View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Q. Li, L. Han, B. Zhang, J. Zhou and H. Zhang, *Org. Biomol. Chem.*, 2016, DOI: 10.1039/C6OB01818A.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Qing Li, ^{#a,b} Li Han, ^{#a} Bin Zhang, ^c Jinpei Zhou ^c and Huibin Zhang ^a*

A series of triazole based uracil derivatives were designed and synthesized as novel DPP-4 inhibitors. Compound **A01** was firstly identified as a lead compound for SAR studies, which focused on structural modification in S2' subsite of DPP-4. Then novel analogues **A02-A25** by modifying substituents at phenyl group and **B01-B09** by introducing carbonyl group were designed. By screening in DPP-4, compounds **B03**, **B04** and **B08** showed a significant improvement in DPP-4 inhibitory activities compared with compound **A01** and a comparable activities with marketed DPP-4 inhibitor alogliptin. Docking study revealed a new favorable binding modes of designed compounds in S2' subsite, and proved structural modifications in S2' subsite were an effective option to increase the inhibition of DPP-4. In vitro DPP-8 and DPP-9 tests displayed that all compounds showed excellent selectivity against DPP-8 and DPP-9. Further in vivo evaluation showed compound **B04** could significantly improve oral glucose tolerance in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. These data suggest that compound **B04** could be a promising DPP-4 inhibitor for future treatment of T2DM.

Introduction

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11

Type 2 diabetes mellitus (T2DM) is growing metabolic disorder, which is expected to affect 366 million people by 2030 worldwide.¹ Currently, Dipeptidyl peptidase-IV (DPP-4) has been validated as one of the most effective targets for T2DM treatment. DPP-4 is a serine peptidase, which rapidly inactivates endogenous glucagon-like peptide-1 (GLP-1) with a very short half-life 1-2 min.^{2, 3} GLP-1 secreted by intestinal endocrine cells in response to the presence of nutrients can increase the production and release of insulin from pancreatic β cells.^{4, 5} Inhibition of DPP-4 can prevent the degradation of GLP-1, and thus enhance insulin secretion and improve the glucose tolerance.⁶ Various DPP-4 inhibitors, such as aloglitptin and linagliptin (Fig. 1), have already been released as therapeutic drugs for T2DM.⁷ However, some of DPP-4 inhibitors has been reported to increase risk of hospitalisation for heart failure, ^{8, 9} and also may be associated with severe joint pain side effect.¹⁰ Thus it is necessity to develop novel DPP-4 inhibitors with more safety and less side effects for the treatment of T2DM.

The binding site of DPP-4 enzyme has four subsites, including S₁, S₂, S₁', and S₂' subsites (**Fig. 2**).¹¹ The S₁ subsite is highly hydrophobic

Fig. 1 The structures of alogliptin, linagliptin and yogliptin, and the design of triazole based uracil derivatives.

pocket consists of catalytic triad (Ser630, Asn710 and His740) and the S2 subsite involves key interactions with Glu205 and Glu206 and Arg125. The S₁ and S2 subsites have been extensively studied, but the S₁', and S₂' subsites have not been clearly defined.¹² The crystallographic structure (PDB ID: 2RGU) indicates that the S₁' subsite is made up of Tyr547 and Ser630. The S₂' subsite is a larger cavity surrounded by residues of Trp629 Trp627, Tyr752, His740, lle742 and His748 (**Fig. 2B**). Only few inhibitors can bind into this S₂' subsite to increase their inhibitory activities, and thus leaving more to be explored. ¹¹

Among all the DPP-4 inhibitors, alogliptin with IC₅₀ value of 8 nM and linagliptin with IC₅₀ value of 1 nM are approved by US FDA (**Fig.** 1).^{13, 14} The aligned crystallographic structures (PDB ID: 3G0B and 2RGU) revealed that alogliptin and linagliptin have the similar binding modes in S₁, S₂, and S₁' subsites. Both incorporate (*R*)-3aminopiperidine to form salt bridges with Glu205 and Glu206 in S₂ subsite, hydrophobic cyanobenzyl group and butynyl group bind to

IEMISTRY

50B01818A

DOI

^{a.} Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China. E-mail: zhanghb80@cpu.edu.cn

 ^{b.} Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, PR China.
 ^{c.} Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, PR China.

Fax: +86 25 83271480; Tel: +86 25 83271302

⁺Electronic Supplementary Information (ESI) available here. See DOI: 10.1039/x0xx00000x

[#] These authors contributed equally to this work

View Article Online DOI: 10.1039/C6OB01818A

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11.

Journal Name

ARTICLE

Fig. 2 A, the aligned crystallographic structures of alogliptin (blue) and linagliptin (green); **B**, the residues (purple) of the S₂' subsite; **C**, the docking binding modes of compound **A01** (cyan).

S₁ subsite (**Fig. 2**). This salt bridge interaction in S₂ subsite and hydrophobic binding with S₁ subsite are two key features of DPP-4 inhibitors. ¹¹ In addition, the uracil and purine rings form same π - π interactions with Tyr547 and hydrogen bond with Ser630 in the S₁' subsite. However, they have different binding interactions in the S₂' subsite. Alogliptin does not have binding interaction with S₂' subsite, while the quinazoline substituent of linagliptin forms π - π interaction with Trp629 in the S₂' subsite. Yogliptin is discovered as a more potent (IC₅₀ = 0.05 nM), long-acting DPP-4 inhibitor,^{15, 16} which may take more efficient binding with S₂' subsite via benzo[d]thiazole ring than quinazoline of linagliptin. The reason why linagliptin has 8-fold higher activity than alogliptin and yogliptin are 20-fold more potent

than linagliptin may be because of the different binding interactions in the S_2' subsite, which suggested that modification of substituent in S_2' subsite can be a good strategy for design of new DPP-4 inhibitors.

With those information in mind, we chose the uracil ring as scaffold to interact with S₁' subsite, and 2-butynyl group of linagliptin was introduced at N3-position of uracil to bind with S1 subsite, while 3-(R)-aminopiperidine group at C6-position of uracil was remained to form salt bridges with Glu205 and Glu206 in S₂ subsite. 1,2,3-triazole ring was introduced to N3-position of uracil to bind with the S₂' subsite (Fig. 1) because of two reasons: one is the 1,2,3-triazole itself may provide $\pi\text{-}\pi$ interaction with Trp629 as quinazoline ring of linagliptin does, and the substituent in 1-position of 1,2,3-triazole can be easily modified for structure-activity studies. Compound A01 with 1-phenyl-1,2,3-triazole group was firstly synthesized and showed a DPP-4 potency of 185.24 nM and excellent selectivity against DPP-8 and DPP-9 (both >100 µM, Fig. 1). Docking study reavealed that compound A01 displayed expected binding modes with DPP-4. As shown in Fig. 2, the uracil ring, 2-butynyl group and 3-(R)aminopiperidine group interacted with DPP-4 in a similar way with linagliptin, 1-phenyl-1,2,3-triazole provided π - π interaction with Trp629 in the S₂' subsite. DPP-4 potency of compound A01 was less potent than that of marketed alogliptin and linagliptin. However, modification of 1-phenyl-1,2,3-triazole group of compound A01 in S₂' subsite might be a good way to increase their inhibitory activities. Thus we continued to design and synthesize novel analogues A02-A25 and B01-B09 with diverse groups in N-1 position of triazole rings. Herein, we reported the design, synthesis and biological evaluation those 1,2,3-triazole based uracil derivatives as novel DPP-4 inhibitors.

Results and discussion

Chemistry

The synthetic route adopted to obtain compounds A01-A25 is depicted in Scheme 1. The selective alkylation of commercially available material 6-chlorouracil with 1-bromo-2-butyne and ethyldiisopropylamine at room temperature produced compound C. Compound C was further alkylated by 3-bromopropyne to afford compound **D**. Amination of compound **D** with 3-(R)-Boc-aminopiperidine at 60 °C furnished compound E. Compounds H01-22 were obtained by treating compounds G01-22 with NaNO₂ followed by NaN₃ in 6 M hydrochloric acid according to literature procedures.¹⁷ Subsequently, compound E was treated with compounds H01-22 at room temperature in the presence of catalytic amount of copper sulfate and sodium ascorbate in methanol and water (v/v, 4/1) for 12 h to provide compounds F01-22. Deprotection of Boc group of compounds F01-22 with HCl gas at 0 °C furnished the target compounds A01-A22. The compounds A23-25 were prepared from F20-22 by cleavage of Boc and ester groups. The structures of target compounds A01-A25 obtained were listed in Table 1 and Table 2.

Scheme 1 Synthesis of compounds A01-A25. Reagents and conditions: (a) 1-bromobut-2-yne, DIPEA, DMF, r.t., 12 h; (b) 3-bromoprop-1-yne, K_2CO_3 , DMF, r.t. 12 h; (c) tert-butyl (*R*)-piperidin-3-ylcarbamate, K_2CO_3 , DMF, 60 °C, 6h; (d) compounds H, CuSO₄·5H₂O, Sodium ascorbate, MeOH/H₂O (4:1), r.t., 12 h; (e) HCl gas, EA/ether, 0 °C; (f) (i) NaNO₂, HCl, H₂O, 0 °C; (ii) NaN₃, H₂O , 0 °C, 2h; (g) NaOH, H₂O/MeOH, 6h.

The synthetic route to compounds **B01-09** is outlined in **Scheme 2**. The starting materials compounds **I01-05** were treated with NaN₃ in acetone/H₂O to give compounds **J01-05**. Compounds **J01-05** reacted with compound E in similar condition depicted in **Scheme 1** to give compounds **K01-05**. Compounds **K01-05** were hydrolyzed with NaOH and removed protection group with HCl gas to afford the target compounds **B01**, **03**, **05**, **07** and **09**. Deprotection of compounds **K01-05** furnished the target compounds **B02**, **04**, **06** and **08**. The structures of target compounds **B01-B09** were listed in **Table 2**.

In vitro DPP-4 inhibition studies and SAR analysis of target compounds

The synthesized compounds were evaluated in vitro for their capacity to inhibit human recombinant DPP-4 using linagliptin and alogliptin as the positive controls. Inhibitory potency were measured y following the increase of fluorimetric intensity at 460 nm upon hydrolysis of H-Gly-Pro-aminomethylcoumarin (H-Gly-Pro-

Scheme 2 Synthesis of compounds B01-B09. Reagents and conditions: (a) NaN₃, Acetone/H₂O, 60 °C, 8h; (b) compound E, CuSO₄·5H₂O, Sodium ascorbate, MeOH/H₂O (4:1), r.t., 12h; (c) NaOH, H₂O/MeOH, 6h; (d) HCl gas, EA/ether, 0 °C.

