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ABSTRACT 

Elimination of inadvertent binding is crucial for inhibitor design targeting conserved protein 

classes like kinases. Compounds in clinical trials provide a rich source for initiating drug 

design efforts by exploiting such secondary binding events. Considering both aspects, we 

shifted the selectivity of tozasertib, originally developed against AurA as cancer target, 

towards the pain target TrkA. First, selectivity-determining features in binding pockets were 

identified by fusing interaction-grids of several key and off-target conformations. A focused 

library was subsequently created and prioritized using a multi-objective selection scheme that 

filters for selective and highly active compounds based on orthogonal methods grounded in 

computational chemistry and machine learning. 18 high-ranking compounds were synthesized 

and experimentally tested. The top-ranked compound has 10,000-fold improved selectivity 

versus AurA, nanomolar cellular activity and is highly selective in a kinase panel. This was 

achieved in a single round of automated in silico optimization, highlighting the power of 

recent advances in computer-aided drug design to automate design and selection processes. 

Keywords: automated compound optimization, machine learning, kinases, selectivity, drug 

design, small molecules 
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INTRODUCION 

The focus of R&D efforts on kinases for more than two decades has resulted in many kinase 

inhibitors with known bioactivity and safety profiles. These compounds provide a great 

source for initiating new compound design efforts, as for instance many compounds inhibit 

more than one molecular target and can have a therapeutic impact via so far unknown or 

ignored mechanisms.1,2 The latter is particularly true for inhibitors that bind to the highly 

conserved ATP-binding pocket of kinases and thus, often bind unintentionally also to 

secondary targets. Inhibiting multiple targets can result in beneficial synergistic therapeutic 

effects, but also could lead to unwanted side effects.3 

Hence, specifically switching off the activity against undesired targets, while maintaining or 

even improving the affinity to the key target, is of great importance, especially when treating 

non-life-threatening diseases such as inflammation or pain. Here, we report the automated 

design of improved inhibitors of the tropomyosin receptor kinase A (TrkA) by jointly 

employing a de novo design platform and a multi-objective selection scheme that considers 

selectivity and activity aspects as predicted by novel in silico tools. The selection strategy 

aimed to shift the selectivity of a particular kinase inhibitor from its original key target 

towards another validated kinase and takes in addition the selectivity profile against the 

kinome into account. The initial target−compound pair (i.e., TrkA and tozasertib) was chosen 

by mining the available kinase profiling data 4–6 for kinases inhibitors that had entered clinical 

trials but also inhibit non-cancer targets. The corresponding protein binding sites were 

subsequently analyzed with respect to selectivity-determining features to further prioritize 

target-compound pairs (see Experimental Section for details). The original key target of 

tozasertib is Aurora kinase A (AurA), whose inhibition has common adverse effects such as 

neutropenia and hematological toxicities.7 In turn, the profiling data revealed that tozasertib 

also inhibits TrkA, which is a validated drug target for cancer and pain.8 Thus, inverting the 
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selectivity of tozasertib from AurA towards TrkA will likely result in a new compound series 

with reduced side effects and, hence is of potential interest for pain treatment. 

 

RESULTS AND DISCUSSION 

Identification of selectivity-determining features in TrkA  

The selectivity hot-spots in the TrkA binding site were initially identified by fusing atom-

based interaction energy grids of several TrkA, Aurora A and B structures into one content-

rich representation of target specific sub-pockets (i.e., energy grids representing the 

conformational flexibility of the key and off-targets were calculated, respectively, and finally 

fused to one representation via difference rules; see Experimental Section and Supplementary 

Information for details including validation results). The resulting ‘selectivity grids’ highlight 

three areas of interest for compound optimization: Two are favorable hydrophobic sub-

pockets for TrkA-selectivity adjacent to the gatekeeper residue and enclosed between the Asp 

residue of the DFG-motif and a Phe residue of the glycine-rich loop (G-loop), respectively, 

and one is an unfavorable pocket for TrkA-selectivity that overlaps with the cyclopropyl 

moiety of tozasertib (Figure 1). 

Virtual compound library design 

The identified selectivity-determining areas subsequently guided the compound library design 

where two parts of tozasertib were enumerated using commercially available drug-like 

fragments and retrosynthetic rules (Figure 2). The resulting compound set A contains 7404 

possible modifications of the amino-5-methylpyrazole that forms hydrogen bonds with the 

hinge and extends towards the gatekeeper residue, while set B contains 6326 possible 

modifications of the N-(4-aminothiophene)cyclopropylcarboxamide. It should be noted that in 

set A the cyclopropylcarboxyamide moiety was removed to avoid potential intramolecular 
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steric clashes, and that in set B modifications extend towards the DFG-motif but can 

potentially also form interactions with the gatekeeper residue. The resulting library was 

prioritized using a multi-objective compound selection scheme that filters for selective and 

highly active compounds (Figure 3). All employed prediction tools showed good prediction 

power in an initial validation on project-specific data (see Supplementary Information for 

details). 

