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Novel C-aryl glucoside SGLT2 inhibitors containing cyclic diarylpolynoid motif were designed and synthe-
sized for biological evaluation. Alkylzinc bromides have been efficiently prepared by the direct insertion of
zinc metal into alkyl bromides. The organozinc reagents underwent smooth Pd-catalyzed cross-coupling
reactions. Subsequent ring closing metathesis using 2nd generation Grubbs catalyst successfully gener-
ated novel class of ansa-compounds. These glucosides with cyclic diarylpolynoids demonstrated moderate
in vitro inhibitory activity against SGLT2 in this series to date (IC50 = 59.5–103 nM).

� 2011 Elsevier Ltd. All rights reserved.
Diabetes has become an increasing concern to the world’s pop-
ulation. In 2010, approximately 285 million people around the
world will have diabetes, corresponding to 6.4% of the world’s
adult population, with a prediction that by 2030 the number of
people with diabetes will have grown to 438 million.1 Type 2 dia-
betes is the most common disorder of glucose homeostasis,
accounting for nearly 90–95% of all cases of diabetes.2

Sodium-dependent glucose cotransporters (SGLTs) couple the
transport of glucose against a concentration gradient with the
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simultaneous transport of Na+ down a concentration gradient.3 It
is estimated that 90% of renal glucose reabsorption is facilitated
by SGLT2.4

Bristol-Myers Squibb has identified dapagliflozin 1 (Fig. 1), a
potent, selective SGLT2 inhibitor for the treatment of type 2 diabe-
tes.5–7 At present, dapagliflozin is the most advanced SGLT2 inhib-
itor in clinical trials and is expected to be the first SGLT2 inhibitor
to market.8 On the other hand, Mitsubishi Tanabe, in collaboration
with Johnson & Johnson, is developing canagliflozin 2, another
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novel C-glucoside-derived SGLT2 inhibitor.9 In addition, Boehrin-
ger Ingelheim (BI 10773), Lexicon (LX4211), Astellas (ASP1941),
and Pfizer (code unknown) are reported to be in various phase of
clinical trials.10 Our efforts on identifying inhibitors that target
SGLT2 have been previously described.11

In the middle of exploring of SGLT2 inhibitors, two cyclic diaryl-
heptanoids, acerogenin A (5) and B (6) have been reportedly iso-
lated from the bark of Acer nikoense as inhibitors of SGLT.12
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Scheme 1. Reagents and conditions: (a) i-PrMgCl.LiCl, THF, �78 �C; (b) MeSO3H, MeOH,
(four steps); (e) (i) Br(CH2)2+nCH@CH2, Zn, I2, DMA, 80 �C, (ii) Pd(PPh3)4, rt, 34–72%; (f) 2
10% Pd/C, H2, MeOH, 36–56%.
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Figure 2. Design of novel C-glucosid
Although effects of acerogenins on SGLT inhibitory activity was
only moderate, these unique diarylheptanoid structure was very
similar with diaryl or heteroaryl part of reported SGLT2 inhibitors.
Thus, we expected that combination of cyclic diaryl formation and
structure of dapagliflozin could lead to novel potent SGLT2 inhibi-
tor analogs. These interests directed us to design ansa-structure 7
of C-aryl glucoside SGLT2 inhibitors as shown in Figure 2. Herein,
we report the synthesis and biological evaluation of glucosides
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with cyclic diarylpolynoid as novel C-aryl glucoside SGLT2
inhibitors.

Preparation of C-glucosides bearing the cyclic diarylpolynoid is
described in Scheme 1. Thus, treatment of 2-(4-(allyloxy)benzyl)-
1-bromo-4-iodobenzene (8)13 with isopropylmagnesium chloride
lithium chloride complex solution effected magnesium-halogen
exchange.14 Subsequently, the addition of the nascent magnesiated
aromatic compound to persilylated gluconolactone 9 produced a
mixture of the corresponding lactols. The lactols were then treated
with methanol in the presence of methanesulfonic acid to produce
the corresponding methyl acetal 10, concurrently desilylated. The
methyl acetals were reduced with triethylsilane and BF3 etherate
to afford 11.15 A mixture of alcohols 11 was then peracetylated
using acetic anhydride and triethylamine in the presence of DMAP
(4-(dimethylamino)pyridine), and subsequently was separated
through column chromatography to produce the requisite beta-
isomer 12 in 47% yield over four steps.