View Article Online DOI: 10.1039/C6OB01818A

 Table 1 In vitro DPP-4 inhibitory activities of compounds A01-19

Compounds	R1	%Inhibition at 100nM	IC ₅₀ (nM) ^{a,b}
A01	н	37.26±4.31	185.24
A02	2'-F	75.56±2.76	64.05
A03	3'-F	25.03±2.48	NT
A04	4'-F	46.44±1.71	135.45
A05	2',4'-diF	35.00±2.91	243.67
A06	2'-Me, 4'-F	26.88±0.78	NT
A07	2'-Cl	8.18±2.44	NT
A08	3'-Cl	46.90±1.48	168.63
A09	4'-Cl	3.72±0.71	NT
A10	2',5'-diCl	23.51±5.22	NT
A11	2'-Me	13.71±13.86	NT
A12	4'- Me	32.12±9.64	NT
A13	2',5'-diMe	30.94±16.65	NT
A14	2'-Me, 5-Cl	28.88±7.12	NT
A15	2'-OH, 4'-Me	23.29±6.41	NT
A16	4'-t-Bu	23.72±3.10	NT
A17	2'-MeO	40.61±0.70	219.42
A18	3'-MeO	52.94±0.00	88.53
A19	4'-MeO	23.79±6.87	NT
alogliptin	-	86.46±5.22	6.85
linagliptin	-	98.46±5.22	1.25

^a Measured in three independent experiments. ^b NT: not tested

AMC). The compounds with good inhibition rates at 100 nM were further selected to determine their IC_{50} values. The inhibitory activities were depicted in **Table 1**.

Compound A01 with the IC₅₀ of 185.24 nM was selected as starting point for our initial SAR studies, which focused on phenyl group in N-1 position of triazole ring (compounds A01-19). A wide variety of substituents were introduced to benzene ring. As shown in Table 1, most of the synthesized compounds demonstrated significant in vitro DPP-4 inhibitory activities. The mono-fluoro substituted at ortho or para position of benzene ring (compounds A02 and A04) led to increase of activities, compound A02 showed 3fold more potent inhibitory activity (with the IC₅₀ of 64.05 nM) compared to compound A01. Compound A04 exhibited DPP-4 potency of 135.45 nM, which was slightly more potent than compound A01. However, addition of mono-fluorine atom at meta position or introduction of two fluorine atoms at ortho- or paraposition of benzene ring reduced the DPP-4 inhibitory potency (A03 and A05). Chloro group at meta position of the benzene ring tolerated DPP-4 inhibition (compound A08, IC₅₀ = 168.63 nM), introduction of chloro group at other positions led to decrease of activities (compound A07, A09 and A10). In addition, presence of methyl group at benzene ring slightly reduced inhibitory potency (compounds A11-15). The methoxy at meta-position (compound

nistry Accepted Mar

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11

Table 2 *In vitro* DPP-4 inhibitory activities of compounds A20-25 and B01-09

R₂-N N=N A20-25 and B01-12

Compounds	R ₂	%Inhibition at 100nM	IC ₅₀ (nM) ^{a,b}
A20		28.94±1.53	345.32
A21		24.07±6.16	NT
A22		36.84±13.30	172.53
A23	HO	72.73±1.32	65.63
A24	но	17.88±0.00	NT
A25	HO	20.96±2.60	NT
B01	HO	58.73±2.86	84.72
B02	~Z	22.84±8.30	NT
B03	HO	79.55±2.24	12.45
B04		58.39±0.50	64.31
B05	HO	77.28±1.14	26.81
B06	HO	59.24±2.08	71.62
B07	O O V Z Z	28.82±0.09	NT
B08	HO	83.82±0.93	9.56
B09	O O O	47.24±2.5	105.56
alogliptin	-	86.46±5.22	8.85
linagliptin	-	98.46±5.22	1.47

^a Measured in three independent experiments.

^b NT: not tested

A18) exhibited 2-fold more potent inhibitory activity (IC₅₀ = 88.53 nM) compared to compound **A01**. The methoxy at *ortho*- or *para*-position reduced inhibitory potency. Finally, an investigation of the inhibitory activities of these N-1 phenyl triazole-based uracil derivatives

showed that compound **A02 and A18** exhibited desirable inhibitory, but their acitivities were still less potent that therefore outputs linagliptin ($IC_{50} = 1.25 \text{ nM}$) and alogliptin ($IC_{50} = 6.85 \text{ nM}$). Thus further optimization was performed to identify a compound with enhanced inhibitory activity.

Published X-ray co-crystal structure suggested that some DPP-4 inhibitors, such as aloglitpin¹⁸ and nicotinic acid derivative¹⁹, were interacted with Arg125 residue of DPP-4 in S₂ subsite, and docking study revealed Arg125 is located near the triazole ring of compound **A01 (Fig. 1)**. Thus Arg125 is a potential target residue for achieving potent DPP-4 inhibitory activity in our design. Some known DPP-4 inhibitors generate a hydrogen-bond between the carbonyl oxygen and Arg125²⁰. Therefore, we further designed a series of triazolebased uracil derivatives by introducing an additional carbonyl oxygen that could make this desired hydrogen-bond interaction (compound **A20-25 and B01-09**). The results were shown in **Table 2**.

Carbonyl groups were firstly introduced to the benzene ring of compound **A01** to afford compounds **A20-25**, in which compounds **A23-25** were added with carboxylic acid group and compound **A20-22** with corresponding carboxylic ester. Compound **A23** with carboxylic acid at *ortho*-position showed IC₅₀ value of 65.63 nM, manifested 3-fold more potent inhibitory activity compared with compound **A01**. The carboxylic acid at *meta-* and *para-*positions and corresponding ester led to decrease of potency.

Some aliphatic carboxylic acids with different carbon chain lengths (2-4) and corresponding esters were also introduced at 1position of triazole ring (B01-09). As shown in Table 2, introduction of aliphatic carboxylic acids led to a significant increase of DPP-4 potency. Compounds bearing acetic acid (B01, IC₅₀ = 84.72 nM) or 2propanoic acid (B06, $IC_{50} = 71.62$ nM) exhibited an increase in potency by more than 2- and 3-fold compared to compound A01. Remarkably, compound B03 with 3-propanoic acid group exhibited low nanomolar inhibitory activity with the $IC_{50}\, of\,\, 12.45\,\, nM,$ which was 15-fold more potent than that of compound A01. Compound **B08** bearing (E)-but-2-enoic acid exhibited the most potent activity with the IC_{50} of 9.56 nM, its activity was comparable with alogliptin. These results clearly indicated the importance of chain lengths of the carboxylic acid for the activity. Replacement of carboxylic acids with their corresponding ester resulted in substantial potency loss. Compound B04 (IC₅₀ = 64.31 nM), which has methyl propionate, showed better potency relative to the rest of the ester.

Docking Study

To understand the binding modes of the triazole-based derivatives in S_2' subsite, compounds AO2, BO3 and BO8 were selected for docking study (Fig.34). We used the molecular docking program GLIDE 5.9 to dock compounds into a DPP-4 crystal structure (PDB ID: 2RGU). The docking results were shown in Fig. 3, all compunds display favorable binding modes. As shown in Fig. 3-A, the overlay of AO2 against linagliptin shows the uracil ring, 2-butynyl group and (3R)-aminopiperidine group interact with DPP-4 in a similar way with linagliptin. However, compared with conjugated phenyl moiety of the quinazoline ring in linagliptin, nonconjugated 1-phenyl-triazole moiety of compound AO2 take poor π - π stacking interaction with Trp629. The difference may explain the observed potency decrease

Journal Name

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11.

Journal Name

of compounds A01-19 compared to linagliptin. Docking results of compounds B03 and B08 (Fig. 3-B) showed that the uracil ring, 2butynyl and (3R)-aminopiperidine groups also have similar binding modes to those shown by linaglitpin, but the carboxy groups with different carbon chain lengths form different binding modes in S2' subsite. The carboxy group of compound B03 with two carbon lengths can interact with Arg125 in S2 subsite by hydrogen bond as we expected. However, compound B08 with three carbon atoms lengths displays new conformations in S_2' subsite that the carboxy groups can interact with Tyr752 with hydrogen bond, and ethenyl chain has hydrophobic interaction with Trp629. The most potent activity of compound **B08** can be explained by the hydrogen-bonding interaction and the increase in hydrophobic interaction in S₂' subsite. Therefore, analysis of compounds A01-25 and B01-09 yielded the novel and important finding that modifications of substituent in S2' subsite were an effective and useful option to increase the inhibition of DPP-4.

Selectivity over DPP-8 and DPP-9

Selected compounds were evaluated for its inhibition of DPP-4 homologues, including DPP-8 and DPP-9, and the results were compared to those of marketed DPP-4 inhibitors. As shown in **Table 3**, Saxagliptin inhibited both DPP-8 and DPP-9 with a selectivity ratio for DPP-4 over DPP-9 of only about 30-fold. On the other hand, all

Fig. 3. A docking study of DPP-4 protein and compounds **A02** (orange carbons), **B03** (yellow carbons) and **B08** (salmon carbons). Linaglipitin (blue carbons) and the amino acids (green carbons, white text) are indicated. The hydrogen bonds are shown as black dotted lines.

				DOI: 10 1039/C6OB01818A		
Compounds	DPP-4	DPP-8	DPP-9	DPP-	DPP-	
	(nM)	(μM)	(μM)	8/DPP-4	9/DPP-4	
A01	185.24	>100	>100	>540	>540	
A02	64.05	>100	>100	>1560	>1560	
A23	65.63	>100	>100	>1540	>1540	
B01	84.72	>100	>100	>1190	>1190	
B03	12.45	>100	>100	>8000	>8000	
B04	64.31	>100	>100	>1560	>1560	
B08	9.56	>100	>100	>10,000	>10,000	
B09	105.56	>100	>100	>950	>950	
Alogliptin	6.85	>100	>100	>14,000	>14,000	
Saxagliptin	6.00	0.4	0.2	66	33	

Table 3 Selectivity for DPP-4 over DPP-8 and DPP-9.

selected compounds showed no inhibition of DPP-8 or DPP-9 with the IC₅₀ > 100 μ M, which showed excellent selectivity against DPP-8 and DPP-9.

Hypoglycemic effect of B03, B04, B08 and B09 in ICR mice

Based on in vitro potency and selectivity analysis, compounds B03, B04, B08 and B09 were selected for acute efficacy evaluation by the oral glucose tolerance test (OGTT) in ICR mice. A single dose of compounds B03, B04, B08 and B09 (3 mg/kg) were administered to ICR mice. As shown in Fig. 4, the OGTT produced a significant decrease in glucose level after half hour compared with the vehicle group. Alogliptin, which was used as a positive control, reduced the area under curve from 0 to 120 min (AUC) 0-120 min to 38.2% (alogliptin, 842±103, vehicle control, 1,363±157). Compared compound B03 with B04, compound B03 showed more potent in vitro activity than compound B04, but compound B04 was more potent in vivo. Compound B04 reduced the value to 31.4% (935±125), and compound BO3 reduced only 21.2% (1150±130). The reason may be low membrane permeability of compound BO3 caused by the formation of a zwitterion between the carboxyl group and the amino group. Compound B04 was the methyl ester of compound B03, the more lipophilic compound B04 have higher membrane permeability to improve the bioavailability, and compound B04 can probably act as a prodrug that metabolized into compound **B03**, as reported in literature,²¹⁻²³ both improved in vivo activity of compound B04. In addtion, compounds B08 and B09 showed similar potency in vivo, B08 and B09 reduced the value to 28.1% (B08, 981±98) and 25.2% (1091±120), respectively.

In order to verify the hypoglycemic effect, compounds **B04** and **B09** were selected for acute efficacy evaluation in ICR mice at a higher dose of 10 mg/kg (**Fig. 5**). Compound **B04** reduced area under the curve from 0 to 120 min $(AUC)_{0-120}$ min to 40.4% (B04, 947±85; vehicle control, 1,589±139), which was slightly less potent than the hypoglycemic effect of alogliptin (42.5%, 913±73). But the activity of compound **B09** (29.2%, 1105±124) was still much lower than that of

ARTICLE

View Article Online

alogliptin at higher dose. Thus compound **B04** with best potency in vivo was then considered for further evaluation.