Selectivity and activity optimization 

Initially, binding poses of compounds in sets A and B were generated with Glide SP.9 

Compounds were removed for reasons of either poor docking scores (> –7.5 kcal/mol), wrong 

orientation, or lack of key interactions (Experimental Section). In the next step (Figure 3), 

compounds with an unfavorable selectivity profile were filtered out. This was accomplished 

via machine learning-based activity prediction models10 that were used I) to remove 

promiscuous compounds (i.e., predicted to be active at IC50 of 500 nM on ≥ 20 kinases) and 

II) those that are predicted to be highly active (IC50 < 10 nM) on Aurora A, B, or C kinases. 

The selectivity filtering was complemented by a structure-based procedure employing the 

TrkA−Aurora ‘selectivity grids’ for rescoring of docking solutions. The remaining 

compounds in both sets (A: 592; B: 1145) were finally prioritized for highly active 

compounds using two complementary machine learning (ML) technologies. All compounds 

were evaluated by an ‘MMP/ML’ approach,11 which is trained on fragment-based Matched 

Molecular Pairs (MMPs), and quantifies compound activity differences. In addition, 

compounds in the A set interacting with the Phe gatekeeper were additionally evaluated by a 

hybrid QM/ML pipeline. This pipeline is trained on high-level quantum mechanical (QM) 

calculations to quantify ligand−gatekeeper interactions and rescores the top hits in a second 

step with fragment molecular orbital calculations, taking the entire binding pocket into 

consideration.12,13 
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The final selection of compounds was obtained in an automated fashion based on the scoring 

ranks (i.e., without any manual selection beside synthesizability criteria). 18 of the top 

prioritized compounds were synthesized and tested for inhibition on TrkA and AurA 

(Supplementary Table S1-S2), nine each from sets A (a1-a9) and B (b1-b9). The synthesized 

compounds were from the top ~50 compounds from sets A and B, respectively. This yield 

was achieved by considering synthetic pathway and building block availability in the library 

design.  

Experimental testing on TrkA and AurA 

An initial screening via binding assays revealed that 4 out of 18 tested compounds (Table 1) 

have an improved activity/selectivity profile compared to the starting compound tozasertib 

(i.e. a1, a4, b7 and b8; Figure 3) and originate from both sets A and B. Compound a1 shows 

the best overall improvement compared to tozasertib with slightly higher TrkA affinity and 

almost complete loss of the AurA activity (Table 2). Compound a1 was highly scored with 

both orthogonal ML methods used for the final ranking (ranked 1 with MMP/ML and 3 with 

QM/ML). Predicted binding modes (Figure 1) indicate that, in contrast to tozasertib, a1 forms 

an additional π−π-interaction with the gatekeeper residue Phe in TrkA via the fluorophenyl 

moiety and does not occupy the adjacent unfavorable area (occupied by the 

cyclopropylcarboxamide group of tozasertib). This trend is consistent with reference 2 (i.e., 

tozasertib without cyclopropylcarboxamide), which shows improved Trka−AurA selectivity 

(∆∆pKd = 0.9) and thus underscores the importance of avoiding this unfavorable area (Table 

2). Compound a4 also has a slightly improved TrkA affinity but retains AurA binding. In 

contrast to the cyclopentyl of a4, the polarized fluorophenyl of a1 seems to make less 

favorable interactions with the Leu gatekeeper in AurA, possibly explaining the higher 

selectivity of compound a1 compared to a4. Based on the primary screening results it is 

apparent that in the A set all triazole-containing compounds are inactive on both TrkA and 

Page 6 of 37

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 

AurA (Supplementary Table S1), whereas modifications containing a pyrazole hinge binder 

in general show activity against TrkA as well as TrkA−AurA selectivity at 100 nM screening 

concentration. Interestingly, even a small extension toward the gatekeeper, such as the tert-

butyl moiety in compound a8 (Table S1), leads to a complete loss of affinity to AurA. This 

underlines that bulky moieties are less tolerated by the AurA binding pocket and confirms the 

vicinity of the gatekeeper as selectivity-determining region. 

