the further 

screening of the reaction conditions.  

Table 1. Ligand screening for the asymmetric hydrogenation of 1b 
a
 

 

Entry Ligand Conv (%)
b
 Ee (%)

c
 Configuration

d
 

1 t-Bu-Josiphos > 99 5.4 D 

2 (S, R)-Tangphos > 99 99.0 D 

3 (Rc-Sp)-Duanphos > 99 99.7 D 

4 (S)-Binapine > 99 95.1 L 

5 (S)-BINAP > 99 9.4 L 

6 (R)-MeO-BIPHEP > 99 46.8 D 

7 (S)-C3-Tunephos > 99 68.7 L 

[a] Unless otherwise mentioned, all reactions were carried out with a 
[Rh(NBD)2]BF4/ligand/substrate ratio of 1:1.1:100, in MeOH, at room temperature, 

under hydrogen (100 psi) for 2 h, NBD = 2,5-norbornadiene; [b] Determined by 
1
H NMR spectroscopy; [c] Determined by HPLC analysis using a chiral stationary 

phase; [d] Absolute configuration was determined by comparing the optical 

rotation data with those reported by literature
16
. 

 

Figure 2.Ligands screened for the asymmetric hydrogenation of 1b  

In order to further screen the reaction conditions, solvent and 

temperature effect were also investigated (Table 2). It was found that 

solvent had little influence on the enantioselectivity and the substrate 

conversion. Except for TFE (Table 2, entry 7), all of the solvents 

tested gave satisfactory results (>99% conversion, >99% ee, Table 2, 

entries 2-6). Methanol was selected as the best solvent for the 

slightly higher enantioselectivity obtained. It was observed that 

increasing the reaction temperature to 50 °C had little influence on 

the enantioselectivity (Table 2, entry 8). For optimal results, the 

temperature was kept at 25 °C as a result. 

Table 2. Solvent and temperature screening for the asymmetric hydrogenation of 

1b 
a 

 

Entry Solvent Conv (%)
c
 Ee (%)

d
 

1 MeOH > 99 99.7 

2 DCM > 99 99.0 

3 Toluene > 99 99.1 

4 i-PrOH > 99 99.3 

5 EtOH > 99 99.0 

6 EA > 99 99.0 

7 TFE > 99 97.4 

8
b
 MeOH >99 99.6 

[a] Unless otherwise mentioned, all reactions were carried out with a 

[Rh(NBD)2]BF4/ligand/substrate ratio of 1:1.1:100, at room temperature, under 

hydrogen (100 psi) for 2 h, all the configuration of the products was D, NBD = 

2,5-norbornadiene, DCM = dichloromethane, EA = ethyl acetate, TFE = 
trifluoroethanol; [b] Temperature was increased to 50 °C; [c] Determined by 

1
H 

NMR spectroscopy; [d] Determined by HPLC analysis using a chiral stationary 

phase.  

Table 3. Rh-catalyzed asymmetric hydrogenation of β-alkyl (Z)-N-

acetyldehydroamino esters 
a
  

 

NH

O

O

O

NH

O

O

O

HN

O

O

HN

O

O

O

HN

O

O

O

O

HN

O

O

O

NH

O

O

O

HN

O

O

ON

O

O

HN

O

O

O

HN

O

O

O

NH

O

O

O

2b, Conv.%> 99
ee% = 99.7

2g, Conv.%> 99
ee% = 98.5

2i, Conv.%> 99
ee% = 99.7

2a, Conv.%> 99
ee% = 99.0

2h, Conv.%> 99
ee% = 96.5

2c, Conv.%> 99
ee% = 99.5

2j, Conv.%> 99
ee% = 99.5

2d, Conv.%> 99
ee% = 99.2

2e, Conv.%> 99
ee% = 99.5

2f, Conv.%> 99
ee% = 99.7

2k, Conv.%> 99
ee% = 99.8

Cl

 

[a] Unless otherwise mentioned, all reactions were carried out with a 

[Rh(NBD)2]BF4/Duanphos/substrate ratio of 1:1.1:100, in MeOH, at room 
temperature, under hydrogen (100 psi) for 2 h, conversion was determined by 

1
H 

NMR spectroscopy, ee was determined by HPLC analysis using a chiral stationary 

phase, for all cases, D-configured products were obtained, NBD = 2,5-

norbornadiene. 
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Delighted by the prelimary results, a series of β-alkyl (Z)-N-

acetyldehydroamino esters, 1a-1k, were synthesized and were 

subsequenty subjected to the optimal reaction conditions. These 

compounds were easily prepared in one step from readily available 

α-alkyl aldehydes utilizing an Horner-Wadsworth-Emmons 

protocol,17 owing to its high yield and operational simplicity (See 

supporting information).  