Antihyperglycemic effect of compound B04 in type 2 diabetic C57BL/6 mice

The antihyperglycemic effect of **B04** was evaluated in type 2 diabetic C57BL/6 mice. As shown in **Fig. 6**, Compund **B04** at dose of 1-10 mg/kg was orally administrated in diabetic C57BL/6 mice prior to glucose challenge. The results indicated that **B04** significantly reduced blood glucose at a dose of 3 mg/kg and oral administration of B04 dose-dependently reduced blood glucose in type 2 diabetic C57BL/6 mice.

The toxicity evaluation of compound B04

ARTICIF

To evaluation of the potential toxicity of compound **B04**, the ICR mice and diabetic C57BL/6 mice after OGTT at the dose of 10 mg/kg were kept under conventional conditions of controlled temperature, humidity, and lighting for additional 1 week. All animals survived until the end of the study. The results suggested that the compound was non-toxic at the tested dose.

Fig. 5 Effect of Compounds **B04** and **B09** (10 mg/kg) during an OGTT in male ICR mice and $AUC_{0-120 \text{ min}}$ of blood glucose levels. Values are mean ± SEM (n = 8). **P≤0.01 and ***P ≤0.001 compared to vehicle-treated ICR mice by Student's t test.

Conclusions

In summary, we designed and optimized 1,2,3-triazole based uracil derivatives to obtain novel DPP-4 inhibitors. Firstly, Compound A01 with phenyl group was firstly identified as a lead compound, then substituents were introduced to phenyl group at N-1 position of 1,2,3-triazole, and the resulting compounds manifested weak to moderate DPP-4 inhibitory activities. Then we designed the introduction of a carboxy group that could increase the inhibitory activities by interacting with Arg125. Compounds B03, B04 and B08 possessing a carboxy group actually showed improved DPP-4 inhibitory activities. Docking study revealed that the carboxy group at 1,2,3-triazole ring show new favorable conformations in S₂' subsite, and suggested modifications of substituent in S2' subsite were an effective way to increase the inhibition of DPP-4. Furthermore, Compounds B03, B04 and B08 also showed good selectivity over DPP-8 and DPP-9. In addition, compound **B04** could significantly improve oral glucose tolerance in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. These data suggest that compound B04 could be a promising DPP-4 inhibitor for future treatment of T2DM.

Experimental

General chemistry

All reagents were purchased from commercial sources and used without further purification. Reactions were monitored by TLC on silica gel 60 F254 plates (Qingdao Ocean Chemical Company, China). Column chromatography was performed on silica gel (200-300 mesh, Qingdao Ocean Chemical Company, China). Melting points were

Fig. 6 Effect of **B04** during an OGTT in diabetic C57BL/6 mice. (A) show time-dependent changes of blood glucose after oral administration of **B04**, followed by 1 g/kg oral glucose challenge. Date in (B) represent AUC₀₋₁₂₀ min of blood glucose levels. Values are mean \pm SEM (n = 6). *P \leq 0.05, **P \leq 0.01 and ***P \leq 0.001 compared to vehicle-treated C57BL/6 mice by Student's t test.

measured on capillary tube and were uncorrected. IR spectra (in KBr pellets) were taken using Shimadzu FT-IR-8400S spectrophotometer. ¹H NMR and ¹³C NMR spectra (DMSO-*d*₆, CDCl₃) were recorded with a Bruker AV-300 spectrometer in the indicated solvents (TMS as internal standard): the values of the chemical shifts are expressed in δ values (ppm) and the coupling constants (*J*) in Hz. High-resolution mass spectra were recorded using an Agilent QTOF 6520.

1-(but-2-ynyl)-6-chloropyrimidine-2,4(1H,3H)-dione (C)

To a mixture of 6-chlorouracil (10 g, 69 mmol) and DIPEA (9.7 g, 75 mmol) in DMF (30 mL) was added 1-bromo-2-butyne (9.9 g, 75 mmol). The reaction mixture was stirred at r.t for 12 h. Water (150 mL) was added. The precipitate was collected by filtration, washed

with water and EtOH, and dried to give compound **C** as a light yellow solid (10.8 g, 80%). mp: 216-217 °C. ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.71 (s, 1H), 5.99 (s, 1H), 4.65 (s, 2H), 1.80 (s, 3H). HR-MS (ESI) m/z: calculated C₈H₈N₂O₂Cl [M+H]⁺ 199.0274, found 199.0276.

1-(but-2-ynyl)-6-chloro-3-(prop-2-ynyl)pyrimidine-2,4(1H,3H)dione (D)

To a suspension of **B** (9 g, 45.5 mmol) and K₂CO₃ (14.4 g, 104.53 mmol) in DMF (36 mL) was added 3-bromopropyne (6.5 g, 54.5 mmol). The reaction mixture was stirred at r.t for 12 h. The reaction mixture was poured into water. The precipitate was collected by filtration, washed with water, and dried to give compound **D** as a yellow solid (8.48 g, 79%). mp: 147-149 °C. ¹H NMR (300 MHz, DMSO-d₆): δ 6.21

(s, 1H), 4.74 (s, 2H), 4.51 (s, 2H), 3.17 (s, 1H), 1.80 (s, 3H), HRtMS(ESI) m/z: calculated $C_{11}H_{10}N_2O_2CI$ [M+H]⁺ 237.1324/H60460323791318.818A

Tert-butyl (R)-(1-(3-(but-2-yn-1-yl)-2,6-dioxo-1-(prop-2-yn-1-yl)-1,2,3,6-tetra- hydropyrimidin-4-yl)piperidin-3-yl)carbamate (E)

A mixture of **C** (8.0 g, 33.9 mmol), (*R*)-3-(N-Boc-amino)piperidine (8.13 g, 40.68 mmol) and K₂CO₃ (10.76 g, 77.90 mmol) in DMF (40 mL) was stirred at 65 °C for 5 h. After cooling to r.t., the mixture was poured into water (1000 mL). The precipitate was collected by filtration, washed with water, and dried to give compound **E** as a brown solid (13.5 g, 99 %). mp: 87-89 °C. ¹H NMR (300 MHz, CDCl₃): δ 5.27 (s, 1H), 4.92-4.76 (m, 1H), 4.70-4.66 (m, 3H), 4.49 (d, *J* = 17.1 Hz, 1H), 3.88-3.82 (m, 1H), 3.35-3.25 (m, 1H), 3.17-3.02 (m, 1H), 2.94-2.78 (m, 1H), 2.75-2.54 (m, 1H), 2.18 (t, *J* = 2.4 Hz, 1H), 1.97-1.85 (m, 1H), 1.82 (s, 3H), 1.74-1.67 (m, 2H), 1.45 (s, 9H). HR-MS (ESI) m/z: calculated C₂₁H₂₉N₄O₄[M+H]⁺ 401.4327, found 401.4319.

azidobenzene (H01)

Aniline (5.62 g, 18 mmol) was dissolved in 6 mol/L hydrochloric acid (20 mL). To this solution, sodium nitrite (0.89 g, 12.9 mmol) was slowly added at 0 to 5 °C within 30 min. The solution was vigorously stirred at 0-5 °C for 30 min. Sodium azide (0.91 g, 13.9 mmol, dissolved in 2 mL of water) was slowly added into the reaction mixture at 0 °C. The resulting solution was stirred at 0 °C for 2 h followed by diluting with ice water (50 mL) and extracting with EtOAc (3 × 50 mL). The combined organic layer was washed with water (3 × 50 mL), saturated aqueous NaHCO₃ (50 mL × 3) and brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated to afford yellow oil (0.84 g, 65%). ¹H NMR (300 MHz, CDCl₃): δ 7.27 (t, *J* = 7.2 Hz, 2H), 7.08-7.05 (m, 1 H), 6.96 (m, 2 H).

tert-butyl (*R*)-(1-(3-(but-2-yn-1-yl)-2,6-dioxo-1-((1-phenyl-1H-1,2,3-triazol-4-yl)) methyl)-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-yl)carbamate (F01)

To the solution of compund **E** (212 mg, 0.53 mmol) and **H01** (76 mg, 0.64 mmol) in 80% methanol (10 mL), $CuSO_4 \cdot 5H_2O$ (6.6 mg, 0.027 mmol) and ascorbate sodium (30 mg) were added, respectively. The reaction solution was stirred at room temperature for 12 h. The mixture was conentrated under reduced presure, water was added and (20 mL) and extracted with DCM (3 × 20 mL). The combined organic layer was washed with saturated brine, dried over anhydrous Na₂SO₄, and concentrated. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate, 10:1~ 3:1) to give compound **F01** as a light yellow solid (234 mg, 85%).¹H NMR (300 MHz, CDCl₃): δ 7.71 (s, 1H), 7.28-7.25 (m, 2H), 7.08-7.00 (m, 3H), 5.32 (s, 2H), 5.28 (s, 1H), 4.83-4.74 (m, 1H), 4.67 (d, *J* = 15.9 Hz, 1H), 4.49 (d, *J* = 15.9 Hz, 1H), 3.87-3.78 (m, 1H), 3.33-3.25 (m, 1H), 3.14-3.03 (m, 1H), 2.88-2.81 (m, 1H), 2.71-2.58 (m, 1H), 1.97-1.85 (m, 1H), 1.82 (s, 3H), 1.74-1.67 (m, 2H), 1.45 (s, 9H).

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A01)

Compund **F01** (200 mg, 0.38 mmol) was dissolved in EtOAc (5 mL) and ether (30 mL). Freshly prepared HCl gas was bubbled into the solution at °C. After TLC analysis indicated the completed consumption of starting materials, the precipitate was collected by

ARTICLE

filtration, dried in vacuo to afford compound A01 as a white solid (135 mg, 77%). mp: 83-86 °C; IR (v_{max} cm⁻¹): 3438, 2949, 1704, 1654, 1503, 1441, 805, 762; ¹H NMR (300MHz, DMSO-*d*₆): δ 8.64 (s, 1H), 8.34 (brs, 3H), 7.89-7.86 (m, 2H), 7.61-7.55 (m, 2H), 7.50-7.45 (m, 1H), 5.28 (s, 1H), 5.09 (s, 2H), 4.70-4.64 (m, 1H), 4.50-4.44 (m, 1H), 3.38-3.30 (m, 2H), 3.12-3.01 (m, 2H), 2.92-2.85 (m, 1H), 1.97-1.88 (m, 2H), 1.78 (s, 3H), 1.68-1.62 (s, 2H); ¹³C NMR (75MHz, DMSO-*d*₆): δ 161.40, 159.04, 151.39, 144.03, 136.51, 129.82, 128.58, 121.45, 119.96, 88.33, 79.72, 74.57, 52.04, 51.41, 45.94, 35.79, 35.55, 26.91, 21.21, 3.13; HR-MS (ESI) m/z: calculated for C₂₂H₂₅N₇O₂ [M+H]⁺: 420.2142, found: 420.2140.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2-fluoro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A02)

