Accepted Manuscript

Direct production of TiAl₃ from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process

Shangshu Li, Xingli Zou, Kai Zheng, Xionggang Lu, Qian Xu, Chaoyi Chen, Zhongfu Zhou

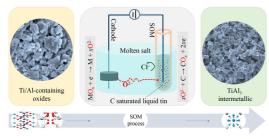
PII: S0925-8388(17)32942-0

DOI: 10.1016/j.jallcom.2017.08.213

Reference: JALCOM 42970

To appear in: Journal of Alloys and Compounds

Received Date: 29 November 2016


Revised Date: 20 August 2017

Accepted Date: 22 August 2017

Please cite this article as: S. Li, X. Zou, K. Zheng, X. Lu, Q. Xu, C. Chen, Z. Zhou, Direct production of TiAl₃ from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.08.213.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCED	TED		TTIC		TDT
ACCEP		$\square N A $		CR	IPT
I I C C L I		TATT TT			

1	Direct production of TiAl ₃ from Ti/Al-containing oxides precursors
2	by solid oxide membrane (SOM) process
3 4 5	Shangshu Li ^a , Xingli Zou ^{a,b,*} , Kai Zheng ^a , Xionggang Lu ^{a,*} Qian Xu ^a , Chaoyi Chen ^c , Zhongfu Zhou ^{a,d}
6	a. State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of
7	Advanced Ferrometallurgy & School of Materials Science and Engineering,
8	Shanghai University, Shanghai 200072, China
9	b. Center for Electrochemistry, Department of Chemistry, The University of Texas at
10	Austin, Austin, 78712, Texas, US
11	c. School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
12	d. Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth, SY23
13	3BZ, UK
14	*Corresponding author, E-mail: <u>xinglizou@shu.edu.cn</u> (X. Zou), <u>luxg@shu.edu.cn</u>

15 (X. Lu)

16 Abstract

TiAl₃ intermetallic has been successfully synthesized by the electrochemical 17 18 deoxidation of the Ti/Al-containing oxides precursors including TiO₂/Al₂O₃ mixture and titanium-rich slag/Al₂O₃ mixture at 1000 °C and 3.8 V in molten CaCl₂. A solid 19 oxide membrane (SOM) tube filled with carbon-saturated liquid tin was served as 20 21 inert anode, and the pressed pellet of Ti/Al-containing oxides precursors was used as 22 cathode during the electrochemical deoxidation process. The results show that the reduction proceeds through a serious of individual stages, which mainly involve the 23 24 formation-decomposition of calcium titanium/aluminum oxides and the formation of 1 / 27

 $TiAl_x$ alloys. The analysis of the partially reduced cathode pellet confirms that the 1 three phases interlines (3PIs) reaction area gradually expands from the pellet's surface 2 3 to its centre. The morphology of the TiAl₃ obtained from TiO₂/Al₂O₃ precursor exhibits a homogeneous nodular structure. The final product produced from the 4 titanium-rich slag/Al₂O₃ precursor contains TiAl₃ and Ll₂ Ti_{0.75}Fe_{0.25}Al₃. In addition, 5 the porous TiAl₃ with high porosity can be prepared by using NaCl as the 6 space-holder material. The results demonstrate that the SOM process has the potential 7 to be used for the facile production of Ti-Al alloys from complex oxides precursors. 8

9 *Keywords:* TiAl₃; electro-deoxidation; SOM; oxides; CaCl₂

10 **1 Introduction**

Titanium aluminides (includes Ti₃Al, TiAl and TiAl₃) are regarded as innovative 11 12 high-temperature engineering materials owing to their excellent properties [1-3]. Among these titanium aluminides, $TiAl_3$ is the most lightest with a density of ~ 3.4 13 g/cm³ [4]. Moreover, good oxidation, high modulus of elasticity, moderately high 14 melting temperature (around 1400 °C) and conceivable high-temperature specific 15 strength make TiAl₃ becomes an attractive potential candidate for aerospace 16 application [5-7]. In addition, TiAl₃ is a suitable reinforcement for aluminum due to 17 the good wettability and clean interface between TiAl₃ and Al matrix [8]. Numerous 18 technologies have been developed to prepare TiAl₃ from Ti and Al powders, such as 19 arc melting, thermal explosion (TE), hot pressing (HP) and reaction synthesis of solid 20 Ti and liquid Al [9-14]. The process (usually Kroll process) used for producing Ti 21 powder generally involves high cost and high energy consumption. 22

1	In 2000, a novel electrochemical deoxidation method named FFC Cambridge
2	process has been first proposed to extract metals and alloys directly from metal oxides
3	[15]. The electrochemical deoxidation process is commonly operated at a moderate
4	temperature (800–1000 °C) in molten salts, such as molten LiCl, $CaCl_2$ and
5	CaCl ₂ -NaCl [16, 17]. During the electrochemical deoxidation process, the inexpensive
6	metal oxides are used as raw materials, and the metals/alloys/composites can be
7	directly synthesized at cathode. Generally, the graphite is used as the consumable
8	anode during electro-deoxidation to react with O^{2-} to form CO and/or CO ₂ gas. The
9	generated CO_2 can further react with O^{2-} in the molten electrolyte to form CO_3^{2-} (CO_2
10	+ $O^{2-} \rightarrow CO_3^{2-}$). Consequently, C can be formed through the side electrochemical
11	reaction (CO ₃ ²⁻ + 4e ⁻ \rightarrow C + 3O ²⁻) and thus influence the deoxidation process [18,
12	19]. In addition, the graphite powder dropped from the graphite anode will also
13	pollute the molten salts and inevitably decrease the current efficiency of the
14	electrochemical deoxidation process [20]. However, these side reactions and carbon
15	pollution can be avoided by modifying the consumable anode. The solid oxide
16	membrane (SOM) assembled anode system has been proved can be used as the inert
17	anode to replace the graphite anode [21, 22]. During the SOM-assisted
18	electro-deoxidation process, only O^{2-} can pass through the SOM and thus the anodic
19	reaction area has been separated from the molten salts, as schematically shown in Fig.
20	1 [22-24]. Generally, high current efficiency can be achieved by using the
21	SOM-assisted electro-deoxidation process due to the carbon-related side reactions

metals/alloys/composites have been successfully synthesized from their relevant
oxides and complex ores (such as titanium-rich slag, ilmenite and Ti-bearing
blast-furnace slag) by using the SOM-assisted electro-deoxidation method. The SOM
process has been considered as a green and effective technology for the preparation of
metals/alloys/composites, especially refractory materials [30].

The melting point of aluminum is only 660 °C, theoretically, aluminum is liquid 6 at the experimental temperature (800-1000 °C) during the electrochemical 7 deoxidation process. However, aluminum can react with Ti to form Ti-Al alloys 8 9 during the solid-state electro-deoxidation process [31]. In the present study, TiAl₃ intermetallic has been electrochemically synthesized from TiO₂/Al₂O₃ precursor and 10 titanium-rich slag/Al₂O₃ precursor in molten CaCl₂ by using the SOM-assisted 11 12 electro-deoxidation process. The phase composition of the cathodic products obtained from different electrolysis conditions was systematically investigated by using X-ray 13 diffraction (XRD), and the microstructure of the final product was analyzed by using 14 scanning electron microscope (SEM). In addition, the phase composition of the 15 partially reduced pellet has been carefully analyzed by using XRD from the pellet's 16 surface to its centre area, and the reaction pathway during the electrochemical 17 deoxidation process of Ti/Al-containing oxides precursors in molten CaCl₂ has been 18 discussed. In addition, the porous TiAl₃ alloy has also been tried to electrochemically 19 produce by the SOM process with the use of NaCl as a space-holder material. 20