With the key bromide 12 in hand, focus shifted to the effi-
cient preparation of the divinyl compounds 13, precursors for
Table 1
In vitro inhibitory activity against hSGLT2
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a These data were obtained by single determinations.
b The IC50 value was obtained by in-house multiple determinatio
ring closing metathesis. The initial approach toward 13 involves
Suzuki coupling of 12 using alkenylboronic acid in the presence
of a suitable Pd(0) catalyst.16 However, despite rather extensive
experimentation, we were unable to effect the required coupling
reaction in a satisfactory manner. Some typical coupling condi-
tions invariably provided the desired products in merely low
yields. At this stage, we were intrigued by the possibility of
using alkylzinc reagents for Pd-catalyzed cross-coupling reac-
tions.17 Thus, treatment of alkenyl bromide with zinc dust
(1.5 equiv), activated with I2 (5 mol %) in DMA (N,N-dimethyl-
acetamide) provides the corresponding alkenylzinc bromide. Its
subsequent cross-coupling with phenylbromide 12 using a cata-
lytic amount of Pd(PPh3)4 proceeded smoothly to completion
within 4 h at room temperature. Under these conditions, divinyl
compounds 13 were routinely obtained in 34–72% yields.

The stage was set for the key ring-closing metathesis to form
macrocycle. After rather extensive experimentation, we were de-
lighted to find out that treatment of divinyl 13 with 2nd generation
Grubbs catalyst (0.1 equiv) in 1,2-dichloroethane (0.01 M) at 80 �C
hSGLT2 IC50
a (nM)

1.35 ± 0.15b
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for 72 h provided the desired macrocycles in moderate yields
(21–46%).18 The geometric isomers were inseparable (E/Z =
2.5–3.0/1 based on 1H NMR analysis). Subsequently, hydrolysis of
13 using NaOMe in methanol produced the corresponding deacet-
ylated compounds 14 in good yields (67–81%). Finally, hydrogena-
tion of 14 on 10% Pd/C in methanol generated the corresponding
macrocycles 15 uneventfully.

The cell-based SGLT2 AMG (Methyl-a-D-glucopyranoside) inhi-
bition assay was performed to evaluate the inhibitory effects of all
prepared compounds on hSGLT2 activities.19,20 Table 1 shows the
structure–activity relationship upon alteration on the ring size of
ansa-macrocycles. The smallest ring 14a showed the moderate
inhibitory activity against hSGLT2 (IC50 = 59.5 nM). As the ring size
increases, the in vitro inhibitory activity gradually decreases as
exemplified by compounds 14b and 14c (IC50 = 89.6 nM for 14b,
IC50 = 103 nM for 14c), suggesting that bulky macrocyclic diaryl-
polynoid is not so favorable for overall in vitro inhibitory activity
against hSGLT2. Also saturated macrocycles 15a and 15b proved
to maintain the similar level of inhibitory activity against hSGLT2
to that of the corresponding parent molecules.23,24

In summary, although effects of acerogenins on SGLT inhibitory
activity were reported to be only moderate, our interest of SGLT
inhibition for cyclic diaryl compound combined with structure of
potent dapagliflozin led to design ansa-structure 7 of C-aryl gluco-
side SGLT2 inhibitors. We successfully performed the synthesis of
C-glucosides associated with cyclic diarylpolynoid utilizing versa-
tile organozinc chemistry and subsequent ring-closing olefin
metathesis using 2nd generation Grubbs catalyst. The synthesized
ansa-analogs were subsecutively subjected to biological evaluation
as novel C-aryl glucoside SGLT2 inhibitors. All of the analogs tested
showed the modest in vitro inhibitory activity against hSGLT2
(14a, IC50 = 59.5 nM).
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