Following a similar procedure for the preparation of A01, A02 was prepared starting from 2-fluoroaniline. White solid (140 mg). mp: 71-75 °C; IR (v_{max} cm⁻¹): 3438, 1704, 1654, 1600, 1510, 1474, 1441, 764; ¹H NMR (300MHz, DMSO-*d*₆): δ 8.41 (s, 1H), 8.28 (brs, 3H), 7.83-7.78 (m, 1H), 7.63-7.51 (m, 2H), 7.45-7.40 m, 1H), 5.29 (s, 1H), 5.12 (s, 2H), 4.66 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.35-3.27 (m, 2H), 3.12-2.98 (m, 2H), 2.92-2.84 (m, 1H), 1.98-1.88 (m, 2H), 1.78 (s, 3H), 1.69-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO-*d*₆): δ 161.40, 159.05, 151.40, 143.42, 131.12, 125.84, 125.51, 125.46, 124.75, 117.19, 116.93, 88.45, 79.72, 74.52, 52.12, 51.37, 46.00, 35.64, 35.52, 26.94, 21.28, 3.09; HR-MS (ESI) m/z: calculated for C₂₂H₂₄FN₇O₂ [M+H]+:438.2048, found: 438.2056.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(3fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)dione hydrochloride (A03)

Following a similar procedure for the preparation of A01, A03 was prepared starting from 3-fluoroaniline. White solid (135 mg); mp: 73-77 °C; IR (v_{max} cm⁻¹): 3435, 2950, 1705, 1651, 1604, 871, 784; ¹H NMR $(300 \text{MHz}, \text{DMSO-}d_6) \delta 8.71 \text{ (brs, 1H)}, 8.30 \text{ (s, 3H)}, 7.87-7.75 \text{ (m, 2H)},$ 7.67-7.59(m, 1H), 7.37-7.30 (m, 1H), 5.29 (s, 1H), 5.10 (s, 2H), 4.67 (d, J = 18.0 Hz, 1H), 4.48 (d, J = 18.0 Hz, 1H), 3.40-3.29 m, 2H), 3.15-2.98 (m, 2H), 2.92-2.85 (m, 1H), 1.97-1.88 (m, 2H), 1.78 (s, 3H), 1.69-1.62 (m, 2H). ¹³C NMR (75MHz, DMSO-*d*₆): δ 161.40, 159.04, 151.39, 144.03, 136.51, 129.82, 128.58, 121.45, 119.96, 88.33, 79.72, 74.57, 52.04, 51.41, 45.94, 35.79, 35.54, 26.91, 21.21, 3.13; HR-MS (ESI) m/z: calculated for C₂₂H₂₄FN₇O₂ [M+H]⁺: 438.2048, found: 438.2048.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(4-fluoro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A04)

Following a similar procedure for the preparation of A01, A04 was prepared starting from 4-fluoroaniline. White solid (127 mg); mp: 83-87 °C; IR (v_{max} cm⁻¹): 3442, 1705, 1651, 1517, 1441, 1047, 807; ¹H NMR (300MHz, DMSO-d₆) δ 8.62 (s, 1H), 8.28 (brs, 3H), 7.94-7.90 (m, 2H), 7.45-7.41 (m, 2H), 5.29 (s, 1H), 5.09 (s, 2H), 4.66 (d, J = 15.0 Hz, 1H), 4.48 (d, J = 15.0 Hz, 1H), 3.33-3.28 (m, 2H), 3.14-2.99 (m, 2H), 2.92-2.84 (m, 1H), 1.97-1.87 (m, 2H), 1.78 (s, 3H), 1.69-1.60 (m, 2H); ¹³C NMR (75MHz, DMSO-*d*₆): δ 161.39, 159.04, 151.39, 144.03, 133.09, 122.43, 121.74, 116.77, 116.46, 88.44, 79.73, 74.53, 52.10, 51.40, 46.01, 35.76, 35.52, 26.96, 21.29, 3.10; HR-MS (ESI) m/z: calculated for C₂₂H₂₄FN₇O₂ [M+H]⁺:438.2048, found:438.2050.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2-4-difluorone phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine 12,4(1H/3H)-dioneA hydrochloride(A05)

Following a similar procedure for the preparation of A01, A05 was prepared starting from 2,4-difluoroaniline. White solid (112 mg); mp: 84-86 °C; IR (v_{max} cm⁻¹): 3442, 2922, 1706, 1654, 1609, 1440, 808; ¹H NMR (300MHz, DMSO-*d*₆): δ 8.41 (s, 1H), 8.34 (brs, 3H), 7.91-7.83 (m, 1H), 7.71-7.63 (m, 1H), 7.38-7.30 (m, 1H), 5.28 (s, 1H), 5.11 (s, 2H), 4.67 (d, J = 17.4 Hz, 1H), 4.47 (d, J = 17.4 Hz, 1H), 3.39-3.28 (m, 2H), 3.15-2.98 (m, 2H), 2.93-2.84 (m, 1H), 1.97-1.88 (m, 2H), 1.78 (s, 3H), 1.70-1.59 (m, 2H); ¹³C NMR (75MHz, DMSO-d₆): δ 161.38, 159.05, 151.38, 143.39, 127.54, 124.95, 112.81, 112.51, 105.96, 105.60, 105.28, 88.34, 79.72, 74.54, 52.07, 51.38, 45.93, 35.63, 35.54, 26.89, 21.18, 3.12; HR-MS (ESI) m/z: calculated for C22H23F2N7O2 [M+H]+:456.1954, found:456.1953.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(4-fluoro-2methylphenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)dione hydrochloride (A06)

Following a similar procedure for the preparation of A01, A06 was prepared starting from 4-fluoro-2-methylaniline. White solid (125 mg); mp: 92-95°C; IR (v_{max} cm⁻¹): 3442, 1705, 1651, 1508, 1441, 1231, 809; ¹H NMR (300MHz, DMSO-*d*₆) δ: 8.33-8.29 (m, 4H), 7.50-7.45 (m, 1H), 7.39-7.35 (m, 1H), 7.27-7.21 (m, 1H), 5.29 (s, 1H), 5.11 (s, 2H), 4.67 (d, J = 15.0 Hz, 1H), 4.47 (d, J = 15.0 Hz, 1H), 3.38-3.27 (m, 2H), 3.13-3.00 (m, 2H), 2.93-2.86 (m, 1H), 2.11 (s, 3H), 1.97-1.86 (m, 2H), 1.78 (s, 3H), 1.70-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO-d₆): δ 161.40, 159.01, 151.39, 142.89, 132.66, 128.24, 125.14, 117.85, 117.54, 113.82, 113.52, 88.43, 79.69, 74.54, 52.10, 51.38, 45.99, 35.71, 35.50, 26.93, 21.27, 17.34, 3.10; HR-MS (ESI) m/z: calculated for C₂₃H₂₆FN₇O₂ [M+H]⁺: 452.2205, found: 452.2200

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2-chloro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A07)

Following a similar procedure for the preparation of A01, A07 was prepared starting from 2-chloroaniline. White solid (112 mg); mp:80-83 °C; IR (v_{max} cm⁻¹):3442, 2949, 1704, 1654, 1440, 766; ¹H NMR (300MHz, DMSO-d₆) δ 8.37 (s, 1H), 8.27 (brs, 3H), 7.77-7.74 (m, 1H), 7.67-7.62 (m, 2H), 7.60-7.55 (m, 1H), 5.29 (s, 1H), 5.12 (s, 2H), 4.66 (d, J =15.0 Hz, 1H), 4.47 (d, J = 15.0 Hz, 1H), 3.33-3.27 (m, 2H), 3.13-2.97 (m, 2H), 2.91-2.84 (m, 1H), 1.98-1.88 (m, 2H), 1.78 (s, 3H), 1.69-1.60 (m, 2H); ¹³C NMR (75MHz, DMSO-*d*₆): δ 161.37, 159.03, 151.40, 142.87, 134.44, 131.52, 130.50, 128.38, 128.28, 125.46, 88.46, 79.70, 74.54, 52.13, 51.37, 46.00, 35.66, 35.50, 26.95, 21.29, 3.10; HR-MS (ESI) m/z: calculated for C₂₂H₂₄ClN₇O₂ [M+H]⁺:454.1753, found:454.1756.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(3-chlro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A08)

Following a similar procedure for the preparation of A01, A08 was prepared starting from 3-chloroaniline. White solid (108 mg, 49%), mp:83-87 °C; IR (v_{max} cm⁻¹):3439, 2921, 1704, 1652, 1595, 1441, 790; ¹H NMR (300MHz, DMSO-d₆) δ 8.74 (s, 1H), 8.32 (brs, 3H), 8.04-8.02 (m, 1H), 7.92-7.90 (m, 1H), 7.64-7.54 (m, 2H), 5.29 (s, 1H), 5.10

Journal Name

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11

Journal Name

(s, 2H), 4.67 (d, *J* = 17.1 Hz, 1H), 4.48 (d, *J* = 17.1 Hz, 1H), 3.40-3.29 (m, 2H), 3.14-2.99 (m, 2H), 2.93-2.85 (m, 1H), 1.98-1.89 (m, 2H), 1.79 (s, 3H), 1.70-1.61 (m, 2H); 13 C NMR (75MHz, DMSO- d_6): δ 161.37, 159.05, 151.39, 144.26, 137.58, 134.13, 131.53, 128.36, 121.63, 119.72, 118.55, 88.42, 79.73, 74.53, 52.10, 51.41, 46.00, 35.79, 35.55, 26.96, 21.29, 3.11; HR-MS (ESI) m/z: calculated for C₂₂H₂₄ClN₇O₂ [M+H]⁺: 454.1753, found:454.1751.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(4-chloro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride(A09)

Following a similar procedure for the preparation of **A01**, **A09** was prepared starting from 4-chloroaniline. White solid (150 mg); mp: 88-91 °C; IR (v_{max} cm⁻¹): 3442, 1705, 1651, 1502, 1442, 1232; ¹H NMR (300MHz, DMSO- d_6) δ 8.68 (s, 1H), 8.33 (brs, 3H), 7.93 (d, J = 9.0 Hz, 2H), 7.66 (d, J = 9.0 Hz, 2H), 5.29 (s, 1H), 5.10 (s, 2H), 4.67 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.32-3.27 (m, 2H), 3.14-2.98 (m, 2H), 2.92-2.85 (m, 1H), 1.98-1.88 (m, 2H), 1.78 (s, 3H), 1.70-1.60 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.38, 159.05, 151.39, 144.21, 135.31, 132.81, 129.76, 121.68, 121.56, 88.43, 79.73, 74.54, 52.10, 51.40, 46.00, 35.77, 35.54, 26.96, 21.31, 3.11; HR-MS (ESI) m/z: calculated for C₂₂H₂₄ClN₇O₂ [M+H]⁺: 454.1753, found:454.1750.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2,6-dichloro phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A10)

Following a similar procedure for the preparation of **A01**, **A10** was prepared starting from 2,6-dichloroaniline. White solid (142 mg); mp: 100-104°C; IR (v_{max} cm⁻¹): 3442, 1705, 1655, 1601, 1483, 1441, 1231, 795; ¹H NMR (300MHz, DMSO- d_6) δ : 8.38 (s, 1H), 8.26 (s, 3H), 7.79-7.76 (m, 2H), 7.70-7.64 (m, 1H), 5.30 (s, 1H), 5.12 (s, 2H), 4.66 (d, J = 18 Hz, 1H), 4.47 (d, J = 18 Hz, 1H), 3.32-3.27 (m, 2H), 3.13-3.00 (m, 2H), 2.92-2.85 (m, 1H), 1.96-1.86 (m, 2H), 1.78 (s, 3H), 1.69-1.59 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.33, 159.03, 151.36, 142.93, 132.81, 132.60, 132.54, 129.16, 125.88, 88.41, 79.70, 74.51, 52.12, 51.37, 45.98, 35.68, 35.51, 26.93, 21.27, 3.11; HR-MS (ESI) m/z: calculated for C₂₂H₂₃Cl₂N₇O₂ [M+H]⁺:488.1363, found:488.1363.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(*o*-tolyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A11)