21 **2 Experimental**

22 2.1 Fabrication of electrodes

4 / 27

1	The raw materials used in the experiments involve commercial TiO_2 , Al_2O_3 and
2	titanium-rich slag. The titanium-rich slag was produced by the reduction of the
3	titaniumferrite ore with coal in an electric arc furnace, and the chemical composition
4	of the slag is listed in Table 1. The mixture of TiO_2 and Al_2O_3 was prepared at the
5	stoichiometric ratio of Ti:Al = 1:3 (34.31 wt % TiO ₂ and 65.69 wt % Al ₂ O ₃)
6	corresponding to TiAl ₃ . Then, the TiO_2/Al_2O_3 mixture with anhydrous alcohol and 5
7	wt % polyvinyl butyral (PVB) was ball-milled for about 4 h at a rotation rate of 450
8	r/min. The milled mixture was then pressed under a stable pressure (12 MPa) for 2
9	min to form a cylinder pellet. In addition, the titanium-rich slag/Al ₂ O ₃ mixture (49.91
10	wt % titanium-rich slag and 50.09 wt % Al_2O_3) pellet was also prepared using the
11	above process. The pressed pellet without being pre-sintered in high temperature has
12	been proved to possess enough strength to meet the requirement of electrolysis. The
13	pressed pellet was directly sandwiched between two porous nickel foils, and then
14	fixed with Fe-Cr-Al alloy wire (1.5 mm in diameter) to form a cathode. The porous
15	nickel foil can provide more initial reduction points to the mixture pellet during the
16	early stage of electrolysis.

The SOM tube (8 mol % yttria-stabilized zirconia (YSZ)) used in the experiment was fabricated by slip casting and high temperature sintering process. It has been proved that the home-made SOM tube can support a long time electrolysis process [25, 27-29]. The inert anode was composed of the SOM tube filled with carbon-saturated liquid tin, and a Fe-Cr-Al/Mo wire was inserted into the tube to conduct electric current. The liquid tin contained in the SOM tube is acted as a

1	medium to transport O^{2-} generated from the electrochemical reduction reactions, <i>i.e.</i> ,
2	$MO_x + 2xe^- \rightarrow M + 2xO^{2-}$. The carbon saturated in liquid tin is used as reductant to
3	react with oxygen ions, <i>i.e.</i> , $C + xO^{2-} \rightarrow CO_{x(x=1 \text{ or } 2)} + 2xe^{-}$. As shown in Fig. 1, the
4	key feature of the SOM-assisted electro-deoxidation process is that the anode reaction
5	area can be separated by the SOM tube from the molten salt, therefore, only O^{2-} can
6	pass through the SOM tube. As a result, the CO/CO_2 generated in the SOM tube
7	cannot react with O^{2-} in the molten electrolyte to form CO_3^{2-} , and thus the
8	carbon-related side reactions can be effectively avoided. In addition, higher voltage
9	(such as 3.5–4.0 V [29],) can be applied during the SOM-assisted electro-deoxidation
10	process, which means that the SOM electrolysis process generally possesses high
11	reduction speed [25].

12 **2.2 Electrolysis procedure**

The assembled cathode and anode were placed in a corundum crucible which 13 contained molten CaCl₂ as electrolyte. The experiments were systematically carried 14 out in a vertical tubular corundum reactor which was located in an electrical furnace, 15 as shown in Fig. 1. The ultra-purity argon gas was continuously purged into corundum 16 reactor to provide/keep an inert atmosphere during the electrochemical deoxidation 17 process. The electrochemical experiments include the pre-electrolysis of molten CaCl₂ 18 and the subsequent electrochemical deoxidation process. The pre-electrolysis with the 19 aim to remove residual redox-active species and residual moisture from molten CaCl₂ 20 was performed at 2.5 V and 1000 °C between a Fe-Cr-Al alloy wire cathode and the 21 SOM anode for 2 h. The electrochemical deoxidation process was then conducted at 22

3.8 V and 1000 °C between the pellet cathode and the SOM anode for appropriate
time. A BioLogic HCP-830 electrochemical workstation was used to control the
electrochemical experiment. After the electrolysis was finished, the reduced cathode
was taken out from corundum reactor, washed with tap water and dried at 90 °C in a
drying oven.

6 **2.3 Characterization**

The chemical composition of the titanium-rich slag was analyzed by X-ray 7 fluorescence spectroscopy (XRF-1800, Shimadzu Limited Co. Japanese) and 8 9 inductive-coupled plasma spectroscopy (ICP, Perkin Elmer PE400). The phase composition of the cathodic products was determined by a D8 Advance X-ray 10 diffractometer (XRD, Bruker Co. Germany). The morphology of the cathodic 11 12 products was examined by scanning electron microscopy (SEM) on a JEOL JSM-6700F microscope. The elemental composition of the cathodic products was 13 analyzed by energy-dispersive X-ray (EDX) spectroscopy (Oxford INCA EDS system) 14 15 attached to the SEM.

16 **3 Results and discussion**

17 **3.1 Production of TiAl₃ from TiO₂/Al₂O₃ mixture precursor**

18 **3.1.1 XRD analysis**

To investigate the influence of molten $CaCl_2$ immersion process on the precursors, the TiO_2/Al_2O_3 mixture pellet was immersed in molten $CaCl_2$ bath (without being pre-electrolyzed) at 1000 °C for 2 h. As presented in Fig. 2, the phase composition of the pellet after being immersed in molten $CaCl_2$ for 2 h mainly

1	contains Al_2O_3 , $Ca_{12}Al_{14}O_{33}$ and $CaTiO_3$. This finding suggests that TiO_2 and Al_2O_3
2	are converted mostly into $CaTiO_3$ and $Ca_{12}Al_{14}O_{33}$ through chemical reaction
3	processes. Actually, a small amount of CaO would inevitably exist in molten $CaCl_2$
4	due to the impurity of the purchased CaCl ₂ (purity \geq 98 %). In addition, CaO is
5	believed to be available in molten CaCl ₂ salt due to the hydrolysis reaction of
6	$CaCl_2 \cdot x(H_2O)$, <i>i.e.</i> , $CaCl_2 \cdot H_2O \rightarrow CaO + 2HCl$ [32]. Therefore, the chemical
7	formation of CaTiO ₃ and Ca ₁₂ Al ₁₄ O ₃₃ can take place by reactions (1) and (2).
8	$TiO_2 + CaO \rightarrow CaTiO_3 \qquad \qquad \Delta G^{\theta}_{(1000 \ ^\circ C)} = -88.36 \text{ kJ/mol} \tag{1}$
9	$7Al_2O_3 + 12CaO \rightarrow Ca_{12}Al_{14}O_{33}$ $\Delta G^{\theta}_{(1000 ^\circ C)} = -374.97 \text{kJ/mol}$ (2)
10	In order to investigate the detailed variations of phase composition during the
11	electrochemical deoxidation process, the partially reduced pellets obtained from
12	different electrolysis times were systematically analyzed. As revealed in Fig. 3, Al ₂ O ₃ ,
13	$Ca_{12}Al_{14}O_{33}$ and $CaTiO_3$, along with trace amount of Ti_3O_5 were obtained after 1 h
14	electrolysis. During the electrochemical deoxidation process, oxygen was
15	continuously removed from the cathode to molten CaCl ₂ . Hence, the chemical
16	reactions between TiO_2/Al_2O_3 and O^{2-}/Ca^{2+} will also contribute to the formations of
17	CaTiO ₃ and Ca ₁₂ Al ₁₄ O ₃₃ , as expressed by reactions (3) and (4). Besides Al ₂ O ₃ ,
18	$Ca_{12}Al_{14}O_{33}$ and $CaTiO_3$, the titanium sub-oxides Ti_2O_3 and TiO have also been found
19	to coexist in the product obtained from electrolysis for 2 h. When the electrolysis time
20	was prolonged to 3 h, a small amount of TiAl was generated, however, the main
21	
	phases still consisted of Al_2O_3 , $Ca_{12}Al_{14}O_{33}$ and $CaTiO_3$. The decomposition