The two compounds b7 and b8 are highly similar and both introduce an additional methylene-

linker between a sulfur and a para-substituted phenyl ring (para-fluoro in b7 and para-methyl 

in b8). The phenyl rings in both compounds are predicted to stack with Phe521 from the G-

loop, potentially benefiting from a more favorable orientation provided by the additional 

methylene-linker group compared to tozasertib. The higher activity of b7 against TrkA 

indicates that the electron-withdrawing fluoro-substitution of b7 increases the strength of the 

stacking interaction, compared to the electron-donating methyl-substitution of b8. The 

primary screening results of the B set overall indicate a positive effect of a methylene-linker 

between the ligand scaffold and the terminal aryl as well as a para-substitution on the phenyl 

ring for TrkA−AurA selectivity (Table S2).  

The best compound from each set was further characterized in a cell-based functional assay 

revealing low nanomolar cellular potency for both compounds (a1: IC50 = 26 nM; b7: IC50 = 

23 nM). This indicates that the compounds are able to reach the intracellular kinase domain 

and thus permeate through the cellular membrane. 
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Kinase profiling 

To evaluate the overall selectivity profile of all four hit compounds, profiling on a panel of 92 

wild-type kinases and 5 additional variants was conducted at 100 nM screening concentration. 

The kinase selectivity of compound a1 is very high, with only six kinases (excluding TrkA) 

inhibited, leading to a selectivity score of S(35%) = 0.08 and S(10%) = 0.04 (Figure 4; Table 

S3). The remaining three hit compounds show slightly lower kinome selectivity (S(35%) ≈ 

0.2; Figure S1). At a concentration of 1 µM, a1 still inhibits only 19 kinases, which is in line 

with the initial filtering step via the in silico kinase profiling platform that has excluded 

promiscuous compounds (Figure S2). It is also noteworthy that all four hit compounds are 

inactive on AurB, which was part of the off-target ensemble in the selectivity optimization 

scoring via the ‘selectivity grids’. Compound a1 displays the most unique binding profile and 

is even more selective than the starting compound tozasertib.  

The kinases inhibited by compound a1 include, like for tozasertib, FLT3 and RET (both 

common cancer targets), but also the two other Trk isoforms TrkB and TrkC, rendering a1 a 

pan-Trk inhibitor with excellent selectivity against other kinases. Compared to a1, b8 is less 

active on TrkB and TrkC and inactive on PDGFRb, pointing to the potential value of fusing 

both modifications in the future. Finally, hematological toxicities such as thrombocytopenia, 

anemia and neutropenia are typically associated with ABL and JAK2 inhibitors.14,15 Thus, it is 

encouraging that compared to tozasertib, compound a1 is also inactive against all tested 

ABL1 variants (i.e. two mutants and the (un)phosphorylated wild type) as well as Janus 

kinases (Figure 4). Overall, the high kinome selectivity of a1, together with the fact that a1 

is, compared to tozasertib, inhibiting fewer kinases with target-associated toxicity (i.e. AurA 

and ABL1) makes a1 an interesting candidate for further studies. Many Trk inhibitor 

scaffolds have been reported in publications and patent applications and are summarized in 

excellent reviews on Trka inhibitors.8,16–19 It is noteworthy that the aminopyrazolyl-
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pyrimidine scaffold in the presented compound series has been already reported previously in 

the pan-Trk inhibitor AZ-23.20 However, AZ-23 has a significantly different substitution 

pattern on the pyrimidine ring (i.e. amino linker at position 2 and unsubstituted position 6). 

Role of TrkA for pain treatment and current status of TrkA inhibitor design 

TrkA is a high affinity receptor for the Nerve Growth Factor (NGF) and widely expressed on 

peripheral pain sensing neurons. Activation of TrkA can lead to pathogenesis of many 

difficult to treat human pain conditions such as osteoarthritis and cancer-related types of pain. 

Loss-of-function TrkA variants are associated with congenital insensitivity to pain.21 

Furthermore, in vivo TrkA inhibition studies indicate pain suppression effects 22,23 underlining 

the promise of TrkA as a pain target. Other selective pan-Trk inhibitors already exist 24–27 and 

show promise for the treatment of acute and chronic pain. Studies with an allosteric TrkA 

inhibitor indicate that TrkA specific inhibitors can be expected to have an improved safety 

profile since pan-Trk inhibitors have a hyperphagic effect.8 Reaching isoform selectivity vs 

TrkB and TrkC in the ATP-binding site is difficult as only two residues differ among the three 

isoforms (i.e. two Arg in TrkA are replaced by Lys in TrkB and TrkC)8 but might be tackled 

in future improvements with modifications of the so far unexplored N-methylpiperazine 

moiety that form e.g. cation−π interactions with one of the arginines.28  
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CONCLUSION 