Following a similar procedure for the preparation of **A01**, **A11** was prepared starting from 2-methylaniline. White solid (120 mg); mp: 81-85 °C; IR (v_{max} cm⁻¹): 3439, 1705, 1651, 1441, 1230; ¹H NMR (300MHz, DMSO- d_6) δ 8.35-8.29 (m, 4H), 7.48-7.44 (m, 2H), 7.40-7.39 (m, 2H), 5.28 (s, 1H), 5.11 (s, 2H), 4.66 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.39-3.28 (m, 2H), 3.13-2.97 (m, 2H), 2.92-2.85 (m, 1H), 2.12 (s, 3H), 1.97-1.85 (m, 2H), 1.78 (s, 3H), 1.69-1.60 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.40, 159.00, 151.40, 142.84, 136.18, 132.92, 131.29, 129.67, 126.89, 125.87, 124.88, 88.43, 79.67, 74.56, 52.11, 51.38, 45.99, 35.74, 35.50, 26.94, 21.39, 17.37, 3.11; HR-MS (ESI) m/z: calculated for $C_{23}H_{27}N_7O_2$ [M+H]*: 434.2299, found:434.2298.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(*p*-tolyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A12) Following a similar procedure for the preparation of A01_A A12_{OWAS} prepared starting from 4-methylaniline. White solid [146 Rg]] Hip: 81-86 °C; IR (v_{max} cm⁻¹):3447, 2920, 1705, 1655, 1440, 818, 786; ¹H NMR (300MHz, DMSO- d_6) δ 8.57 (s, 1H), 8.30 (brs, 3H), 7.75 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 5.28 (s, 1H), 5.09 (s, 2H), 4.66 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.40-3.28 (m, 2H), 3.14-2.98 (m, 2H), 2.92-2.85 (m, 1H), 2.37 (s, 3H), 1.98-1.86 (m, 2H), 1.78 (s, 3H), 1.68-1.59 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.40, 159.03, 151.39, 143.89, 138.15, 134.31, 130.14, 121.30, 119.84, 88.40, 79.71, 74.56, 52.09, 51.40, 45.98, 35.80, 35.53, 26.95, 21.28, 20.51, 3.12; HR-MS (ESI) m/z: calculated for C₂₃H₂₇N₇O₂ [M+H]⁺: 434.2299, found:434.2297.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2,6-dimethyl phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A13)

Following a similar procedure for the preparation of A01, A13 was prepared starting from 2,6-dimethylaniline. White solid (122 mg); mp: 95-98°C; IR (v_{max} cm⁻¹): 3438, 2953, 1705, 1654, 1440, 1230, 786; ¹H NMR (300MHz, DMSO-d₆) δ: 8.26 (brs, 3H), 8.20 (s, 1H), 7.41-7.35 (m, 1H), 7.28-7.26 (m, 2H), 5.29 (s, 1H), 5.11 (s, 2H), 4.66 (d, J = 15.0 Hz, 1H), 4.46 (d, J = 15.0 Hz, 1H), 3.34-3.25 (m, 2H), 3.13-2.98 (m, 2H), 2.91-2.84 (m, 1H), 1.97-1.91 (m, 2H), 1.89 (s, 6H), 1.77 (s, 3H), 1.69-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO-d₆): δ 161.38, 158.97, 151.34, 142.81, 135.75, 134.75, 129.83, 128.28, 125.16, 88.37, 79.61, 74.55, 52.07, 51.37, 45.94, 35.78, 35.47, 26.91, 21.19, 16.84, 3.10; HR-MS for $C_{24}H_{29}N_7O_2$ [M+H]+:448.2455, (ESI) m/z: calculated found:448.2448.

(R)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(5-chloro-2methylphenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)dione hydrochloride (A14)

Following a similar procedure for the preparation of **A01**, **A14** was prepared starting from 5-chloro-4-methylaniline. White solid (137 mg); mp: 94-96°C; IR (v_{max} cm⁻¹):3448, 2922, 1705, 1654, 1604, 1498, 1440, 828, 809, 786; ¹H NMR (300MHz, DMSO-d₆) δ : 8.36 (s, 1H), 8.29 (brs, 3H), 7.57-7.48 (m, 3H), 5.29 (s, 1H), 5.11 (s, 2H), 4.66 (d, *J* = 18 Hz, 1H), 4.47 (d, *J* = 18 Hz, 1H), 3.34-3.28 (m, 2H), 3.12-2.97 (m, 2H), 2.92-2.85 (m, 1H), 2.12 (s, 3H), 1.97-1.87 (m, 2H), 1.78 (s, 3H), 1.69-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO-d₆): δ 161.38, 159.01, 151.38, 142.98, 137.03, 132.91, 132.07, 130.76, 129.49, 125.60, 125.00, 88.42, 79.69, 74.55, 52.10, 51.39, 45.98, 35.70, 35.51, 26.93, 21.26, 17.06, 3.11; HR-MS (ESI) m/z: calculated for C₂₃H₂₆ClN₇O₂ [M+H]⁺: 468.1909, found: 468.1912.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2-hydroxy-4methylphenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)dione hydrochloride (A15)

Following a similar procedure for the preparation of **A01**, **A15** was prepared starting from 2-hydroxy-4-methylaniline. White solid (117 mg); mp: 107-110°C; IR (v_{max} cm⁻¹):3442, 2950, 1703, 1649, 1441, 806; ¹H NMR (300MHz, DMSO- d_6) δ : 10.51 (s, 1H), 8.28 (brs, 3H), 8.24 (s, 1H), 7.44 (d, J = 8.1 Hz, 1H), 6.94 (s, 1H), 6.77 (d, J = 8.1 Hz, 1H), 5.28 (s, 1H), 5.09 (s, 2H), 4.65 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.40-3.27 (m, 2H), 3.11-2.98 (m, 2H), 2.91-2.85 (m, 1H), 2.29 (s, 3H), 1.96-1.86 (m, 2H), 1.78 (s, 3H), 1.68-1.62 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.42, 158.99, 151.36, 149.17, 142.41, 139.74,

ARTICLE

124.74, 124.62, 122.09, 120.11, 117.26, 88.37, 79.71, 74.55, 52.06, 51.35, 45.93, 35.71, 35.50, 26.91, 21.23, 20.80, 3.12; HR-MS (ESI) m/z: calculated for $C_{23}H_{27}N_7O_3$ [M+H]⁺: 450.2248, found: 450.2241.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(4-(tert-butyl) phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A16)

Following a similar procedure for the preparation of **A01**, **A16** was prepared starting from 4-(tert-buthyl)aniline. White solid (132 mg); mp: 101-103 °C; IR (v_{max} cm⁻¹):3435, 2959, 2867, 1705, 1655, 1440, 839; ¹H NMR (300MHz, DMSO- d_6) δ : 8.58 (s, 1H), 8.31 (brs, 3H), 7.77 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 5.28 (s, 1H), 5.09 (s, 2H), 4.66 (d, J = 16.8 Hz, 1H), 4.47 (d, J = 16.8 Hz, 1H), 3.39-3.28 (m, 2H), 3.12-2.93 (m, 2H), 1.32 (s, 9H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.41, 159.03, 151.39, 151.18, 143.83, 134.22, 126.51, 121.42, 119.73, 88.34, 79.71, 74.57, 52.04, 51.40, 45.94, 35.79, 35.54, 34.44, 30.95, 26.89, 21.20, 3.14; HR-MS (ESI) m/z: calculated for C₂₆H₃₃N₇O₂ [M+H]⁺: 476.2768, found: 476.2768.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(2-methoxy phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A17)

Following a similar procedure for the preparation of **A01**, **A17** was prepared starting from 2-methoxyaniline. White solid (123 mg); mp: 80-84 °C; IR (v_{max} cm⁻¹):3435, 2949, 1705, 1654, 1602, 1507, 1475, 1441, 1232, 806; ¹H NMR (300MHz, DMSO- d_6) δ 8.58 (s, 1H), 8.31 (brs, 3H), 7.77 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 5.28 (s, 1H), 5.09 (s, 2H), 4.66 (d, J = 15.0 Hz, 1H), 4.47 (d, J = 15.0 Hz, 1H), 3.58 (s, 3H), 3.38-3.28 (m, 2H), 3.13-2.99 (m, 2H), 2.92-2.85 (m, 1H), 1.97-1.88 (m, 2H), 1.78 (s, 3H), 1.69-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.42, 159.01, 151.39, 142.49, 130.67, 125.71, 125.57, 125.26, 120.82, 112.95, 100.78, 88.37, 79.69, 74.57, 56.07, 52.07, 51.36, 45.94, 35.65, 35.50, 26.90, 21.17, 3.11; HR-MS (ESI) m/z: calculated for C₂₃H₂₇N₇O₃ [M+H]⁺:450.2248, found:450.2245.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(3-methoxy phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A18)

Following a similar procedure for the preparation of **A01**, **A18** was prepared starting from 3-methoxyaniline. White solid (114 mg); mp: 81-85 °C; IR (ν_{max} cm⁻¹):3434, 2945, 1706, 1651, 1609, 1440, 782; ¹H NMR (300MHz, DMSO- d_6) δ : 8.66 (s, 1H), 8.32 (brs, 3H), 7.51-7.44 (m, 3H), 7.05-7.02 (m, 1H), 5.28 (s, 1H), 5.09 (s, 2H), 4.67 (d, *J* = 18.0 Hz, 1H), 4.47 (d, *J* = 18.0 Hz, 1H), 3.84 (s, 3H), 3.39-3.29 (m, 2H), 3.13-2.97 (m, 2H), 2.93-2.86 (m, 1H), 1.97-1.86 (m, 2H), 1.78 (s, 3H), 1.70-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.41, 160.12, 159.04, 151.39, 143.95, 137.58, 130.75, 121.57, 114.29, 111.99, 105.62, 88.40, 79.73, 74.54, 55.59, 52.08, 51.40, 45.99, 35.79, 35.53, 26.94, 21.27, 3.11; HR-MS (ESI) m/z: calculated for C₂₃H₂₇N₇O₃ [M+H]⁺: 450.2248, found: 450.2244.