1	2.27 V and 2.07 V, respectively. Obviously, $Ca_{12}Al_{14}O_{33}$ is a relatively stable
2	compound during the electrochemical deoxidation process [29]. As revealed in Fig. 3,
3	a certain amount of $Ca_{12}Al_{14}O_{33}$ still existed in the pellet after being electrolyzed for 4
4	h. Besides, $TiAl_2$ and $TiAl_3$ were formed through the reactions between the generated
5	titanium and aluminum. The product obtained from electrolysis for 5 h contained
6	TiAl ₃ , TiAl ₂ , Al ₂ Ti ₃ and Al ₂ O ₃ . TiAl ₃ was finally formed when the electrolysis time
7	was extended to 6 h. The observation of the intermediates CaTiO_3, Ti_3O_5, Ti_2O_3 and
8	TiO suggests that the electrochemical deoxidation of TiO ₂ is a multi-step process as
9	the sequence: $TiO_2 \rightarrow CaTiO_3 \rightarrow Ti_3O_5 \rightarrow Ti_2O_3 \rightarrow TiO \rightarrow Ti$ and/or $TiO_2 \rightarrow Ti_3O_5$
10	\rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition to the direct reduction of Al ₂ O ₃ , partial Al ₂ O ₃ was
11	firstly converted into $Ca_{12}Al_{14}O_{33}$ and then reduced to Al. The formed titanium and
12	aluminum would react to form $TiAl_x$ (Al_2Ti_3 , $TiAl$, $TiAl_2$ and $TiAl_3$) in the cathode
13	according to reactions (5)–(8), and $TiAl_3$ was finally formed with the increase of
14	electrolysis time.

15
$$\operatorname{Ti}O_2 + \operatorname{Ca}^{2+} + \operatorname{O}^{2-} \to \operatorname{Ca}\operatorname{Ti}O_3$$
 (3)

16
$$7Al_2O_3 + 12Ca^{2+} + 12O^{2-} \rightarrow Ca_{12}Al_{14}O_{33}$$
 (4)

$$17 \qquad 3\mathrm{Ti} + 2\mathrm{Al} \to \mathrm{Al}_2\mathrm{Ti}_3 \tag{5}$$

$$18 \qquad Al_2Ti_3 + Al \to 3TiAl \tag{6}$$

$$19 TiAl + Al \to TiAl_2 (7)$$

$$20 TiAl_2 + Al \to TiAl_3 (8)$$

Generally, the reduction process gradually extends from the pellet's surface to itsinterior. To further investigate the detailed electrochemical deoxidation process for

TiO₂/Al₂O₃ mixture pellet, a partially reduced pellet was analyzed by XRD. In this 1 experiment, the partially reduced pellet was ground from the pellet's surface to its 2 3 interior in a certain distance, as illustrated in Fig. 4a. Then the phase composition of the corresponding layers was determined by XRD, as shown in Fig. 4b. As revealed in 4 the figure, the pellet's surface has been completely reduced to TiAl₃. However, the 5 pellet's centre still contains unreduced oxides/compounds (Al₂O₃, Ca₁₂Al₁₄O₃₃, 6 CaTiO₃ and Ti₂O₃), and the formation of Ti₂O₃ may be attributed to the reduction of 7 CaTiO₃ and/or TiO₂. The aluminum-containing oxide compounds CaAl₄O₇ and 8 Ca₁₂Al₁₄O₃₃ exist in the pellet's exterior and interior, respectively. CaAl₄O₇ may be 9 formed through the reduction of $Ca_{12}Al_{14}O_{33}$ and/or the combination reaction of Al_2O_3 10 with Ca^{2+} and O^{2-} , as described in reactions (9) and (10). It can be seen that the 11 Ti-containing oxides (Ti₂O₃ and CaTiO₃) exist in the centre of the pellet, and no 12 Ti-containing oxides present in the outer of the pellet. The decomposition potentials 13 of Ti-containing oxides (Ti₂O₃: 2.02 V; CaTiO₃: 2.07 V) are lower than that of 14 Al-containing oxides (Ca₁₂Al₁₄O₃₃: 2.27 V; CaAl₄O₇: 2.25 V; Al₂O₃: 2.18 V). 15 Therefore, titanium can be facilely formed during the electrochemical deoxidation 16 process. It is worth nothing that the formed aluminum may also be beneficial to the 17 reduction of titanic oxides through an aluminothermic reduction process such as Ti₂O₃ 18 $+2Al \rightarrow 2Ti + Al_2O_3$ ($\Delta G^{\theta}_{(1000 \circ C)} = -99.954$ kJ/mol). The formed aluminum will react 19 with titanium to generate $TiAl_{x (x < 3)}$ intermetallics, *i.e.*, Ti_2Al , Ti_3Al_2 , TiAl and $TiAl_2$. 20 Eventually, TiAl₃ can be formed by the reaction of TiAl₂ and Al when enough 21 aluminum is produced. Therefore, the partially reduced pellet can be divided into 22

three parts, *i.e.*, surface (completely reduced part), middle layer (partially reduced part)

2	and centre (unreduced part). The phase composition of each part is summarized in Fig.
3	4c, in which the $xCaO \cdot yAl_2O_3$ mainly refers to $Ca_{12}Al_{14}O_{33}$ and $CaAl_4O_7$.
4	$2\text{Al}_2\text{O}_3 + \text{CaO} \rightarrow \text{CaAl}_4\text{O}_7 \qquad \Delta G^{\theta}_{(1000\ ^\circ\text{C})} = -58.67\ \text{kJ/mol} \tag{9}$
5	$Ca_{12}Al_{14}O_{33} + 30e^{-} \rightarrow 11CaO + 10Al + CaAl_{4}O_{7} + 15O^{2-} E_{(1000 ^{\circ}C)} = 2.30 \text{V} $ (10)
6	3.1.2 Morphology observation
7	During the electrochemical deoxidation process, it is well determined that the
8	reduction reaction occurs at the oxides/molten salt/metal three-phase interlines (3PIs)
9	area [33, 34]. The 3PIs are firstly formed on the surface of pellet and then gradually
10	expands along the depth direction. Fig. 5a shows the SEM image of the section of a
11	ground pellet electrolyzed for 3 h. As evidenced in the figure, the pellet has not been
12	completely reduced. It is clear that the section of pellet shows different morphologies,
13	and it consists of two parts separated by the 3PIs. The outer part shows a loose and
14	homogeneous morphology (Fig. 5a and g), on the contrary, the inner part possesses a
15	dense structure (Fig. 5a and h). It should be noted that the loose structure can provide
16	the direct channels for the transmission of molten $CaCl_2$ and the migration of oxygen
17	ions during the electrochemical deoxidization process. The corresponding elemental
18	analysis indicates that the outer part has been almost reduced to Ti-Al alloys, whereas
19	the inner part is still unreacted, as revealed in Fig. 5c-f. According to the EDX
20	analysis presented in Fig. 5b, a considerable amount of elements Ca and O, along with
21	elements Ti and Al, exist in the inner part of the pellet, which mainly correspond to
22	the intermediate compounds, <i>i.e.</i> , CaTiO ₃ , Ca ₁₂ Al ₁₄ O ₃₃ , CaAl ₄ O ₇ , etc. As the

electrolysis time increasing, these intermediate compounds would be reduced to
 titanium and aluminum respectively. As a result, the dense structure of the inner part
 would also become loose/porous.

Fig. 6 shows the SEM images of the product electrolyzed for 6 h. The EDX 4 analysis suggests that the TiO₂/Al₂O₃ mixture has been completely reduced to TiAl₃ 5 alloy. As revealed in the Fig. 6a, the obtained TiAl₃ particles possess a uniform 6 microstructure and these TiAl₃ particles (approximately 3–5 µm) begin to interconnect 7 with each other to form a porous nodular structure. Actually, the interconnected TiAl₃ 8 9 particles are grew up from the smaller particles (approximately 1 μ m) through the sintering process, as evidenced in Fig. 6b. It should be noted that the formed 10 aluminum is theoretically presented in liquid form at the experimental temperature 11 12 (1000 °C, the melting point of Al is 660 °C). However, the liquid Al can react with the surrounded/generated titanium to form Ti-Al intermetallics immediately. Meanwhile, 13 the liquid Al may also act as the binder to accelerate the sintering of the surrounding 14 15 solid particles.