Starting from a compound that reached clinical trials for cancer indications, we have designed 

a new series of TrkA inhibitors by employing a multi-objective selection scheme that filters 

for selective and highly active compounds. In agreement with the design objectives, the top 

compound a1 is highly active on TrkA, overall highly selective in a kinase panel, and − most 

importantly from a design perspective − has a 10,000-fold improved selectivity against the 

selected off-target AurA. Nanomolar cellular potency against TrkA further underlines the 

potential value of a1 as an advanced hit compound for the treatment of acute and chronic pain 

or other conditions resulting from abnormal TrkA activity such as inflammation and cancer.  

Promiscuous interactions between drugs and proteins can cause adverse effects.29 Thus, being 

able to switch off undesired targets in a single round of automated in silico optimization 

underlines the power of recent advances in computer-aided drug design technologies, 

especially those employing machine learning techniques such as the virtual kinase profiling 

platform10 or the MMP/ML approach.11 Noteworthily, compound a1 was the highest-ranking 

compound in the filtering pipeline (Supplementary Table S1). The initially employed 

‘selectivity grids’ pointed to selectivity-determining features in the TrkA structure and 

thereby guided the subsequent compound library design. Furthermore, they were used to filter 

for TrkA−Aurora selective compounds. Other successful in silico-driven compound design 

efforts considering pharmacological profiles include those that identified new targets30,31 or 

guided compound optimization.29 The uniqueness of our study is that we navigated through 

the highly conserved and large target class of kinases instead of seeking predictions across 

more diverse protein classes. Overall, the discovery platform described herein is widely 

applicable for compound optimization for target classes with common selectivity issues but 

can be also generally employed for switching off undesired activities in order to reduce 

adverse effects.32  
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EXPERIMENTAL SECTION 

Computational Methods 

Details about the employed computational methods are described below and related validation 

results in the Supplementary Information. Kinome tree figures were created using KinMap.33 

Selection of initial target-compound pair. Mining kinase inhibitors in clinical trials 

(obtained from the data sources ChEMBL and clinicaltials.gov) pointed to TrkA as drug 

target for pain treatment, while mining bioactivity data of a curated ChEMBL v22 4 kinase 

inhibitor panel and other kinase profiling data sets 3,5,6 pointed to the Aurora inhibitor 

tozasertib as promising starting compound. 

Identification of selectivity determining features in TrkA. PDB structures of TrkA, AurA, 

and AurB kinases in the DFG-in state were used for the generation of the selectivity grids 

(Table 3; i.e. 4 PDB structures of TrkA were used as the key target set, while 67 AurA and 2 

AurB PDB structures constituted the off-target set). All kinase structures were aligned to 

4pmt using PyMOL, considering only binding site residues (defined as all residues within 5 Å 

of any bound ligand). Atom-based energy grids were calculated for the aligned structures 

using AutoGrid (version 4.2.5),34 a grid spacing of 0.375 Å, and covering all ligand atoms in 

the PDB structures. Subsequently, energy grids were fused into single key and off-target grids 

by taking the minimum (median) interaction energy value at each point across the respective 

grid ensemble for scoring (for visualization). Extreme energy values from steric clashes were 

capped at a maximum value corresponding to the absolute value of the most favorable 

interaction energy. Finally, the key and off-target fused grids were combined using fusion 

rules.35 An aromatic carbon grid representation (A probe) was used to identify selective 

hydrophobic sub-pockets, while the acceptor oxygen (OA), acceptor nitrogen (NA), and 

donor hydrogen (HD) probes were used to identify polar sub-pockets. 
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12 

Virtual compound library design. A virtual compound library was designed by modification 

of tozasertib via systematic replacements of 3-methylpyrazole (compound set A) and N-(4-

aminothiophene)cyclopropylcarboxamide (compound set B), using the MolPort building 

block database as source of fragments. For set A, all primary amines connected to an aromatic 

N with one further connection were extracted and further narrowed down to fragments with ≤ 

15 heavy atoms and exactly one amino group. For set B, aromatic thiole containing fragments 

were combined with acyl chloride containing fragments. Here, aromatic thiols were initially 

filtered to keep only those with ≤ 15 heavy atoms and one amino group while acyl chlorides 

were filtered to keep only those with ≤ 10 heavy atoms and no aromatic rings. The resulting 

fragments in set A were combined with the remaining part of tozasertib without the 

cyclopropylcarboxamide moiety to avoid potential intramolecular steric clashes. All virtual 

compounds were finally filtered using the following cutoffs: Molecular weight ≤ 600 Da, logP 

≤ 5, number of hydrogen bond donors ≤ 5 and acceptors ≤ 12. 