(*R*)-6-(3-aminopiperidin-1-yl)-1-(but-2-yn-1-yl)-3-((1-(4-methoxy phenyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione hydrochloride (A19)

Following a similar procedure for the preparation of **A01**, **A19** was prepared starting from 4-methoxyaniline. White solid (108 mg);

mp: 94-97 °C; IR (ν_{max} cm⁻¹): 3441, 2949, 1705, 1655, 1605, 1441, 1230, 836; ¹H NMR (300MHz, DMSO- d_6) δ : 8.5 Ω (s, 1H), 38.29 (663, 3H), 7.77 (d, J = 9.0 Hz, 2H), 7.11 (d, J = 9.0 Hz, 2H), 5.28 (s, 1H), 5.08 (s, 2H), 4.67 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.82 (s, 3H), 3.39-3.27 (m, 2H), 3.14-2.96 (m, 2H), 2.92-2.85 (m, 1H), 1.99-1.87 (m, 2H), 1.78 (s, 3H), 1.69-1.58 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 161.40, 159.16, 159.02, 151.39, 143.75, 129.98, 121.65, 121.42, 114.79, 88.41, 79.71, 74.56, 55.52, 52.08, 51.40, 45.98, 35.80, 35.52, 26.95, 21.28, 3.12; HR-MS (ESI) m/z: calculated for C₂₃H₂₇N₇O₃ [M+H]⁺: 450.2248, found: 450.2245

ethyl (*R*)-2-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6-dihydropyrim idin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoate hydrochloride (A20)

Following a similar procedure for the preparation of **A01**, **A20** was prepared starting from ethyl 2-aminobenzoate. White solid (97 mg); mp: 171-174 °C; IR (v_{max} cm⁻¹): 3434, 2949, 1707, 1654, 1604, 1440, 1295, 1131, 766; ¹H NMR (300MHz, DMSO- d_6) δ : 8.35-8.32 (m, 4H), 7.91-7.88 (m, 1H), 7.81-7.76 (m, 1H), 7.71-7.63 (m, 2H), 5.29 (s, 1H), 5.10 (s, 2H), 4.66 (d, J = 16.5 Hz, 1H), 4.46 (d, J = 16.5 Hz, 1H), 4.00 (q, J = 7.2 Hz, 2H), 3.39-3.27 (m, 2H), 3.13-2.96 (m, 2H), 2.91-2.84 (m, 1H), 1.98-1.87 (m, 2H), 1.77 (s, 3H), 1.63-1.59 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ 165.34, 161.33, 159.00, 151.33, 143.02, 135.09, 132.80, 130.40, 129.96, 127.66, 126.21, 124.82, 88.40, 79.68, 74.54, 61.13, 52.08, 51.38, 45.93, 35.46, 26.91, 21.21, 13.39, 3.10; HR-MS (ESI) m/z: calculated for C₂₅H₂₉N₇O₄ [M+H]⁺:492.2354, found:492.2353.

ethyl (*R*)-3-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6- dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoate hydrochloride (A21)

Following a similar procedure for the preparation of **A01**, **A21** was prepared starting from ethyl 3-aminobenzoate. Yellow solid (87 mg); mp: 86-89 °C; IR (v_{max} cm⁻¹): 3434, 2952, 1708, 1654, 1441, 757; ¹H NMR (300MHz, DMSO- d_6) δ : 8.79 (s, 1H), 8.38 (brs, 4H), 8.18 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.74 (t, J = 9.0 Hz, 1H), 5.28 (s, 1H), 5.11 (s, 2H), 4.68 (d, J = 15.6 Hz, 1H), 4.48 (d, J = 15.6 Hz, 1H), 4.37 (q, J = 6.0 Hz, 2H), 3.40-3.30 (m, 2H), 3.14- 2.99 (m, 2H), 2.93-2.86 (m, 1H), 1.98-1.89 (m, 2H), 1.78 (s, 3H), 1.69-1.61 (m, 2H), 1.35 (t, J = 6.0 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ 164.74, 161.40, 159.06, 151.40, 144.33, 136.76, 131.44, 130.51, 128.93, 124.45, 121.69, 120.09, 88.31, 79.72, 74.57, 61.29, 52.03, 51.42, 45.92, 35.81, 35.57, 26.91, 21.16, 14.08, 3.14; HR-MS (ESI) m/z: calculated for C₂₅H₂₉N₇O₄ [M+H]⁺: 492.2354, found:492.2360.

ethyl (*R*)-4-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6- dihydropyrim idin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoate (A22)

Following a similar procedure for the preparation of **A01**, **A22** was prepared starting from ethyl 4-aminobenzoate. Yellow solid (94 mg); mp: 95-99 °C; IR (v_{max} cm⁻¹):3435, 1713, 1651, 1608, 1519, 1442, 1232, 770; ¹H NMR (300MHz, DMSO- d_6) δ : 8.79 (s, 1H), 8.35 (brs, 3H), 8.13 (d, J =9.0 Hz, 2H), 8.07 (d, J = 9.0 Hz, 2H), 5.29 (s, 1H), 5.11 (s, 2H), 4.67 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.41-3.29 (m, 2H), 3.18-2.99 (m, 2H), 2.92-2.85 (m, 1H), 1.97-1.85 (m, 2H), 1.78 (s, 3H), 1.69-1.59 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ 164.79, 161.39, 159.06, 151.38,

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11.

10 | J. Name., 2012, 00, 1-3

Journal Name

144.47, 139.63, 130.87, 129.46, 121.60, 119.75, 88.31, 79.73, 74.55, 61.06, 52.03, 51.42, 45.93, 44.15, 35.78, 35.58, 26.93, 21.20, 14.11, 3.14; HR-MS (ESI) m/z: calculated for $C_{25}H_{29}N_7O_4$ [M+H]⁺: 492.2354, found:492.2347.

(R)-2-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoic acid hydrochloride (A23)

To the solution of Boc precursor of A20 (160 mg, 0.27 mmol) in methanol (5 mL), was added NaOH (1M, 2 mL). the resulting mixture was stirred at r.t. for 2 h. After evaporation of solvent, the residue was dissolved in water (3 mL) and acidified with HCl (1M, 2 mL) to adjust the pH value to 3. The precipitate was collected by filtration, purified by flash chromatography (dichloromethane/methanol, 100:1~ 30:1) to give Boc precursor of A23, which was dissolved in EtOAc (5 mL) and ether (30 mL), and bubbled with freshly prepared HCl gas at °C. After TLC indicated consumption of starting materials, the precipitate was collected by filtration, dried in vacuo to to give compound A23 as a white solid (70 mg, yield 62%). mp:111-116 °C; IR (v_{max} cm⁻¹):3448, 2921, 1705, 1651, 1442, 800,767; ¹H NMR (300MHz, DMSO-d₆) δ: 13.21 (brs, 1H), 8.38 (brs, 3H), 8.32 (s, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 5.27 (s, 1H), 5.09 (s, 2H), 4.67 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 1H), 3.40- 3.28 (m, 2H), 3.13- 2.98 (m, 2H), 2.93-2.86 (m, 1H), 1.97-1.85 (m, 2H), 1.78 (s, 3H), 1.69- 1.60 (m, 2H); ¹³C NMR (75MHz, DMSO-*d*₆): δ 166.57, 161.36, 159.00, 151.39, 142.82, 135.06, 132.29, 130.28, 129.76, 128.54, 126.25, 124.64, 88.32, 79.73, 74.58, 52.04, 51.39, 45.92, 35.72, 35.56, 26.90, 21.23, 3.14; HR-MS (ESI) m/z: calculated for C23H25N7O4 [M+H]+:464.2041, found:464.2044.

(*R*)-3-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoic acid hydrochloride (A24)

Following a similar procedure for the preparation of **A23**, **A24** was prepared starting from Boc precursor of **A21**. White solid (65 mg); mp: 115-119 °C; IR (v_{max} cm⁻¹): 3448, 1706, 1643, 1443, 1232, 760; ¹H NMR (300MHz, DMSO- d_6) δ : 8.78 (s, 1H), 8.36 (s, 1H), 8.32 (brs, 3H), 8.15 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 5.29 (s, 1H), 5.10 (s, 2H), 4.67 (d, J = 17 Hz, 1H), 4.47 (d, J = 17 Hz, 1H), 3.35- 3.28 (m, 2H), 3.14-3.01 (m, 2H), 2.93-2.85 (m, 1H), 1.95-1.85 (m, 2H), 1.78 (s, 3H), 1.70-1.59 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 166.29, 161.41, 159.07, 151.41, 144.33, 136.68, 132.43, 130.35, 129.10, 124.07, 121.57, 120.24, 88.31, 79.71, 74.58, 52.02, 51.42, 45.92, 35.86, 35.58, 26.90, 21.19, 3.14; HR-MS (ESI) m/z: calculated for C₂₃H₂₅NrO₄ [M+H]⁺: 464.2041, found:464.2046.

(*R*)-4-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)benzoic acid hydrochloride (A25)

Following a similar procedure for the preparation of **A23**, **A25** was prepared starting from Boc precursor of **A22**. White solid (86 mg); mp: 122-126 °C; IR (v_{max} cm⁻¹):3457, 2950, 1705, 1647, 1608, 1443, 799, 773; ¹H NMR (300MHz, DMSO- d_6) δ : 13.22 (brs, 1H), 8.77 (s, 1H), 8.25 (brs, 3H), 8.12 (d, J = 8.1 Hz, 2H), 8.04 (d, J = 8.1 Hz, 2H), 5.30 (s, 1H), 5.11 (s, 2H), 4.66 (d, J = 15.0 Hz, 1H), 4.47 (d, J = 15.0 Hz, 1H), 3.28-3.19 (m, 2H), 3.12- 3.01 (m, 2H), 2.91-2.84 (m, 1H), 1.96- 1.85

(m, 2H), 1.78 (s, 3H), 1.68- 1.59 (m, 2H); ¹³C NMR (75MHz, DMSQ, de); δ 166.35, 161.39, 159.05, 151.38, 144.41, 139.42, 139.402, 130.447, 121.58, 119.66, 88.33, 79.73, 74.56, 52.05, 51.41, 45.94, 35.77, 35.57, 26.92, 21.18, 3.14; HR-MS (ESI) m/z: calculated for C₂₃H₂₅N₇O₄ [M+H]⁺: 464.2041, found:464.2047.

ethyl 2-azidoacetate (J01)

To the solution of ethyl bromoacetate (10 g, 60 mmol) in acetone (50 mL), was added dropwise the solution of NaN₃ (9.73 g, 150 mmol) in water (40 mL) at 0–5 °C. The mixture was stirred at 60 °C for 4 h. After cooling to r.t., the solvent was evaporated. Water was added, and extracted with with dichloromethane (4 × 40 mL), washed with saturated NaHCO₃ (3 × 20 mL) and brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo to give **J01** as colourless oil (7 g, 90%), MS (ESI) m/z: 130.1 [M+H]⁺; ¹H NMR (300 MHz, CDCl₃): δ 4.25 (q, *J* = 7.2 Hz, 2H), 3.83 (s, 2H), 1.27 (t, *J* = 7.2 Hz, 3H).

ethyl (*R*)-2-(4-((3-(but-2-yn-1-yl)-4-(3-((tert-butoxycarbonyl)amino) piperidin-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl)acetate (K01)

Following a similar procedure for the preparation of **H01**, **J01** was prepared starting from compound **D** (5 g, 12.5 mmol) and compoud **I01** (1.93 mg, 15.0 mmol). The crude product was purified by flash chromatography (EtOAc/ether 100:1~30:1) to give **K01** as a white solid (4.3 g, 65%). mp: 78-80 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.71 (s, 1H), 5.32 (s, 2H), 5.28 (s, 1H), 5.02 (s, 2H), 4.83-4.74 (m, 1H), 4.67 (d, *J* = 15.3 Hz, 1H), 4.48 (d, *J* = 15.3 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.87-3.78 (m, 1H), 3.34-3.21 (m, 1H), 3.15-3.02 (m, 1H), 2.86-2.80 (m, 1H), 2.72-2.59 (m, 1H), 1.96-1.87 (m, 1H), 1.82 (s, 3H), 1.74-1.67 (m, 2H), 1.45 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H). HR-MS (ESI) m/z: calculated for C₂₅H₃₆N₇O₆ [M+H]⁺: 529.4512, found: 529.4516.