16 **3.1.3 Synthesis of porous TiAl**₃

It was suggested that the titanium alloys with a predesigned geometry can be prepared *via* the reduction of the pre-formed oxide precursors in molten salts [35]. Porous TiAl₃ intermetallic can be applied as heat insulation and separation materials due to its better oxidation resistance in elevated temperature [36, 37]. Therefore, we tried to electrochemically prepare porous TiAl₃ from the TiO_2/Al_2O_3 mixture precursor with a space-holder material (NaCl) in molten CaCl₂. The whole

1	experimental process is illustrated in Fig. 7. NaCl particles (200–500 μ m) are used as
2	the space-holder material, which can be removed easily from the pellet by dissolving
3	into molten CaCl ₂ at experimental temperature (1000 °C). Fig. 8 presents the SEM
4	images of the final TiAl ₃ obtained from different electrolysis conditions. Obviously,
5	there are lots of tiny pores (marked with arrows in Fig. 8a and d) are found among the
6	interconnected nodular skeletons due to the reduction and the sintering processes. In
7	addition, it is obvious that the microstructures of the electrolyzed pellets with/without
8	NaCl show considerable difference, as shown in Fig. 8a and Fig 8b, c. The large pores
9	are distributed on the skeletons (marked with circles in Fig. 8b and c), the pore sizes
10	are approximately 100-500 μ m. Evidently, the large pores are formed because of the
11	removal of initial NaCl particles during the electrochemical deoxidation process. It
12	should be noted that the pore size and porosity of the porous $TiAl_3$ can be affected by
13	the characteristics of the added NaCl particles, such as particle size, shapes and
14	contents [37].

15 3.1.4 Reaction mechanism of the electrochemical deoxidation process

Based on the time/position-dependent variations of phase composition (Figs. 2–4), the thermodynamic consideration (at 1000 °C), and the previous studies on the reaction mechanisms of the electrochemical reduction of metal oxides [19, 29, 38-40], the reaction path of electrochemical reduction of TiO₂/Al₂O₃ mixture precursor to TiAl₃ in molten CaCl₂ has been suggested, as schematically illustrated in Fig. 9. It is suggested that the electrochemical synthesis of TiAl₃ mainly includes three parts, *i.e.*, the formation-decomposition of Ti-containing oxides, the formation-decomposition of

Al-containing oxides and the formation of $TiAl_x$. The formation of $CaTiO_3$ is inevitable due to the reaction of TiO_2 and $CaO/(Ca^{2+}, O^{2-})$ during the electrochemical deoxidation process, as described in reactions (1) and (3). The decomposition of $CaTiO_3/TiO_2$ proceeds through a number of individual steps which mainly involve the formation and reduction of $Ti_{x-1}O_{2x-3}$ (*i.e.*, Ti_3O_5 , Ti_2O_3 and TiO) (reactions (11)–(13)) [19, 40]. The dissolubility of CaO in molten CaCl₂ is approximately 21 mol % [41], therefore, the generated CaO can completely dissolve into molten CaCl₂.

8
$$3\text{TiO}_2/\text{CaTiO}_3 + 2e^- \rightarrow \text{Ti}_3\text{O}_5/2\text{CaO} + \text{O}^{2-} \quad E_{(1000\ ^\circ\text{C})} = 1.28\ \text{V}/2.65\ \text{V}$$
(11)

9
$$(x-2)Ti_{x-1}O_{2x-3} + 2e^{-} \rightarrow (x-1)Ti_{x-2}O_{2x-5} + O^{2-}$$

$$E_{(1000 \,^{\circ}\text{C})} = 1.46 \,\text{V} \,(x = 3), \, 1.70 \,\text{V} \,(x = 4)$$
 (12)

11
$$\text{TiO} + 2e^- \rightarrow \text{Ti} + \text{O}^{2-}$$
 $E_{(1000 \,^\circ\text{C})} = 2.18 \,\text{V}$ (13)

12 Ca₁₂Al₁₄O₃₃ is also formed through the chemical reactions (reactions (2) and (4)), 13 which is similar to the formation of CaTiO₃. Then Ca₁₂Al₁₄O₃₃ can be reduced to 14 compound CaAl₄O₇ according to reaction (10). Therefore, Aluminum can be formed 15 by the reduction of Al₂O₃, Ca₁₂Al₁₄O₃₃ and CaAl₄O₇ according to reactions (14)–(16).

16
$$Al_2O_3 + 6e^- \rightarrow 2Al + 3O^{2-}$$
 $E_{(1000 \, ^\circ C)} = 2.18 \, V$ (14)

17
$$\operatorname{Ca}_{12}\operatorname{Al}_{14}\operatorname{O}_{33} + 42e^{-} \rightarrow 12\operatorname{CaO} + 14\operatorname{Al} + 21\operatorname{O}^{2-} E_{(1000 \,^{\circ}\mathrm{C})} = 2.27 \,\mathrm{V}$$
 (15)

18
$$\operatorname{CaAl}_4O_7 + 12e^- \to \operatorname{CaO} + 4\operatorname{Al} + 6O^{2-} \qquad E_{(1000 \, ^\circ\mathrm{C})} = 2.25 \,\mathrm{V}$$
 (16)

19 Ti-Al intermetallics (TiAl_x) are formed by the reactions between titanium and 20 aluminum and the formation process can be expressed by the reaction sequences 21 (reactions (5)–(8)): Ti₂Al \rightarrow Ti₃Al₂ \rightarrow TiAl \rightarrow TiAl₂ \rightarrow TiAl₃. It should be noted that 22 the above-mentioned formation steps are not necessarily in temporal sequence, and

1 they may occur simultaneously during the electrochemical deoxidization process.

2 **3.2** Production of TiAl₃ from titanium-rich slag/Al₂O₃ mixture precursor

3 3.2.1 XRD analysis

The electrochemical synthesis of TiAl₃ from titanium-rich slag has also been 4 investigated. 50.09 wt % Al₂O₃ was added into the titanium-rich slag to provide 5 adequate aluminum to form TiAl₃. The variations of the phase composition during the 6 electrochemical deoxidation process were determined by XRD, as revealed in Fig. 10. 7 As evidenced in Fig. 10a, the initially as-received titanium-rich slag with complex 8 9 composition is composed of kennedyite ((Fe_{0.33}Ti_{0.46}Mg_{0.21})(Ti_{1.9}Mg_{0.1})O₅, PDF# 80-1216), titanite (CaTiSiO₅, PDF# 73-2066) and trace amount of rutile (TiO₂, 10 PDF#). The XRD analysis result (Fig. 10a and b) reveals that the pellet has been 11 12 deoxidized completely within approximately 4–5 h. The final product contains TiAl₃, $Ti_{0.75}Fe_{0.25}Al_3$, and trace amount of Ti_5Si_3 . A fact that Fe can be partially/completely 13 removed during the electrochemical deoxidation process has been reported in the 14 15 previous work [29, 42]. However, in this work, it is relatively difficult to completely remove Fe from the pellet during the electrochemical deoxidation process due to the 16 17 content of total FeO_x in the titanium-rich slag is 12.77 wt %. Actually, the generated Fe can promote the subsequent electrochemical process due to its good electronic 18 conductivity [27, 43], and Fe will react with Ti and Al to form Ti_{0.75}Fe_{0.25}Al₃ 19 intermetallic. It should be noted that Ti_{0.75}Fe_{0.25}Al₃ intermetallic has the 20 high-symmetry Ll₂ cubic structure and thus has better ductility compared to the 21 tetragonal DO₂₂ structure TiAl₃. Usually, the ductility of TiAl₃ can be improved by 22