Prediction of binding modes and structure-based screening via ‘selectivity grids’. The 

four pre-aligned TrkA PDB structures (Table 3) were processed using the Protein Preparation 

Wizard in the Schrödinger Suite (release 2016-4, Schrödinger, LLC, New York, NY, 2016) 

by adjusting protonation, optimizing hydrogens, and restricted geometry optimization using 

the OPLS3 force field. Docking grids were generated for the four protein models using the 

Glide program,9 including a hydrogen bond constraint to the backbone NH of the Met592 

hinge residue. The ensemble docking run employed the standard precision protocol (Glide SP) 

with enhanced conformational sampling and increasing the number of initial poses to 50000. 

For each virtual ligand, only the best pose as judged by the Glide SP score, was kept for 

subsequent analysis along with the corresponding protein configuration. To filter the virtual 

library further, compounds were excluded if: (1) the top pose had a docking score > –7.5 

kcal/mol, (2) it had a wrong binding orientation, e.g. the piperazine moiety is buried rather 
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than being solvent-exposed as in tozasertib, or (3) it lacked key tozasertib-TrkA interactions; 

namely, Phe589 contact, H-bond to Met592, contact to Asp668 in the DFG motif, and a 

favorable contact to either Arg654 or Arg673. Finally, the top poses of the remaining 

compounds were re-scored by interpolating the energy values from the corresponding TrkA-

Aurora selectivity grids to estimate their selectivity propensity. 

Filtering of selective compound via in silico kinase profiling platform. The employed 

platform contains machine learning-based activity prediction models for small molecules 

which were trained on chemical fingerprints and a large and diverse data set of kinase 

inhibitor data.10 The technology was used in a two-step filtering procedure: (1) to remove 

promiscuous compounds and (2) to filter with respect to selected off-target activity.10 In the 

first step, compounds were removed that were predicted to be active on ≥ 20 kinases with a 

probability of ≥ 0.7 in high-quality models (132 models with AUC values ≥ 0.8; activity 

threshold: IC50 = 500 nM). In the second step, prediction models were trained for Aurora 

kinases A, B, and C employing an activity threshold of IC50 = 10 nM to remove compounds 

that are highly active on these off-targets. Compounds were finally removed that were 

predicted to be active with a probability of ≥ 0.7 on either of the three Aurora models. 

Prioritization of active compounds via MMP/ML and a QM/ML pipeline. Two 

complementary machine learning technologies were employed for prioritizing active 

compounds. (1) a MMP/ML approach11 which is trained on Matched Molecular Pairs (MMPs) 

as descriptors, and considers the entire compound for ranking of compound in sets A and B 

and (2) a hybrid QM/ML pipeline which is trained on quantum mechanical calculations and 

used to optimize the Phe-gatekeeper interaction of compounds in set A. 

MMP/ML was trained by obtaining all compounds with reported IC50, Ki or Kd measurements 

against TrkA from ChEMBL.4,11 MMPs were extracted using an in-house implementation 
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based on retrosynthetic rules (BRICS36) and encoded as concatenated Morgan fingerprint 37 

consisting of the static core that is shared between the two molecules forming an MMP and 

both fragments F1 and F2 (describing the transformation).11 A regression model was trained 

on 23,000 fragment-based MMPs using a Deep Neural Network to predict the change in 

activity (∆pIC50) associated with each MMP. Model validation was done using a “new 

fragments” scenario, where fragments in the individual test sets inside a 5-fold cross 

validation were new to the machine learning model (validation results see Supplementary 

Information). The final prediction of change in activity was estimated by employing the 

median ∆pIC50 of all five prediction models. 

For the hybrid QM/ML pipeline, high-level QM calculations at the B3LYP-D3/6-31+G** 

level were used to calculate pair interaction energies (PIE) between the gatekeeper residue 

and a training set of compounds consisting of (1) 30 compounds selected from set A and (2) 

50 benzyl-derivatives of tozasertib (Table S4). The benzyl-derivatives cover several 

substituents and heterocycles (e.g., halogens, alkyls, and pyridyls) to model various 

substituent effects. For each compound, the PIE was calculated from the gatekeeper-

compound dimer and the respective monomeric systems: ��� = ����	
 − ����	�		�	
 +