(*R*)-2-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl)acetic acid hydrochloride (B01)

Following a similar procedure for the preparation of **A23**, **B01** was prepared starting from **K01** (3.5 g, 6.6 mmol). White solid (86 mg, 65%); mp: 114-117 °C; IR (v_{max} cm⁻¹): 3448, 2978, 1743, 1704, 1650, 1442, 1233, 1053, 815; ¹H NMR (300MHz, DMSO- d_6) δ : 13.37 (brs, 1H), 8.18 (brs, 3H), 7.93 (s, 1H), 5.28 (s, 1H), 5.22 (s, 2H), 5.01 (s, 2H), 4.64 (d, *J* = 18.0 Hz, 1H), 4.45 (d, *J* = 18.0 Hz, 1H), 3.31-3.23 (m, 2H), 3.10-3.00 (m, 2H), 2.90-2.83 (m, 1H), 1.95-1.87 (m, 2H), 1.79 (s, 3H), 1.69-1.61 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 168.51, 161.34, 158.98, 151.29, 142.55, 124.86, 88.36, 79.74, 74.50, 64.87, 59.71, 52.07, 51.34, 50.34, 45.93, 35.73, 35.47, 34.08, 26.90, 21.25, 20.72, 15.12, 14.03, 3.13; HR-MS (ESI) m/z: calculated for C₁₈H₂₃N₇O₄ [M+H]⁺: 402.1884, found: 402.1881.

ethyl (R)-2-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6-dihydr- opyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)acetate hydrochloride (B02)

Following a similar procedure for the preparation of **A23**, **B02** was prepared starting from **K01**. White solid (120 mg, yield: 78%); mp: 71-73 °C; IR (v_{max} cm⁻¹): 3435, 2926, 1751, 1651, 1439, 750; ¹H NMR (300MHz, DMSO- d_6): δ 8.36 (brs, 3H), 7.96 (s, 1H), 5.33 (s, 2H), 5.26 (s, 1H), 5.02 (s, 2H), 4.65 (d, J = 18.0 Hz, 1H), 4.45 (d, J = 18.0 Hz, 1H),

4.16 (q, J = 6.6 Hz, 2H), 3.40-3.27 (m, 2H), 3.12-2.97 (m, 2H), 2.91-2.84 (m, 1H), 1.96-1.85 (m, 2H), 1.78 (s, 3H), 1.68-1.57 (m, 2H), 1.20 (t, J = 6.6 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ 167.21, 161.35, 159.00, 151.29, 142.68, 124.96, 88.36, 79.74, 74.50, 61.40, 52.07, 51.36, 50.21, 45.93, 35.72, 35.48, 26.88, 21.18, 13.93, 3.14; HR-MS (ESI) m/z: calculated for $C_{20}H_{27}N_7O_4$ [M+H]⁺:430.2197, found:430.2198.

ARTICLE

(R)-3-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)propanoic acid hydrochloride(B03)

Following a similar procedure for the preparation of **B01. B03** was prepared starting from methyl 3-bromopropionate. White solid (78 mg), mp: 74-76°C; IR (v_{max} cm⁻¹): 3447, 2956, 1704, 1647, 1443, 1231, 807; ¹H NMR (300MHz, DMSO- d_6) δ : 8.45 (brs, 3H), 7.92 (s, 1H), 5.24 (s, 1H), 4.98 (s, 2H), 4.70-4.61 (m, 1H), 4.51-4.41 (m, 3H), 3.38-3.30 (m, 2H), 3.11-2.96 (m, 2H), 2.88-2.83 (m, 3H), 1.93-1.85 (m, 2H), 1.79 (s, 3H), 1.66-1.62 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 171.74, 161.34, 158.96, 151.28, 142.57, 123.57, 88.35, 79.72, 74.53, 52.07, 51.36, 45.92, 45.23, 35.76, 35.45, 33.93, 26.87, 21.26, 3.13. HR-MS (ESI) m/z: calculated for C₁₉H₂₅N₇O₄ [M+H]⁺:416.2041, found:416.2041.

methyl (R)-3-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6-dihy dropyri midin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)propanoate hydrochloride (B04)

Following a similar procedure for the preparation of **B02. B04** was prepared starting from methyl 3-bromopropionate. White solid (113 mg); mp: 73-76°C; IR (v_{max} cm⁻¹): 3445, 2936, 1705, 1643, 1447, 1236, 806; ¹H NMR (300MHz, DMSO- d_6): δ 8.45 (brs, 3H), 7.93 (s, 1H), 5.24 (s, 1H), 4.98 (s, 2H), 4.66 (d, J = 18.0 Hz, 1H), 4.53 (t, J = 6.6 Hz, 2H), 4.45 (d, J = 18.0 Hz, 1H), 3.59 (s, 3H), 3.38-3.30 (m, 2H), 3.12-3.03 (m, 2H), 2.95 (t, J = 6.6 Hz, 2H), 2.89-2.83 (m, 1H), 1.98-1.87 (m, 2H), 1.79 (s, 3H), 1.69-1.62 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 170.78, 161.34, 158.97, 151.28, 142.60, 123.64, 88.35, 79.72, 74.53, 52.06, 51.60, 51.37, 45.93, 45.05, 35.74, 35.46, 33.62, 26.88, 21.18, 3.14; HR-MS (ESI) m/z: calculated for C₂₀H₂₇N₇O₄ [M+H]⁺:430.2197, found:430.2196.

(*R*)-4-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)butanoic acid hydrochloride (B05)

Following a similar procedure for the preparation of **B01. B05** was prepared starting from ethyl 4-bromobutyrate. White solid (68 mg); mp: 160-163 °C; IR (v_{max} cm⁻¹): 3448, 2952, 1706, 1651, 1442, 805; ¹H NMR (300MHz, DMSO- d_6) δ : 8.33 (s, 3H), 7.94 (s, 1H), 5.25 (s, 1H), 4.99 (s, 2H), 4.65 (d, J = 18 Hz, 1H), 4.45 (d, J = 18 Hz, 1H), 4.32 (t, J = 7.0 Hz, 2H), 3.43-3.33 (m, 2H), 3.13-2.95 (m, 2H), 2.92-2.83 (m, 1H), 2.21 (t, J = 7.1 Hz, 2H), 2.01-1.90 (m, 4H), 1.79 (s, 3H), 1.70-1.58 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 173.53, 161.36, 158.96, 151.30, 142.72, 123.33, 88.37, 79.69, 74.54, 52.07, 51.36, 48.50, 45.94, 35.80, 35.43, 30.34, 26.89, 25.20, 21.22, 3.12; HR-MS (ESI) m/z: calculated for C₂₀H₂₇N₇O₄ [M+H]⁺: 430.2197, found: 430.2193.

2-(4-((4-((R)-3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl) propanoic acid hydrochloride (B06)

Following a similar procedure for the preparation of **R01**, **R05**, **WAS** prepared starting from ethyl 2-bromopropio Rate 1 WRite (50) & (103%); mp: 178-181 °C; IR (v_{max} cm⁻¹): 3447, 2948, 1704, 1650, 1231, 805; ¹H NMR (300MHz, DMSO- d_6): δ 8.41 (brs, 3H), 8.00 (s, 1H), 5.47-5.45 (m, 1H), 5.25 (s, 1H), 5.01 (s, 2H), 4.66 (d, J = 18.0 Hz, 1H), 4.46 (d, J = 18.0 Hz, 1H), 3.34-3.20 (m, 2H), 3.07-2.97 (m, 2H), 2.92-2.89 (m, 1H), 1.96-1.92 (m, 2H), 1.79 (s, 3H), 1.79-1.68 (m, 5H); ¹³C NMR (75MHz, DMSO- d_6): δ 170.81, 161.36, 158.97, 151.32, 142.41, 123.14, 88.39, 79.73, 74.53, 57.41, 52.08, 51.38, 45.92, 35.82, 35.47, 26.91, 21.11, 17.07, 3.13; HR-MS (ESI) m/z: calculated for C₁₉H₂₅N₇O₄ [M+H]⁺:416.2041, found:416.2032.

ethyl 2-(4-((4-((R)-3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6-dihy- dropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)propanoate hydrochloride (B07)

Following a similar procedure for the preparation of **B02. B07** was prepared starting from ethyl 2-bromopropionate. White solid (126 mg); mp: 146-149 °C; IR (ν_{max} cm⁻¹):3434, 2947, 2360, 1746, 1705, 1633, 1441, 856; ¹H NMR (300MHz, DMSO- d_6): δ 8.24 (brs, 3H), 8.03 (s, 1H), 5.58 (q, J = 7.2 Hz, 1H), 5.27 (s, 1H), 5.04 (s, 2H), 4.64 (d, J = 16.2 Hz, 1H), 4.46 (d, J = 16.2 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.34-3.22 (m, 2H), 3.12-2.96 (m, 2H), 2.91-2.82 (m, 1H), 1.99-1.85 (m, 2H), 1.79 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H), 1.65-1.55 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ : 183.31, 169.25, 161.35, 158.98, 151.31, 142.57, 123.25, 88.36, 79.72, 74.52, 61.55, 57.30, 52.07, 51.38, 45.93, 35.80, 35.49, 26.91, 21.21, 17.04, 13.83, 3.13; HR-MS (ESI) m/z: calculated for C₂₁H₂₉N₇O₄ [M+H]⁺:444.2354, found:444.2344.

(*R*,*E*)-4-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1-yl)but-2enoic acid hydrochloride (B08)

Following a similar procedure for the preparation of **B01. B08** was prepared starting from ethyl 4-bromocrotonate. White solid (113 mg); mp: 210-213 °C; IR (v_{max} cm⁻¹): 3435, 2950, 1705, 1650, 1442, 806; ¹H NMR (300MHz, DMSO- d_6): δ 8.44 (s, 3H), 8.35 (s, 0.5 H), 7.98 (s, 0.5 H), 7.40 (d, J = 14.4 Hz, 0.5 H), 6.88 (dt, J = 15.3, 5.1 Hz, 0.5 H), 6.47-6.32 (m, 0.5 H), 5.66 (d, J = 14.4 Hz, 1H), 5.25 (s, 1H), 5.18 (d, J = 5.1 Hz, 1H), 5.01 (s, 2H), 4.66 (d, J = 17.7 Hz, 1H), 3.06-3.00 (m, 2H), 2.95-2.80 (m, 1H), 1.94-1.89 (m, 2H), 1.78 (s, 3H), 1.71-1.55 (m, 2H); ¹³C NMR (75MHz, DMSO- d_6): δ 172.02, 171.81, 161.35, 159.02, 151.28, 143.46, 143.00, 142.57, 141.45, 126.15, 124.37, 123.95, 123.85, 120.61, 119.21, 115.49, 88.35, 79.69, 75.89, 74.51, 56.84, 52.06, 51.35, 49.60, 45.93, 36.72, 35.75, 35.52, 35.45, 34.13, 26.88, 21.20, 14.04, 3.12. HR-MS (ESI) m/z: calculated for C₂₀H₂₅N₇O₄ [M+H]⁺: 428.2041, found: 428.2038.

ethyl (*R,E*)-4-(4-((4-(3-aminopiperidin-1-yl)-3-(but-2-yn-1-yl)-2,6dioxo-3,6-di hydropyrimidin-1(2H)-yl)methyl)-1H-1,2,3-triazol-1yl)but-2-enoate hydrochloride (B09)

Following a similar procedure for the preparation of **B02. B09** was prepared starting from ethyl ethyl 4-bromocrotonate. White solid (134 mg, yield 76%); mp: 177-180 °C; IR (ν_{max} cm⁻¹): 3435, 2954, 1708, 1651, 1442, 805; ¹H NMR (300MHz, DMSO- d_6): δ 8.29 (s, 3H), 8.00 (s, 1H), 6.96 (dt, J = 15.0, 6.0 Hz, 1H), 5.73 (d, J = 15.0 Hz, 1H), 5.26 (s, 1H), 5.20 (d, J = 6.0 Hz, 2H), 5.01 (s, 2H), 4.64 (d, J = 15.0 Hz, 1H), 4.45

(d, J = 15.0 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.36-3.25 (m, 2H), 3.12-2.97 (m, 2H), 2.91-2.82 (m, 1H), 1.96-1.85 (m, 2H), 1.78 (s, 3H), 1.69-1.61 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75MHz, DMSO- d_6): δ 164.83, 161.36, 158.98, 151.30, 143.02, 142.16, 123.90, 122.86, 88.35, 79.69, 74.52, 60.22, 52.06, 51.37, 49.61, 45.93, 35.77, 35.47, 26.90, 21.21, 14.00, 3.13; HR-MS (ESI) m/z: calculated for C₂₂H₂₉N₇O₄ [M+H]⁺:456.2354, found:456.2354.