1	alloying with other elements, such as Cr, Mn, Fe and Co [9, 10]. During the early
2	stage of the electrochemical deoxidation process (first 1 h electrolysis), the product
3	mainly contains unreduced oxides/compounds, <i>i.e.</i> , Al ₂ O ₃ , CaTiO ₃ , Ca ₁₂ Al ₁₄ O ₃₃ ,
4	$Ca_4Al_6O_{13}$, Ti_2O_3 and Ti_3O_5 . $Ca_4Al_6O_{13}$ can be formed by the electrochemical
5	deoxidation of $Ca_{12}Al_{14}O_{33}$ ($Ca_{12}Al_{14}O_{33} + 24e^- \rightarrow 8CaO + Ca_4Al_6O_{13} + 8Al + 12O^{2-}$)
6	and the reaction between Al ₂ O ₃ and CaO/(Ca ²⁺ , O ²⁻) (3Al ₂ O ₃ + 4CaO/(Ca ²⁺ , O ²⁻) \rightarrow
7	Ca ₄ Al ₆ O ₁₃). Finally, the formed titanium and aluminum will react with each other to
8	form $TiAl_2$, and then the formed $TiAl_2$ can further react with Al to form $TiAl_3$, as
9	shown in Fig. 10 (2, 3 and 4 h).
10	Fig. 11 presents the XRD patterns of a partially reduced pellet (electrolyzed for
11	1.5 h) from the pellet's surface to its centre. The product of the interior of the pellet
12	mainly contains unreduced oxides/compounds, <i>i.e.</i> , Al ₂ O ₃ , Ca ₁₂ Al ₁₄ O ₃₃ , Ca ₄ Al ₆ O ₁₃ ,
12 13	mainly contains unreduced oxides/compounds, <i>i.e.</i> , Al ₂ O ₃ , Ca ₁₂ Al ₁₄ O ₃₃ , Ca ₄ Al ₆ O ₁₃ , Ti ₂ O ₃ CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the
13	Ti_2O_3 CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the
13 14	Ti_2O_3 CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅
13 14 15	Ti_2O_3 CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅ \rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition, the reduction pathway of Al-containing oxides
13 14 15 16	Ti_2O_3 CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅ \rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition, the reduction pathway of Al-containing oxides follows the sequences of Al ₂ O ₃ \rightarrow Al and/or Al ₂ O ₃ \rightarrow (Ca ₁₂ Al ₁₄ O ₃₃ \rightarrow Ca ₄ Al ₆ O ₁₃) \rightarrow
13 14 15 16 17	Ti_2O_3 CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅ \rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition, the reduction pathway of Al-containing oxides follows the sequences of Al ₂ O ₃ \rightarrow Al and/or Al ₂ O ₃ \rightarrow (Ca ₁₂ Al ₁₄ O ₃₃ \rightarrow Ca ₄ Al ₆ O ₁₃) \rightarrow Al. Moreover, TiAl ₂ , Al ₂ O ₃ and Ti ₅ Si ₃ are identified as the main phases of the surface
13 14 15 16 17 18	Ti ₂ O ₃ CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅ \rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition, the reduction pathway of Al-containing oxides follows the sequences of Al ₂ O ₃ \rightarrow Al and/or Al ₂ O ₃ \rightarrow (Ca ₁₂ Al ₁₄ O ₃₃ \rightarrow Ca ₄ Al ₆ O ₁₃) \rightarrow Al. Moreover, TiAl ₂ , Al ₂ O ₃ and Ti ₅ Si ₃ are identified as the main phases of the surface of the pellet. Obviously, when the residual Al ₂ O ₃ was reduced to aluminum, TiAl ₂
 13 14 15 16 17 18 19 	Ti ₂ O ₃ CaTiO ₃ , TiO <i>etc.</i> Based on the experimental results (Figs. 10 and 11), the reduction pathway of Ti-containing oxides follows the sequence of CaTiO ₃ \rightarrow Ti ₃ O ₅ \rightarrow Ti ₂ O ₃ \rightarrow TiO \rightarrow Ti. In addition, the reduction pathway of Al-containing oxides follows the sequences of Al ₂ O ₃ \rightarrow Al and/or Al ₂ O ₃ \rightarrow (Ca ₁₂ Al ₁₄ O ₃₃ \rightarrow Ca ₄ Al ₆ O ₁₃) \rightarrow Al. Moreover, TiAl ₂ , Al ₂ O ₃ and Ti ₅ Si ₃ are identified as the main phases of the surface of the pellet. Obviously, when the residual Al ₂ O ₃ was reduced to aluminum, TiAl ₂ would finally react with Al to form TiAl ₃ . It is obvious that the intensity of TiAl ₂

1 process.

2 **3.2.2** Morphology observation

3 The as-received titanium-rich slag powder shows an irregular morphology according to Fig. 12a, and the particle size is around 9 µm. The EDX analysis (the 4 inset in Fig. 12a) over the SEM imaging area confirms that the titanium-rich slag 5 consists of relatively complex compounds. Fig. 12b shows the SEM image of the 6 titanium-rich slag/Al₂O₃ mixture after being ball-milled for 4 h. It is clear that the 7 particle size of the ball-milled mixture (approximately 5 μ m) is less than that of the 8 initial titanium-rich slag. The SEM image of the completely electrolyzed product 9 obtained after 5 h electrolysis is presented in Fig. 12c. The particles of the final 10 product possess smooth surfaces, and the particles begin to interconnect together to 11 12 form a porous sponge-like microstructure owing to the sintering affect during the electrochemical deoxidation process. Elements Ti, Al, Fe and Si (corresponding to 13 TiAl₃, Ti_{0.75}Fe_{0.25}Al₃ and Ti₅Si₃) were found in the final product. The impurity 14 elements Ca and Mg can be partially/completely removed through the chemical/ 15 physical processes [29, 44, 45]. It should be noted that there are two types of 16 morphology present in the final product, *i.e.*, the large and little particles, as 17 evidenced in Fig. 12c. According to the EDX analysis (Fig. 12d), it is obvious that the 18 little particles are Ti₅Si₃ and the large particles are TiAl₃. Ti₅Si₃ is formed through the 19 reaction between the formed titanium and silicon according to the reaction: 5Ti + 3Si 20 \rightarrow Ti₅Si₃ ($\Delta G^{\theta}_{(1000 \,^{\circ}\text{C})} = -589.26 \,\text{kJ/mol}$). 21

22 4. Conclusions

17 / 27

1	The pressed pellets of Ti/Al-containing oxide precursors (i.e., TiO ₂ /Al ₂ O ₃
2	mixture and titanium-rich $slag/Al_2O_3$ mixture) have been electrochemically reduced to
3	TiAl ₃ intermetallic by using the SOM-assisted electro-deoxidation process in molten
4	CaCl ₂ at 1000 $^{\circ}$ C and 3.8 V. The characteristics of the products obtained from
5	different electrolysis conditions were systematically investigated. The results suggest
6	that the reaction mechanism of the electrolysis can be divided into three steps: (i) the
7	compounding reaction of TiO ₂ , Al ₂ O ₃ and CaO/(Ca ²⁺ , O ²⁻) to form compounds
8	CaTiO ₃ and Ca ₁₂ Al ₁₄ O ₃₃ ; (<i>ii</i>) the reduction of CaTiO ₃ to titanium sub-oxide Ti _x O _y and
9	titanium in sequence, and the reduction of Al_2O_3 and $xCaO \cdot yAl_2O_3$ (includes
10	$Ca_{12}Al_{14}O_{33}$ and $CaAl_4O_7$) to Al; (<i>iii</i>) the formation of TiAl ₃ through the reactions
11	between titanium and aluminum. The systematical analyses of the partially reduced
12	pellet demonstrate that the reduction process expands gradually from the surface to
13	the inner of the pellet. The produced $TiAl_3$ particles obtained from TiO_2/Al_2O_3
14	precursor possess a typical interconnected nodular microstructure. TiAl $_3$ and Ll $_2$
15	$Ti_{0.75}Fe_{0.25}Al_3$ can be obtained from titanium-rich slag/Al ₂ O ₃ mixture precursor. In
16	addition, the electrochemical preparation of porous $TiAl_3$ from TiO_2/Al_2O_3 mixture
17	precursor has also been proved by using the electrochemical deoxidation process.