����������. Binding modes for set A were obtained via docking calculation, while the 

benzyl-derivatives were modeled manually in the binding pocket starting from the tozasertib 

binding mode and each minimized in the OPLS3 force field using Maestro from the 

Schrödinger suite.38 QM calculations were conducted using GAMESS-US.13 Fast Hartree–

Fock calculations at the HF/6-31+G** level were used to derive electronic features (dipole 

moment, quadrupole moment, total self-consistent field energy) of the 80 ligands in the 

training set and the compounds in set A. A Random Forest regression model predicting the 

PIE from electronic ligand features was generated based on the training set using scikit-learn39 

and employed to prioritize the compounds from set A with respect to PIEs with the gatekeeper 
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residue. Hartree–Fock calculations and PIE predictions were applied on the interacting 

fragment only, i.e., not the entire ligand. The top 50 compounds were further characterized 

considering the entire binding pocket by fragment molecular orbital (FMO) 12 calculations at 

the MP2/6-31(+)G* level (using docked binding poses and a polarizable continuum solvation 

water model) and sorted according to the sum of PIEs. FMO calculations were set up using 

Facio 40 and calculated using GAMESS-US.13 

Chemistry 

General synthetic route for tozasertib (a-d) and the compound sets A (a, i-j) and B (a, e-g) is 

described in Scheme S1.
a 

 

a Reagents and conditions: (a) 3-chloroperoxybenzoic acid, DCM, r.t., 3 h, yield: 95%; (b) N-

(4-mercaptophenyl)cyclopropanecarboxamide, TEA, CH3CN, 80 °C, 3-10 h, yield: 70%; (c) 

5-methyl-1H-pyrazol-3-amine, DIPEA, DMF, 95 °C, 16 h, yield: 44%; (d) amine (1-
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methylpiperazine or morpholine), DMF, DIPEA, 90 °C, 6-12 h, yield 43%; (e) corresponding 

thiol, TEA, CH3CN, 80 °C, 3-10 h, yields: 20-85%; (f) 5-methyl-1H-pyrazol-3-amine, 

DIPEA, dioxane, 95 °C, 3-6 h, yields 50-75%; (g) amine (1-methylpiperazine or morpholine), 

DMF, DIPEA, 90 °C, 6-12 h, yields: 30-70%; (h) thiophenol, TEA, THF, 50 °C, yields: 20-

85%; (i) corresponding amine, DIPEA, dioxane, 95 °C, 3-6 h, yields: 50 – 75%; (j) amine (1-

methylpiperazine or morpholine), DMF, DIPEA, 90 °C, 6-12 h, yields: 30 – 70%. 

Final yields: tozasertib: 31%, reference 2: 41%, a1: 49%, a2: 37%, a3: 51%, a4: 31%, a5: 

38%, a6: 51%, a7: 64%, a8: 34%, a9: 48%, b1: 58%, b2: 41%, b3: 53%, b4: 48%, b5: 51%, 

b6: 32%, b7: 39%, b8: 41%, b9: 49%. All compounds were synthesized under contract by 

Enamine Ltd. Purification was performed using HPLC (H2O – MeOH; Agilent 1260 Infinity 

systems equipped with DAD and mass-detectors. Waters Sunfire C18 OBD Prep Column, 

100Å, 5 µm, 19 mm X 100 mm with SunFire C18 Prep Guard Cartridge, 100Å, 10 µm, 19 

mm X 10 mm).  

Compound characterization was done with 1H NMR and LC/MS. 1H NMR was performed 

using Bruker AVANCE DRX 500 and Varian UNITYplus 400. LC/MS was performed using 

Agilent 1100 Series LC/MSD system with DAD\ELSD and Agilent LC\MSD VL (G1956A), 

SL (G1956B) mass-spectrometer and Agilent 1200 Series LC/MSD system with DAD\ELSD 

and Agilent LC\MSD SL (G6130A), SL (G6140A) mass-spectrometer. Both systems used 

Zorbax SB-C18 1.8 µm 4.6x15mm Rapid Resolution cartridge. Mobile phase was А – 

acetonitrile, 0.1% formic acid, and В – water (0.1% formic acid) with gradient (0 min – 100% 

B, 0.01 min – 100% B, 1.5 min - 0% B, 1.8 min - 0% B, 1.81 min - 100% B) and flow rate of 

3 ml/min. Detection was performed using APCI ionization mode and scan range of m/z 80 - 

1000. The purities of all final products of the two reference compounds (tozasertib, reference 

2) and of 14 out of 18 reported compounds were found to be >95%. The remaining 4 
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compounds (i.e. a2, b2, b4, b8) have a purity between 90 and 95%. All reported compounds 

passed common PAINS flags,41 as calculated using RDKit. 