In vitro assay for inhibition of DPP-4, DPP-8 and DPP-9

The DPP-4 Drug Discovery Kit (Enzo Life Sciences International, Inc.) was used for the assay of inhibition of DPP-4 activity. The assay is based on the cleavage of 7-amino-4-methylcoumarin (AMC) moiety from the C-terminus of the peptide substrate (H-Gly-Pro-AMC), which increases its fluorescence intensity at 460 nm. The DPP-4 inhibitor P32/98 was selected as a control. The substrate and DPP-4 enzyme were diluted 1/50 with assay buffer (50mM Tris, pH=7.5). 25 μ L of assay buffer, 15 μ L enzyme solution and 10 μ L of appropriately diluted solutions of the test compounds were added sequently to 96well microtiter plates. After incubation at 37 °C for 10 min, 50 µL of diluted substrate solution was added. Fluorescence was measured using an excitation wavelength of 380 nm and an emission wavelength of 460 nm by a Synergy H1 MultMode Reader (BioTek, USA). The inhibitory rate relative to the control without inhibitor was calculated and IC₅₀ value was determined by nonlinear regression fitted by GraphPad Prism 5. The assays for inhibition of DPP-8 and DPP-9 activity were performed in similar procedure by using DPP4-Glo[™] Assay kit (Promega, Cat.No.G8531), DPP-8 and DPP-9 enzymes (BPS, Cat. NO. 80080 and 80080).

Molecular modeling

Docking studies were carried out using Glide 5.9 in Schrödinger 2013 suite. The DPP-4 protein was extracted from RCSB Protein Data Bank (PDB ID: 2RGU). Protein structures were prepared using Maestro protein preparation wizard applying the default parameters. Ligands were built using Maestro build panel and prepared by LigPrep application using default parameters. A docking grid was constructed by using the centroid of the bound ligand and a maximum size of 10 Å. Molecular docking of all molecules into the generated grid was performed by using the standard precision (SP) docking mode.

In vivo study

Animals

Male ICR mice aged 10 weeks (18–22 g) and male C57BL/6 mice (20 \pm 2 g) were purchased from Comparative Medicine Centre of Yangzhou University, and were kept under conventional conditions of controlled temperature, humidity, and lighting for 1 week before the experimental period. All animal procedures were done in accordance with the applicable institutional and governmental regulations concerning the ethical use of animals.

In vivo oral glucose tolerance test (OGTT) in ICR mice

The male ICR mice were fasted overnight (12 h), weighted, bled via tail tip, and randomized into groups (n = 8). Mice were dosed orally with single doses of vehicle (ultrapure water), alogliptin (suspended in vehicle; 3 mg/kg) or tested compounds (suspended in vehicle; 3 or 10 mg/kg), 30 min prior to oral glucose load (20% aqueous glucose

solution, 2.5 g/kg). The blood glucose measured for the grouping of the animals was used as the data before administration of the grouping of alogliptin or compounds (time -30). Blood samples were collected time 0, 15, 30, 45, 60 and 120 min. The blood glucose was measured by blood glucose test strips (SanNuo ChangSha, ChangSha, China).

In vivo oral glucose tolerance test (OGTT) in C57BL/6 mice

Male C57BL/6 mice left to acclimatize for 1 week were fed with highfat diet (MD 12032, rodent diet with 45 kcal% fat, from Mediscience Ltd., Yangzhou, China) for 12 weeks to induce insulin resistance. The mice with fasting blood glucose level 10 mmol/L or higher were considered as type 2 diabetic model and selected for acute oral glucose tolerance test. Type 2 diabetic C57BL/6 mice were fasted for 12 h, weighted, randomized into groups (n = 6). Mice were dosed orally with single doses of vehicle (ultrapure water), test compounds (suspended in vehicle; 10 mL/kg; 1-10 mg/kg), 30 min prior to oral glucose load (10% aqueous glucose solution, 1 g/kg). The blood glucose levels were measured by blood glucose test strips (SanNuo GA-3 type, ChangSha, China) before administration of vehicle, alogliptin or test compounds (-30 min). After glucose oral adminstration, blood glucose were measured at 0, 15, 30, 60 and 120 min. The blood glucose was measured by blood glucose test strips (SanNuo ChangSha, ChangSha, China).

Acknowledgements

This study was supported by the China National Key H-Tech Innovation Project for the R&D of Novel Drugs (No. 2013ZX09301303-002), and supported by Natural Science Foundation of Jiangsu Province (No. BK20141349).

Notes and references

- 1 A. American Diabetes, Diabetes Care, 2014, 37 Suppl 1, S81-90.
- 2 A. M. Lambeir, C. Durinx, S. Scharpe and I. De Meester, *Crit. Rev. Clin. Lab. Sci.*, 2003, **40**, 209-294.
- 3 C. F. Deacon, A. H. Johnsen and J. J. Holst, J. Clin. Endocrinol. Metab., 1995, 80, 952-957.
- 4 D. J. Drucker and M. A. Nauck, Lancet, 2006, 368, 1696-1705.
- 5 L. L. Baggio and D. J. Drucker, *Gastroenterology*, 2007, **132**, 2131-2157.
- 6 B. Ahren, M. Landin-Olsson, P. A. Jansson, M. Svensson, D. Holmes and A. Schweizer, *J. Clin. Endocrinol. Metab.*, 2004, **89**, 2078-2084.
- 7 A. J. Scheen, Expert Opin Pharmacother, 2015, 16, 43-62.
- 8 S. A. Doggrell and S. B. Dimmitt, *Expert Opin. Drug. Saf.*, 2014, **13**, 675-680.
- 9 B. M. Scirica, D. L. Bhatt, E. Braunwald, P. G. Steg, J. Davidson, B. Hirshberg, P. Ohman, R. Frederich, S. D. Wiviott, E. B. Hoffman, M. A. Cavender, J. A. Udell, N. R. Desai, O. Mosenzon, D. K. McGuire, K. K. Ray, L. A. Leiter, I. Raz, S.-T. S. Committee and Investigators, *N. Engl. J. Med.*, 2013, **369**, 1317-1326.
- 10 USFDA, http://www.fda.gov/Drugs/DrugSafety/ucm459579.htm.
- 11 M. Nabeno, F. Akahoshi, H. Kishida, I. Miyaguchi, Y. Tanaka, S. Ishii and T. Kadowaki, *Biochem. Biophys. Res. Commun.*, 2013, 434, 191-196.
- 12 B. D. Patel and M. D. Ghate, Eur. J. Med. Chem., 2014, 74, 574-605.

Organic & Biomolecular Chemistry Accepted Manuscrip

Journal Name

View Article Online DOI: 10.1039/C6OB01818A

Published on 06 September 2016. Downloaded by Northern Illinois University on 08/09/2016 07:41:11.

ARTICLE

- 13 M. Eckhardt, E. Langkopf, M. Mark, M. Tadayyon, L. Thomas, H. Nar, W. Pfrengle, B. Guth, R. Lotz, P. Sieger, H. Fuchs and F. Himmelsbach, J. Med. Chem., 2007, 50, 6450-6453.
- 14 J. Feng, Z. Zhang, M. B. Wallace, J. A. Stafford, S. W. Kaldor, D. B. Kassel, M. Navre, L. Shi, R. J. Skene, T. Asakawa, K. Takeuchi, R. Xu, D. R. Webb and S. L. Gwaltney, 2nd, *J. Med. Chem.*, 2007, 50, 2297-2300.
- 15 Y. Wang, Y. Z. Xiang, G. D. Cen, WO2013189219.
- 16 J. T. Dai, Z. Y. Meng, X. X. Zhu, H. Gan, R. L. Gu, B. Yang, L. Y. Yu and G. F. Dou, *Yao Xue Xue Bao*, 2014, **49**, 1044-1048.
- 17 B. Liu, Q. Qiu, T. Zhao, L. Jiao, J. Hou, Y. Li, H. Qian and W. Huang, *Chem. Biol. Drug. Des.*, 2014, 84, 182-191.
- 18 Z. Zhang, M. B. Wallace, J. Feng, J. A. Stafford, R. J. Skene, L. Shi, B. Lee, K. Aertgeerts, A. Jennings, R. Xu, D. B. Kassel, S. W. Kaldor, M. Navre, D. R. Webb and S. L. Gwaltney, *J. Med. Chem.*, 2011, 54, 510-524.
- 19 Y. Miyamoto, Y. Banno, T. Yamashita, T. Fujimoto, S. Oi, Y. Moritoh, T. Asakawa, O. Kataoka, H. Yashiro, K. Takeuchi, N. Suzuki, K. Ikedo, T. Kosaka, S. Tsubotani, A. Tani, M. Sasaki, M. Funami, M. Amano, Y. Yamamoto, K. Aertgeerts, J. Yano and H. Maezaki, *J. Med. Chem.*, 2011, DOI: 10.1021/jm101236h.
- Y. Miyamoto, Y. Banno, T. Yamashita, T. Fujimoto, S. Oi, Y. Moritoh, T. Asakawa, O. Kataoka, K. Takeuchi, N. Suzuki, K. Ikedo, T. Kosaka, S. Tsubotani, A. Tani, M. Funami, M. Amano, Y. Yamamoto, K. Aertgeerts, J. Yano and H. Maezaki, *Bioorg. Med. Chem.*, 2011, **19**, 172-185.
- 21 M. Orioli, G. Vistoli, L. Regazzoni, A. Pedretti, A. Lapolla, G. Rossoni, R. Canevotti, L. Gamberoni, M. Previtali, M. Carini and G. Aldini, *ChemMedChem*, 2011, 6, 1269-1282.
- 22 M. I. El-Gamal, H. S. Anbar, H. J. Chung, H. I. Kim, Y. J. Cho, B. S. Lee, S. A. Lee, J. Y. Moon, D. J. Lee, D. Kwon, W. J. Choi, H. R. Jeon and C. H. Oh, *Bioorg. Med. Chem. Lett.*, 2013, **23**, 1347-1350.
- 23 M. S. Landis, Ther. Deliv., 2013, 4, 225-237.