18 Acknowledgments

This work was supported by the National Natural Science Foundation of China
(Nos. 51225401, 51304132, 51574146 and 51664005), the Science and Technology
Commissions of Shanghai Municipality (No. 14JC1491400), the National Basic
Research Program of China (No. 2014CB643403) and the Young Teacher Training

- 1 Program of Shanghai Municipal Education Commission.
- 2 **References**
- 3 [1] R.G. Reddy, X. Wen, I.C.I. Okafor, Diffusion of oxygen in the Al₂O₃ oxidation
- 4 product of TiAl₃, Metall. Mater. Trans. A 31A(2000) 3023-3028.
- 5 [2] Y. Watanabe, H. Eryu, K. Matsuura, Evaluation of three-dimensional orientation
- 6 of Al₃Ti platelet in Al-based functionally graded materials fabricated by a centrifugal
- 7 casting technique, Acta Mater. 49 (2001) 775-783.
- 8 [3] E.K.Y. Fu, R.D. Rawlings, H.B. Mcshane, Reaction synthesis of titanium
- 9 aluminides, J. Mater. Sci. 36 (2001) 5537-5542.
- 10 [4] F. Zhang, L. Lu, M.O. Lai, Grain growth and recrystallization of nanocrystalline
- 11 Al₃Ti prepared by mechanical alloying, J. Mater. Sci. 38 (2003) 613-619.
- 12 [5] T. Wang, J. Zhang, Thermoanalytical and metallographical investigations on the
- 13 synthesis of TiAl₃ from elementary powders, Mater. Chem. Phys. 99 (2006) 20-25.
- 14 [6] E.B. Tochaee, H.R.M. Hosseini, S.M.S. Reihani, Fabrication of high strength
- 15 in-situ Al-Al₃Ti nanocomposite by mechanical alloying and hot extrusion:
- 16 investigation of fracture toughness, Mater. Sci. Eng. A 658 (2016) 246-254.
- [7] Z. Liu, Q. Han, J. Li, Fabrication of in situ Al₃Ti/Al composites by using
 ultrasound assisted direct reaction between solid Ti powders and liquid Al, Powder
 Technol. 247 (2013) 55-59.
- [8] J. Qin, G. Chen, X. Ji, X. Song, N. Hu, F. Han, Z. Du, Effect of reaction
 temperature on the microstructures and mechanical properties of high-intensity
 ultrasonic assisted in-situ Al₃Ti/2024 Al composites, J. Alloy. Compd. 666 (2016)

- 1 58-64.
- 2 [9] Y. Fu, R. Shi, J. Zhang, J. Sun, G. Hu, Microstructure and mechanical behavior of
- a multiphase Al₃Ti-based intermetallic alloy, Intermetallics 8 (2000) 1251-1256.
- 4 [10] M.V. Karpets, Y.V. Milman, O.M. Barabash, N.P. Korzhova, O.N. Senkov, D.B.
- 5 Miracle, T.N. Legkaya, I.V. Voskoboynik, The influence of Zr alloying on the
- 6 structure and properties of Al_3Ti , Intermetallics 11 (2003) 241-249.
- 7 [11] T. Wang, Y. Lu, M. Zhu, J. Zhang, Identification of the comprehensive kinetics
- 8 of thermal explosion synthesis $Ti + 3AI \rightarrow TiAl_3$ using non-isothermal differential
- 9 scanning calorimetry, Mater. Lett. 54 (2002) 284-290.
- 10 [12] T. Wang, R.Y. Liu, M.L. Zhu, J.S. Zhang, Physical simulation of the effect of
- 11 sample volume on ignition temperature in the thermal explosion synthesis of Ti + 3Al
- 12 \rightarrow TiAl₃, Mater. Lett. 57 (2003) 2151-2155.
- 13 [13] Q. Zhang, B.L. Xiao, D. Wang, Z.Y. Ma, Formation mechanism of in situ Al₃Ti
- in Al matrix during hot pressing and subsequent friction stir processing, Mater. Chem.
 Phys. 130 (2011) 1109-1117.
- [14] M. Sujata, S. Bhargava, S. Suwas, S. Sangal, On kinetics of TiAl₃ formation
 during reaction synthesis from solid Ti and liquid Al, J. Mater. Sci. Lett. 20 (2001)
 2207-2209.
- [15] G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of
 titanium dioxide to titanium in molten calcium chloride, Nature 407 (2000) 361-364.
- 21 [16] A.M. Abdelkader, K.T. Kilby, A. Cox, D.J. Fray, DC voltammetry of
- electro-deoxidation of solid oxides, Chem. Rev. 113 (2013) 2863-2886.

20 / 27

1	[17] K.S. Mohandas, Direct electrochemical conversion of metal oxides to metal by
2	molten salt electrolysis: a review, Miner. Process. Extr. Metall. Rev. 122 (2014)
3	195-212.
4	[18] R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson,
5	K.K. Rao, R.J. Dashwood, In situ synchrotron diffraction of the electrochemical
6	reduction pathway of TiO ₂ , Acta Mater. 58 (2010) 5057-5062.
7	[19] C. Schwandt, D.J. Fray, Determination of the kinetic pathway in the
8	electrochemical reduction of titanium dioxide in molten calcium chloride,
9	Electrochim. Acta 51 (2005) 66-76.
10	[20] D.S.M. Vishnu, J. Sure, K.S. Mohandas, Corrosion of high density graphite
11	anodes during direct electrochemical de-oxidation of solid oxides in molten $CaCl_2$
12	medium, Carbon 93 (2015) 782-792.
13	[21] U.B. Pal, D.E. Woolley, G.B. Kenney, Emerging SOM technology for the green
14	synthesis of metals from oxides, JOM 53 (2001) 32-35.
15	[22] U.B. Pal, A.C. Powell IV, The use of solid-oxide-membrane technology for
16	electrometallurgy, JOM 59 (2007) 44-49.
17	[23] A. Martin, J.C. Poignet, J. Fouletier, M. Allibert, D. Lambertin, G. Bourgès,
18	Yttria-stabilized zirconia as membrane material for electrolytic deoxidation of
19	Tuna submitted incoma as memorane material for electrolytic deskidation of
	CaO–CaCl ₂ melts, J. Appl. Electrochem. 40 (2009) 533-542.
20	
20 21	CaO–CaCl ₂ melts, J. Appl. Electrochem. 40 (2009) 533-542.

1	[25] X. Zou, X. Lu, Z. Zhou, C. Li, Direct electrosynthesis of Ti ₅ Si ₃ /TiC composites
2	from their oxides/C precursors in molten calcium chloride, Electrochem. Commun. 21
3	(2012) 9-13.
4	[26] A. Krishnan, X.G. Lu, U.B. Pal, Solid oxide membrane (SOM) technology for
5	environmentally sound production of tantalum metal and alloys from their oxide
6	sources, Scand. J. metall. 34 (2005) 293-301.
7	[27] X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, Z. Zhou, Green electrochemical
8	process solid-oxide oxygen-ion-conducting membrane (SOM): direct extraction of
9	Ti-Fe alloys from natural ilmenite, Metall. Mater. Trans. B 43 (2012) 503-512.
10	[28] X. Zou, X. Lu, C. Li, Z. Zhou, A direct electrochemical route from oxides to
11	Ti–Si intermetallics, Electrochim. Acta 55 (2010) 5173-5179.
12	[29] X. Zou, X. Lu, Z. Zhou, C. Li, W. Ding, Direct selective extraction of titanium
13	silicide Ti_5Si_3 from multi-component Ti-bearing compounds in molten salt by an
14	electrochemical process, Electrochim. Acta 56 (2011) 8430-8437.
15	[30] X. Zou, K. Zheng, X. Lu, Q. Xu, Z. Zhou, Solid oxide membrane-assisted
16	controllable electrolytic fabrication of metal carbides in molten salt, Faraday Discuss.
17	190 (2016) 53-69.
18	[31] D. Wang, X. Jin, G.Z. Chen, Solid state reactions: an electrochemical approach in
19	molten salts, Annu. Rep. Prog. Chem., Sect. C 104 (2008) 189-234.
20	[32] W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, D. Wang, Verification and
21	implications of the dissolution-electrodeposition process during the electro-reduction

of solid silica in molten $CaCl_2$, RSC Adv. 2 (2012) 7588-7593.