Experimental Assays 

The primary screen (TrkA at 10 and 100 nM; AurA at 100 nM and 1 µM concentration), Kd 

measurements, profiling over a panel of 97 kinases (tozasertib, a1, a4, b7, b8 at 100 nM; a1 

additionally at 1 µM concentration), and cellular assay (a1 and b7) were done using the 

KINOMEscan 42 and PathHunter technologies from DiscoverX, respectively. Results of the 

primary screen were reported as % of control (% Ctrl. = (test compound signal − positive 

control signal) / (DMSO signal – positive control signal). The profiling was done via the 

scanEDGE assay panel whereat KIT(D816V) and KIT (V559D, T670I) were replaced by 

TrkB and TrkC. See www.discoverx.com for details on the employed profiling assays. 

Selectivity scores (number of inhibited kinases divided by the total number of tested wild-type 

kinases) were calculated at activity cut-offs of 35% and 10% of control, respectively.  
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The Supporting Information is available free of charge via the Internet at http://pubs.acs.org. 

It contains Figures S1-S2 with profiling results, Table S1-S4 with results of primary screens, 

selectivity scores of top hits, the data set used to train the QM/ML approach as well as 

additional information about the validation results of the employed prediction tools, about the 

biological assays and assay results, and analytic data. Molecular formula strings for all 

chemical structures mentioned (CSV) and the predicted binding pose of a1 (PDB) are 

provided as data files.  
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TABLES 

Table 1: Summary of compound sets A and B. 

Set 
Number of compounds Number of experimentally verified hits 

1 

# calculated # synthesized # more selective  & TrkA < 10 nM 

A 7404 9 4 2 

B 6326 9 7 2 

1 Number of compounds which are TrkA-selective vs. AurA [& which have in addition TrkA 

activity < 10 nM in primary screen]. 

 

Table 2: Experimental affinity values of top hits. 

ID  
TrkA 

[pKd] 

AurA 

[pKd] 

Selectivity 

[∆∆∆∆pKd] 

Improved 

selectivity [∆∆∆∆∆∆∆∆pKd] 

Tozasertib 8.5 9.3 -0.8 -- 
Reference 2 1 7.5 7.4 0.1 0.9 

a1 8.6 5.3 3.3 4.1 
a4 8.8 7.0 1.8 2.6 
b7  9.0 7.6 1.4 2.2 
b8 8.4 7.3 1.1 1.9 

1 Tozasertib without cyclopropylcarboxamide. Reference 2 has an improved selectivity versus 

tozasertib which is in line with the unoccupied unfavorable TrkA-selectivity area. Hit 

compounds from sets A and B restore (or even improve) activity on TrkA without restoring 

AurA activity. 
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Table 3: PDB structures used to generate ‘selectivity grids’. 

Kinase PDB codes # models
a
 

TrkA 4aoj, 4pmtb, 4yne, 4yps 6 

AurA 1mq4, 1ol5, 1ol6, 1ol7, 2c6d, 2dwb, 2np8, 2w1c, 2w1d, 2w1e, 2w1f, 

2w1g, 2wtw, 2x6d, 2x6e, 2xne, 2xng, 2xru, 3d14, 3d15, 3d2i, 3d2k, 

3dj7, 3e5ac, 3efw, 3fdn, 3h0z, 3ha6, 3k5u, 3m11, 3myg, 3nrm, 3o50, 

3p9j, 3r21, 3r22, 3uo4, 3uo5, 3uod, 3up2, 3up7, 3vap, 4bn1, 4byi, 

4c3p, 4c3r, 4ceg, 4dea, 4deb, 4ded, 4dee, 4dhf, 4j8m, 4j8n, 4jaj, 4jbo, 

4jbp, 4o0s, 4o0u, 4o0w, 4prj, 4utd, 5aad, 5aae, 5aaf, 5aag, 5ew9 

76 

AurB 4af3, 4b8m 3 

a Total number of models includes individual chains and alternate models present in the PDB codes. 

b Used as reference structure for alignment.  

c PDB of co-crystallized tozasertib. 
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FIGURES 

 

Figure 1: Selectivity hot-spot areas in TrkA binding site. Predicted binding modes of (a) 

tozasertib and (b) compound a1 to TrkA (PDB code 4YNE). Compound a1 occupies the 

favorable hydrophobic sub-pockets adjacent to the gatekeeper residue (green) but does not 

reach into the unfavorable area (red) occupied by the cyclopropyl moiety of tozasertib. The 

favorable sub-pockets adjacent to the Phe residue of the G-Loop is occupied by substituents in 

the B set. Note that Phe521 of the G-loop samples differing conformations in other TrkA 

structures and that the PDB structure 4YNE was chosen for binding mode prediction and 

structure-activity analysis because it resulted into the most favorable docking scores (i.e. 