The newly synthesized Z-configured β-alkyl (Z)-N-

acetyldehydroamino esters were subjected to the optimal reaction 

conditions as a consequence. As shown in Table 3, these Z-

configured compounds proved to be good substrates affording a 

series of chiral aliphatic α-amino esters. Linear alkyl substitued 

dehydroamino substrates were all smoothly converted giving 

excellent ee higher that 99% (Table 3, 2a-2e). However, for the 

branched alkyl substituted substrates, the ee value was slightly lower 

(Table 3, 2g, 2h), probably due to the steric hindrance of these 

substrates. Cyclic alkyl substituted dehydroamino esters also proved 

to be good substrates giving excellent enantioselectivity (Table 3, 2i, 

2j). Intrestingly, halogenated substrate was also tolerated affording 

high conversion and excellent ee (Table 3, 2f). Remarkbaly, the 

protected amine substituted substrate 1k was also smoothly 

hydrogenated with ee value higher than 99% (Table 3, 2k). 

Inspired by the above results, we intended to conduct the 

hydrogenation reaction with lower catalyst loading employing 1k 

(Table 4) as the model substrate. When the reaction was conducted 

with 0.2 mol% (S/C = 500) catalyst loading under 50 atm hydrogen 

pressure at room temperature, the reaction proceeded smoothly with 

full conversion and excellent ee (Table 4, entry 1). However, further 

lowering the catalyst loading to 0.1 mol% (S/C = 1, 000) led to a 

disappointing result that almost all of the substrate remained 

untouched (Table 4, entry 2). In order to promote the conversion of 

the substrate, the temperature was increaed to 50 °C which to our 

delight led to full conversion of the substrate and the ee remained the 

same when the catalyst loading was 0.1 mol% (Table 4, entry  3). 

Excellent ee and substrate conversion were also observed when the 

catalyst loading was lowered to 0.02 mol% while further lowering 

the catalyst loading to 0.001 mol% gave a substrate conversion of 

only 67% although the ee remained high. 

Table 4. Asymmetric Hydrogenation of 1k with lower catalyst loading 
a
  

 
Entry S/C Temp. (°C) Conv (%)

b
 Ee (%)

c
 

1 500 25 > 99 99.6 

2 1, 000 25 < 5 ND 

3 1, 000 50 > 99 99.6 

4 5, 000 50 > 99 99.6 

5 10, 000 50 67 99.1 

[a] Unless otherwise mentioned, all reactions were carried out with a 

[Rh(NBD)2]BF4/ligand/substrate ratio of 1:1.1, in MeOH, at room temperature, 

under hydrogen  for 12 h. [b] Determined by 
1
H NMR spectroscopy. [c] 

Determined by HPLC analysis using a chiral stationary phase. nbd = 2,5-

norbornadiene. 

In order to demonstrate the synthetic utility of our protocol, an 

efficient approach for the synthesis of the key intermediate of the 

anti-diabetic drugs in the DPP-4 inhibitor class, Alogliptin and 

Linagliptin, was developed (Figure 3). Starting from the chiral 

product 2k, deprotection went smoothly in the precene of HCl in 

excellent yield. By treating 2k with aluminium and sodium 

hydroxide followed by reduction with lithium aluminium hydride, 

the key intermediate of Alogliptin and Linagliptin 7k was efficiently 

obtained in good yield. Starting from the key intermediate 7k, 

Alogliptin and Linagliptin can be readily synthesized following 

literature procedure.5, 6 

 

Figure 3. Highly Enantioselective Synthesis of Alogliptin and Linagliptin. 

Conclusions 

In summary, a new type of β-alkyl (Z)-N-acetyldehydroamino 

esters were prepared by Horner-Wordwoths-Emmons reaction in 

high yields and were hydrogenated with excellent enantioselectivity, 

which provides an efficient method for the synthesis of the 

enantiomerically pure non-natural amino acids that are important in 

synthetic, medicinal, and bioorganic chemistry. More importantly, 

the key intermidiate 7k was synthesized providing a highly 

enantioselective route for the synthesis of the DPP-4 inhibitor 

Alogliptin and Linagliptin. 
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By employing rhodium-DuanPhos as catalyst, β-alkyl (Z)-N-acetyldihydroamino esters were smoothly hydrogenated in a highly 

efficient and enantioselective way. Excellent enantioselectivities together with good yields were achieved for a series of substrates. An 

efficient approach for the synthesis of the intermediate of the orally administered anti-diabetic drug Alogliptin and Linagliptin in the 

DPP-4 inhibitor class was also developed. 
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