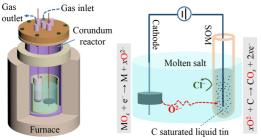
22 / 27

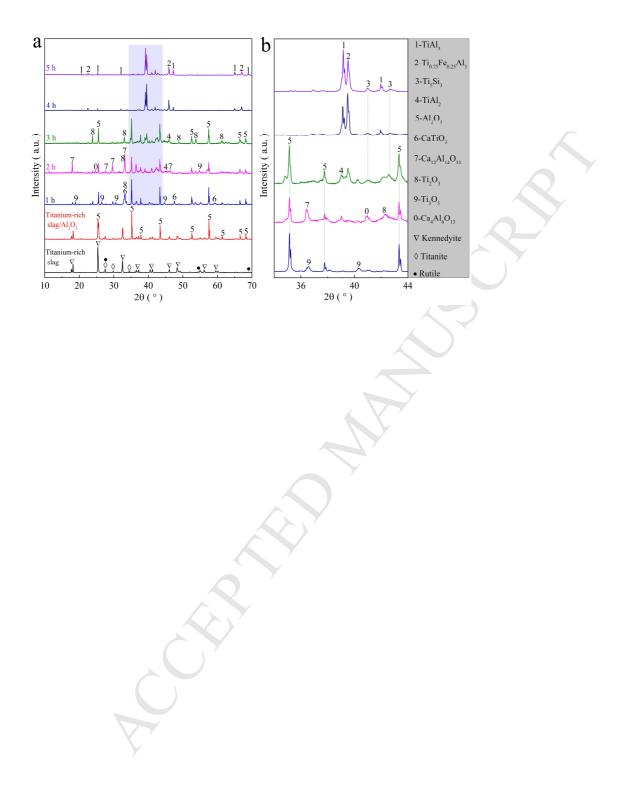
1	[33] Y. Deng, D. Wang, W. Xiao, X. Jin, X. Hu, G.Z. Chen, Electrochemistry at
2	conductor/insulator/electrolyte three-phase interlines: a thin layer model, J. Phys.
3	Chem. B 109 (2005) 14043-14051.
4	[34] W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, G.Z. Chen, Electrochemically driven
5	three-phase interlines into insulator compounds: electroreduction of solid SiO_2 in
6	molten CaCl ₂ , Chemphyschem 7 (2006) 1750-1758.
7	[35] D. Hu, W. Xiao, G.Z. Chen, Near-Net-Shape Production of Hollow Titanium
8	Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in
9	Molten Salts, Metall. Mater. Trans. B 44 (2013) 272-282.
10	[36] H.Q. Che, Q.C. Fan, Microstructural evolution during the ignition/quenching of
11	pre-heated Ti/3Al powders, J. Alloy. Compd. 475 (2009) 184-190.
12	[37] X. Jiao, X. Wang, X. Kang, P. Feng, L. Zhang, J. Wang, F. Akhtar, Hierarchical
13	porous $TiAl_3$ intermetallics synthesized by thermal explosion with a leachable
14	space-holder material, Mater. Lett. 181 (2016) 261-264.
15	[38] D.T.L. Alexander, C. Schwandt, D.J. Fray, Microstructural kinetics of phase
16	transformations during electrochemical reduction of titanium dioxide in molten
17	calcium chloride, Acta Mater. 54 (2006) 2933-2944.
18	[39] D.T.L. Alexander, C. Schwandt, D.J. Fray, The electro-deoxidation of dense
19	titanium dioxide precursors in molten calcium chloride giving a new reaction
20	pathway, Electrochim. Acta 56 (2011) 3286-3295.
21	[40] K. Dring, R. Dashwood, D. Inman, Voltammetry of titanium dioxide in molten
22	calcium chloride at 900 °C, J. Electrochem. Soc. 152 (2005) E104-E113.

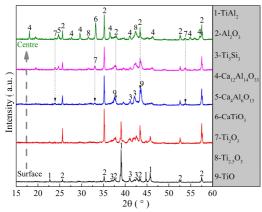
23 / 27

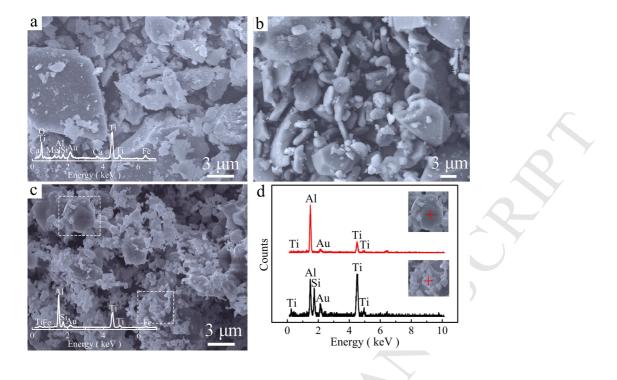
1	[41] R.O. Suzuki, M. Aizawa, K. Ono, Calcium-deoxidation of niobium and titanium
2	in Ca-saturated CaCl ₂ molten salt, J. Alloy. Compd. 288 (1999) 173-182.
3	[42] M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, G.Z. Chen, Extraction of titanium
4	from different titania precursors by the FFC Cambridge process, J. Alloy. Compd. 420
5	(2006) 37-45.
6	[43] S. Tan, T. Örs, M.K. Aydınol, T. Öztürk, İ. Karakaya, Synthesis of FeTi from
7	mixed oxide precursors, J. Alloy. Compd. 475 (2009) 368-372.
8	[44] X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, Electrochemical extraction of
9	Ti_5Si_3 silicide from multicomponent Ti/Si-containing metal oxide compounds in
10	molten salt, W. Ding, J. Mater. Chem. A 2 (2014) 7421-7430.
11	[45] K. Chen, Y. Hua, C. Xu, Q. Zhang, C. Qi, Y. Jie, Preparation of TiC/SiC
12	composites from Ti-enriched slag by an electrochemical process in molten salts,
13	Ceram. Int. 41 (2015) 11428-11435.
14	
15	
16	
17	
18	
19	
20	
21	
22	

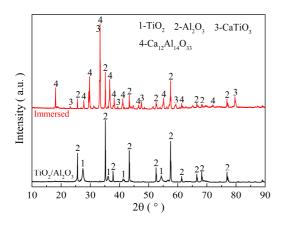
Tabl	e and Figure Ca	ptions						
1	Table 1 The	e chemi	cal con	positio	on of the	titaniur	n-rich slag (v	wt %).
	Components	TiO ₂	SiO ₂	CaO	Al ₂ O ₃	MgO	Total FeO _x	MnO
	Content	70.74	6.46	2.58	2.72	3.66	12.56	1.28
Fig.	1. The schematic	: illustra	tion of	the exp	periment	tal appa	ratus and the	SOM-assi
elect	ro-deoxidation p	rocess.					5	
Fig.	2. XRD pattern	s of the	e TiO ₂ /	Al ₂ O ₃	mixture	precur	sor before a	nd after be
imm	ersed into molten	n CaCl ₂	for 2 h.		2			
					Ż			
Fig.	3. XRD patterns	s of the	produ	cts obt	ained fr	om the	TiO ₂ /Al ₂ O ₃	mixture po
after	being electrolyze	ed for di	ifferent	times.				
Fig.	4. (a) The sche	matic i	llustrati	ion of	the part	ially re	duced TiO ₂ /.	Al ₂ O ₃ mix
pelle	t which was first	tly grou	nd and	then a	nalyzed	by XR	D; (b) XRD	patterns of
parti	ally reduced pell	et from	the su	rface to	the cer	ntre; (c)	a schematic	illustratio
the p	hase composition	n of the	partiall	y reduc	ed pelle	et.		
Fig.	5. (a) SEM ima	ge of tl	ne sect	ion of	the TiO	$_2/Al_2O_3$	mixture pel	let after be
-	5. (a) SEM ima	-					-	