when bound to compounds of the B series). 
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Figure 2: Summary of computationally designed hit compounds. Affinity values for 

tozasertib and the top hits are listed for the key target (TrkA; green) and off-target (AurA; 

red). Modifications compared to the starting compound are highlighted in bold lines.  
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Figure 3: Multi-objective compound selection scheme. After initial binding pose generation 

via docking calculations, the compounds are prioritized via in silico methods that filter first 

with respect to selectivity criteria (i.e. the ligand-based ‘kinase profiling platform’ approach 

filters out promiscuous compounds, while the structure-based ‘selectivity grids’ approach 

filters for TrkA−Aurora selective compounds). Finally, highly active compounds on the key 

target are prioritized via two complementary machine learning technologies (i.e. using 

fragment-based Matched Molecular Pair descriptors and based on quantum mechanical 

calculations, respectively). The final selection does not rely on any manual filtering and 

includes in the case of the compound set A top ranking compounds from the MMP/ML and 

QM/ML technologies and in the case of the set B top ranking compounds from MMP/ML.  

  

Page 29 of 37

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30 

 

Figure 4: Profiling results. (a) Kinome profiling data of compound a1. With < 1% ctrl. 

compound a1 is highly active only against the key target TrkA. Beside TrkA, six further 

kinases are inhibited at a screening concentration of 100 nM (i.e. TrkB, TrkC, FLT3, KIT, 

PDGFRb, RET), leading to a selectivity score of S(35%) = 0.08. The compound is inactive on 

the off-targets AurA and AurB (white triangles). (b) Heatmap of kinase profiles of the hit 

compounds a1, a4, b7, and b8, as well as the starting compound tozasertib. The ABL1 

variants include phosphorylated version of the ABL1 mutants E255K and T315I as well as the 

non-phosphorylated and phosphorylated versions of the ABL1 wild type.   
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Summary of computationally designed hit compounds. Affinity values for tozasertib and the top hits are 
listed for the key target (TrkA; green) and off-target (AurA; red). Modifications compared to the starting 

compound are highlighted in bold lines.  
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Multi-objective compound selection scheme. After initial binding pose generation via docking calculations, 
the compounds are prioritized via in silico methods that filter first with respect to selectivity criteria (i.e. the 
ligand-based ‘kinase profiling platform’ approach filters out promiscuous compounds, while the structure-

based ‘selectivity grids’ approach filters for TrkA−Aurora selective compounds). Finally, highly active 
compounds on the key target are prioritized via two complementary machine learning technologies (i.e. 

using fragment-based Matched Molecular Pair descriptors and based on quantum mechanical calculations, 
respectively). The final selection does not rely on any manual filtering and includes in the case of the 

compound set A top ranking compounds from the MMP/ML and QM/ML technologies and in the case of the 

set B top ranking compounds from MMP/ML.  
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Profiling results. (a) Kinome profiling data of compound a1. With < 1% ctrl. compound a1 is highly active 
only against the key target TrkA. Beside TrkA, six further kinases are inhibited at a screening concentration 
of 100 nM (i.e. TrkB, TrkC, FLT3, KIT, PDGFRb, RET), leading to a selectivity score of S(35%) = 0.08. The 

compound is inactive on the off-targets AurA and AurB (white triangles). (b) Heatmap of kinase profiles of 
the hit compounds a1, a4, b7, and b8, as well as the starting compound tozasertib. The ABL1 variants 

include phosphorylated version of the ABL1 mutants E255K and T315I as well as the non-phosphorylated 
and phosphorylated versions of the ABL1 wild type.  
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Selectivity hot-spot areas in TrkA binding site. Predicted binding modes of (a) tozasertib and (b) compound 
a1 to TrkA (PDB code 4YNE). Compound a1 occupies the favorable hydrophobic sub-pockets adjacent to the 
gatekeeper residue (green) but does not reach into the unfavorable area (red) occupied by the cyclopropyl 
moiety of tozasertib. The favorable sub-pockets adjacent to the Phe residue of the G-Loop is occupied by 
substituents in the B set. Note that Phe521 of the G-loop samples differing conformations in other TrkA 

structures and that the PDB structure 4YNE was chosen for binding mode prediction and structure-activity 
analysis because it resulted into the most favorable docking scores (i.e. when bound to compounds of the B 

series).  
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