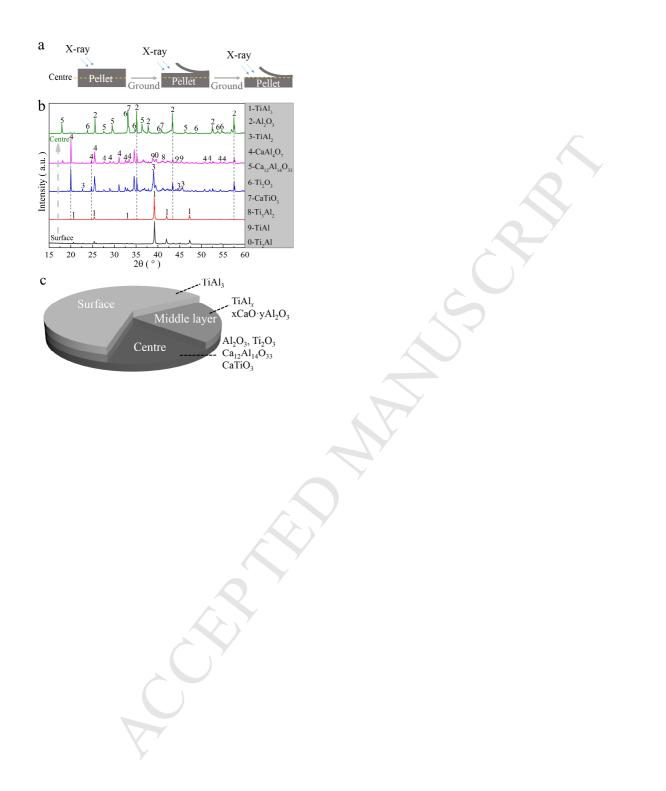

1	SEM image; (g) (h) SEM images of the outer part (g) and the inner part (h) of the
2	partially reduced pellet.
3	
4	Fig. 6. (a) SEM image of the product obtained from the TiO_2/Al_2O_3 mixture pellet
5	after 6 h electrolysis, and the inset is the EDX spectrum measured over the SEM
6	imaging area; (b) the enlarged view of the corresponding region marked in (a).
7	
8	Fig. 7. The schematic illustration of the electrochemical preparation of porous $TiAl_3$
9	from TiO_2/Al_2O_3 mixture precursor with the use of NaCl as the space-holder material.
10	
11	Fig. 8. (a) SEM image of the electrochemically prepared $TiAl_3$ without the addition of
12	NaCl; (b) and (c) SEM images of the electrochemically prepared porous $TiAl_3$ with
13	the addition of NaCl; (d) the enlarged view of the corresponding region marked with
14	rectangle in (c).
15	
16	Fig. 9. The schematic illustration of the reaction mechanism of the electrochemical
17	deoxidation of TiO_2/Al_2O_3 mixture precursor to $TiAl_3$ intermetallic.
18	
19	Fig. 10. (a) XRD patterns of the initial titanium-rich slag and the mixed
20	titanium-rich/Al ₂ O ₃ before electrolysis, as well as the products obtained from
21	titanium-rich slag/Al ₂ O ₃ mixture pellet after being electrolyzed for different times; (b)

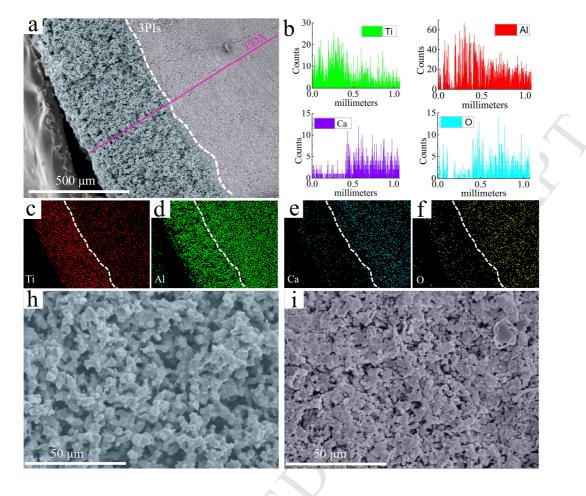

the detailed XRD patterns corresponding to the area marked in (a).

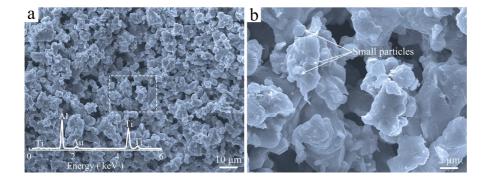

1

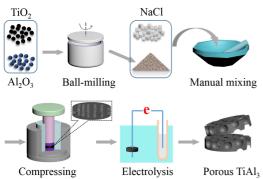

- Fig. 11. XRD patterns the partially reduced titanium-rich/Al₂O₃ mixture pellet from
 the pellet's surface to its centre.
- 4

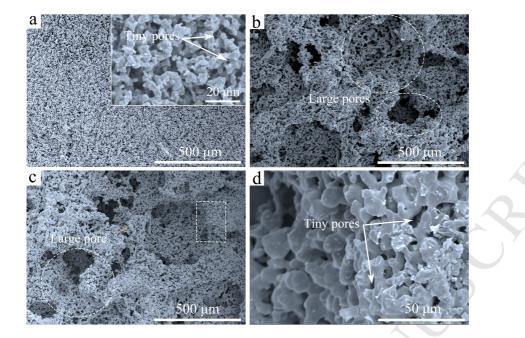

Fig. 12. (a) SEM image of initial titanium-rich slag, and the inset is its corresponding
EDX spectrum; (b) SEM image of the mixed titanium-rich slag/Al₂O₃; (c) SEM image
of the product obtained from the titanium-rich slag/Al₂O₃ mixture pellet after being
electrolyzed for 5 h, and the inset is the corresponding EDX spectrum; (d) EDX
spectra measured at the corresponding positions marked with rectangles in (c).

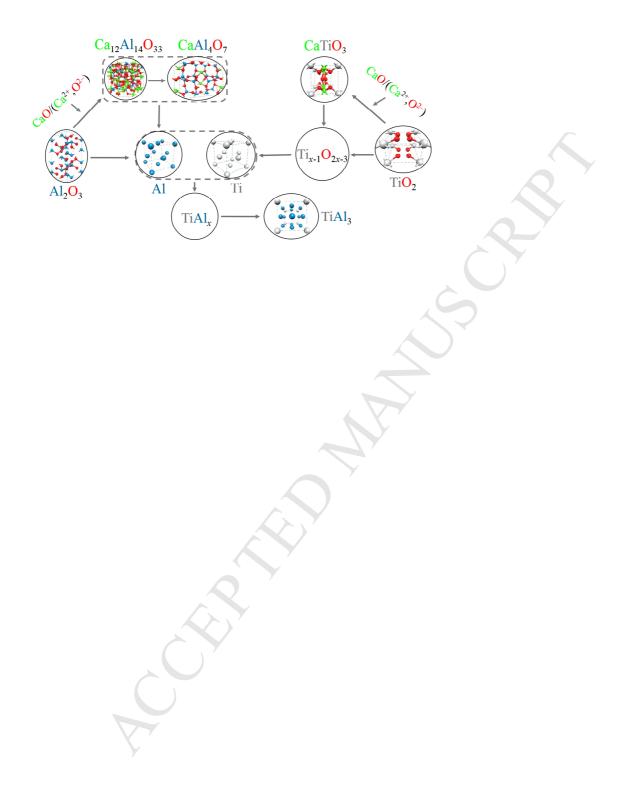









CER



June of the second seco

g Electrolysis Porous TiAl₃

Highlights

(*i*) Direct electrosynthesis of TiAl₃ from complex Ti/Al-containing compounds has been investigated.

(*ii*) The reaction mechanism and the detailed reduction process have been determined.

(*iii*) Porous TiAl₃ has been produced using the solid oxide oxygen-ion-conducting membrane (SOM) process.